1
|
Tang SN, Zuber V, Tsilidis KK. Identifying and ranking causal biochemical biomarkers for breast cancer: a Mendelian randomisation study. BMC Med 2022; 20:457. [PMID: 36424572 PMCID: PMC9685978 DOI: 10.1186/s12916-022-02660-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Only a few of the 34 biochemical biomarkers measured in the UK Biobank (UKB) have been associated with breast cancer, with many associations suffering from possible confounding and reverse causation. This study aimed to screen and rank all UKB biochemical biomarkers for possible causal relationships with breast cancer. METHODS We conducted two-sample Mendelian randomisation (MR) analyses on ~420,000 women by leveraging summary-level genetic exposure associations from the UKB study (n = 194,174) and summary-level genetic outcome associations from the Breast Cancer Association Consortium (n = 228,951). Our exposures included all 34 biochemical biomarkers in the UKB, and our outcomes were overall, oestrogen-positive, and oestrogen-negative breast cancer. We performed inverse-variance weighted MR, weighted median MR, MR-Egger, and MR-PRESSO for 30 biomarkers for which we found multiple instrumental variables. We additionally performed multivariable MR to adjust for known risk factors, bidirectional MR to investigate reverse causation, and MR Bayesian model averaging to rank the significant biomarkers by their genetic evidence. RESULTS Increased genetic liability to overall breast cancer was robustly associated with the following biomarkers by decreasing importance: testosterone (odds ratio (OR): 1.12, 95% confidence interval (CI): 1.04-1.21), high-density lipoprotein (HDL) cholesterol (OR: 1.08, 95% CI: 1.04-1.13), insulin-like growth factor 1 (OR: 1.08, 95% CI: 1.02-1.13), and alkaline phosphatase (ALP) (OR: 0.93, 95% CI: 0.89-0.98). CONCLUSIONS Our findings support a likely causal role of genetically predicted levels of testosterone, HDL cholesterol, and IGF-1, as well as a novel potential role of ALP in breast cancer aetiology. Further studies are needed to understand full disease pathways that may inform breast cancer prevention.
Collapse
Affiliation(s)
- Sonja N Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
2
|
Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB. Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life 2021; 73:1016-1044. [PMID: 34170599 DOI: 10.1002/iub.2522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Cancer is a major public health concern due to high mortality and poor quality of life of patients. Despite the availability of advanced therapeutic interventions, most treatment modalities are not efficacious, very expensive, and cause several adverse side effects. The factors such as drug resistance, lack of specificity, and low efficacy of the cancer drugs necessitate developing alternative strategies for the prevention and treatment of this disease. Xanthohumol (XN), a prenylated chalcone present in Hop (Humulus lupulus), has been found to possess prominent activities against aging, diabetes, inflammation, microbial infection, and cancer. Thus, this manuscript thoroughly reviews the literature on the anti-cancer properties of XN and its various molecular targets. XN was found to exert its inhibitory effect on the growth and proliferation of cancer cells via modulation of multiple signaling pathways such as Akt, AMPK, ERK, IGFBP2, NF-κB, and STAT3, and also modulates various proteins such as Notch1, caspases, MMPs, Bcl-2, cyclin D1, oxidative stress markers, tumor-suppressor proteins, and miRNAs. Thus, these reports suggest that XN possesses enormous therapeutic potential against various cancers and could be potentially used as a multi-targeted anti-cancer agent with minimal adverse effects.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Queen Saikia
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Javadi Monisha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Harish V, Haque E, Śmiech M, Taniguchi H, Jamieson S, Tewari D, Bishayee A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci 2021; 22:ijms22094478. [PMID: 33923053 PMCID: PMC8123270 DOI: 10.3390/ijms22094478] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Collapse
Affiliation(s)
- Vancha Harish
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India;
| | - Effi Haque
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Magdalena Śmiech
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India
- Correspondence: (D.T.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (D.T.); or (A.B.)
| |
Collapse
|
4
|
Resazurin-Based Assay for Quantifying Living Cells during Alkaline Phosphatase (ALP) Release. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatase (ALP) is an important reporter gene in the gene expression system, therefore monitoring cellular behavior including cell viability during ALP release is of significance. This assay produced a quantitative resazurin-based assay for cell viability in embryonic and cancer cells during alkaline phosphatase (ALP) release. A post-confluence culture method was applied to induce ALP in the cells of Balb/c 3T3, A549, MCF-7, and Ht-29. The density of each cell type was optimized using the standard cell culture assay. The main parameters affecting the results of resazurin involve the concentration of resazurin, incubation time, and cell number. The redox reaction, in which resazurin is reduced by the cells, was measured by fluorescence at 544 nm and 590 nm. The obtained data were compared with the hemocytometer assay. ALP release was determined using the optical active substrate p-nitrophenyl phosphate and colorimetric assay.
Collapse
|
5
|
Guľašová Z, Guerreiro SG, Link R, Soares R, Tomečková V. Tackling endothelium remodeling in cardiovascular disease. J Cell Biochem 2019; 121:938-945. [DOI: 10.1002/jcb.29379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/15/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Zuzana Guľašová
- Department of Experimental Medicine, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| | - Susana G. Guerreiro
- Departamento de Biomedicina, Unidade de Bioquímica, Faculty of Medicine University of Porto Porto Portugal
- I3S, Instituto de Investigação e Inovação em Saúde University of Porto Porto Portugal
- Faculdade de Ciências da Nutrição e Alimentação University of Porto Porto Portugal
| | - Rene Link
- Department of Experimental Medicine, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| | - Raquel Soares
- Departamento de Biomedicina, Unidade de Bioquímica, Faculty of Medicine University of Porto Porto Portugal
- I3S, Instituto de Investigação e Inovação em Saúde University of Porto Porto Portugal
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine University of Pavol Jozef Šafárik in Košice Košice Slovakia
| |
Collapse
|
6
|
Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops ( Humulus lupulus L.). Front Pharmacol 2018; 9:530. [PMID: 29872398 PMCID: PMC5972274 DOI: 10.3389/fphar.2018.00530] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
It has been observed that many phytochemicals, frequently present in foods or beverages, show potent chemopreventive or therapeutic properties that selectively affect cancer cells. Numerous studies have demonstrated the anticancer activity of xanthohumol (Xn), a prenylated flavonoid isolated from hops (Humulus lupulus L.), with a concentration up to 0.96 mg/L in beer. This review aims to summarize the existing studies focusing on the anticancer activity of Xn and its effects on key signaling molecules. Furthermore, the limitations of current studies and challenges for the clinical use of Xn are discussed.
Collapse
Affiliation(s)
- Chuan-Hao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao-Li Sun
- Key Laboratory Breeding Base of Hu'nan Oriented Fundamental and Applied Research of Innovative Pharmaceutics, College of Pharmacy, Changsha Medical University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| | - Shan-Shan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| |
Collapse
|
7
|
Sun Z, Zhou C, Liu F, Zhang W, Chen J, Pan Y, Ma L, Liu Q, Du Y, Yang J, Wang Q. Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro. Oncol Lett 2017; 15:908-916. [PMID: 29422966 PMCID: PMC5772922 DOI: 10.3892/ol.2017.7434] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Natural compounds derived from plants have been an important source of numerous clinically useful anticancer agents. Nevertheless, limited studies indicate that xanthohumol (XN), a major prenylated flavonoid in hop plants (Humulus lupulus), may possess anticarcinogenic properties. The purpose of the present study was to clarify the antitumorigenic effects and the underlying mechanism of XN on breast cancer in vivo and in vitro. A 4T1 breast tumor mouse model was used in the present study to investigate XN suppression of tumor growth as detected by tumorigenicity assays in vivo. In addition, in vitro studies revealed that XN significantly decreased cell viability, induced G0/G1 cell cycle arrest and apoptosis in MCF-7 and MDA-MB-231 cells, as confirmed by an MTT assay, flow cytometry and western blot analysis, indicating anticarcinogenic activity of XN against breast cancer. Furthermore, immunohistochemistry was performed to confirm the inactivation of the Notch signaling pathway, Notch 1 and Ki-67, in vivo; consistently, XN caused decreased activation of the Notch signaling pathway and apoptotic regulators B-cell lymphoma-2 (Bcl-2), Bcl-extra large and caspase 3, as determined by western blot analysis in vitro. This study suggests that XN may potentially be useful as a chemopreventive agent during breast hyperplasia and carcinogenesis, acting via the regulation of Notch associated apoptotic regulators in vivo and in vitro.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Cheng Zhou
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Feng Liu
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wenchao Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanlong Pan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lianqing Ma
- Yumen Tuopu Science Development and Technology Co., Ltd., Yumen, Gansu 730000, P.R. China
| | - Qimin Liu
- Yumen Tuopu Science Development and Technology Co., Ltd., Yumen, Gansu 730000, P.R. China
| | - Yuping Du
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jinbo Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qin Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
8
|
The complex nature of oestrogen signalling in breast cancer: enemy or ally? Biosci Rep 2016; 36:BSR20160017. [PMID: 27160081 PMCID: PMC5293589 DOI: 10.1042/bsr20160017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature. Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.
Collapse
|
9
|
Sharma T, Radosevich JA, Pachori G, Mandal CC. A Molecular View of Pathological Microcalcification in Breast Cancer. J Mammary Gland Biol Neoplasia 2016; 21:25-40. [PMID: 26769216 DOI: 10.1007/s10911-015-9349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Breast microcalcification is a potential diagnostic indicator for non-palpable breast cancers. Microcalcification type I (calcium oxalate) is restricted to benign tissue, whereas type II (calcium hydroxyapatite) occurs both in benign as well as in malignant lesions. Microcalcification is a pathological complication of the mammary gland. Over the past few decades, much attention has been paid to exploit this property, which forms the basis for advances in diagnostic procedures and imaging techniques. The mechanism of its formation is still poorly understood. Hence, in this paper, we have attempted to address the molecular mechanism of microcalcification in breast cancer. The central theme of this communication is "how a subpopulation of heterogeneous breast tumor cells attains an osteoblast-like phenotype, and what activities drive the process of pathophysiological microcalcification, especially at the invasive or infiltrating front of breast tumors". The role of bone morphogenetic proteins (BMPs) and tumor associated macrophages (TAMs) along with epithelial to mesenchymal transition (EMT) in manipulating this pathological process has been highlighted. Therefore, this review offers a novel insight into the mechanism underlying the development of microcalcification in breast carcinomas.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - James A Radosevich
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Geeta Pachori
- Department of Pathology, J.L.N Medical College, Ajmer, Rajasthan, 305001, India
| | - Chandi C Mandal
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
10
|
Bak MJ, Das Gupta S, Wahler J, Suh N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin Cancer Biol 2016; 40-41:170-191. [PMID: 27016037 DOI: 10.1016/j.semcancer.2016.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
11
|
Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters: Results of human intervention trials. Mol Nutr Food Res 2016; 60:773-86. [DOI: 10.1002/mnfr.201500355] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 01/15/2023]
|
12
|
Karabín M, Hudcová T, Jelínek L, Dostálek P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr Rev Food Sci Food Saf 2016; 15:542-567. [PMID: 33401815 DOI: 10.1111/1541-4337.12201] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Although female cones of the hop plant (Humulus lupulus) are known primarily as raw material supplying characteristic bitterness and aroma to beer, their equally significant health-promoting effects have been known to mankind for several thousand years and hop is a plant traditionally utilized in folk medicine. This paper summarizes the scientific knowledge on the effects of all 3 major groups of secondary metabolites of hops; polyphenols, essential oils, and resins. Because of their chemical diversity, it is no coincidence that these compounds exhibit a wide range of pharmacologically important properties. In addition to antioxidant, anti-inflammatory, and anticancer-related properties, particular attention is being paid to prenylflavonoids that occur almost exclusively in hops and are considered to be some of the most active phytoestrogens known. Hop oils and resins are well known for their sedative and other neuropharmacological properties, but in addition, these compounds exhibit antibacterial and antifungal effects. Recently, alpha bitter acids have been shown to block the development of a number of complex lifestyle diseases that are referred to by the collective name "metabolic syndrome." Information presented in this review confirms the significant potential for the use of hops in the pharmaceutical industry and provides an understanding of beer as a natural drink that, although moderately consumed, may become a source of many health-promoting compounds.
Collapse
Affiliation(s)
- Marcel Karabín
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tereza Hudcová
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Jelínek
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Dostálek
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
13
|
Xanthohumol induces growth inhibition and apoptosis in ca ski human cervical cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:921306. [PMID: 25949267 PMCID: PMC4408747 DOI: 10.1155/2015/921306] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/05/2015] [Accepted: 02/25/2015] [Indexed: 12/31/2022]
Abstract
We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50 values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.
Collapse
|
14
|
Botelho MC, Alves H, Barros A, Rinaldi G, Brindley PJ, Sousa M. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes. Trends Parasitol 2015; 31:246-50. [PMID: 25837311 DOI: 10.1016/j.pt.2015.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/26/2023]
Abstract
Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility.
Collapse
Affiliation(s)
- Mónica C Botelho
- INSA, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; IPATIMUP, Institute of Pathology and Molecular Immunology of the University of Porto, Portugal.
| | - Helena Alves
- INSA, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Prof. Alberto Barros, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Tropical and Infectious Diseases, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Tropical and Infectious Diseases, School of Medicine & Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), Multidisciplinary Unit for Biomedical Research-UMIB, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Lopes FCM, Ferreira R, Albuquerque DM, Silveira AAA, Costa R, Soares R, Costa FF, Conran N. In vitro and in vivo anti-angiogenic effects of hydroxyurea. Microvasc Res 2014; 94:106-13. [DOI: 10.1016/j.mvr.2014.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/25/2022]
|
16
|
An update on antitumor activity of naturally occurring chalcones. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:815621. [PMID: 23690855 PMCID: PMC3652162 DOI: 10.1155/2013/815621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
Chalcones, which have characteristic 1,3-diaryl-2-propen-1-one skeleton, are mainly produced in roots, rhizomes, heartwood, leaves, and seeds of genera Angelica, Sophora, Glycyrrhiza, Humulus, Scutellaria, Parartocarpus, Ficus, Dorstenia, Morus, Artocarpus, and so forth. They have become of interest in the research and development of natural antitumor agents over the past decades due to their broad range of mechanisms including anti-initiation, induction of apoptosis, antiproliferation, antimetastasis, antiangiogenesis, and so forth. This review summarizes the studies on the antitumor activity of naturally occurring chalcones and their underlying mechanisms in detail during the past decades.
Collapse
|
17
|
Tronina T, Bartmańska A, Popłoński J, Huszcza E. Transformation of xanthohumol byAspergillus ochraceus. J Basic Microbiol 2013; 54:66-71. [DOI: 10.1002/jobm.201200320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/10/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Tomasz Tronina
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Agnieszka Bartmańska
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Jarosław Popłoński
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Ewa Huszcza
- Department of Chemistry; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| |
Collapse
|
18
|
Negrão R, Costa R, Duarte D, Gomes TT, Coelho P, Guimarães JT, Guardão L, Azevedo I, Soares R. Xanthohumol-supplemented beer modulates angiogenesis and inflammation in a skin wound healing model. Involvement of local adipocytes. J Cell Biochem 2012; 113:100-9. [PMID: 21898537 DOI: 10.1002/jcb.23332] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis and inflammation are two intermingled processes that play a role in wound healing. Nevertheless, whenever exacerbated, these processes result in nonhealing wounds. Xanthohumol (XN), a beer-derived polyphenol, inhibits these processes in many physiopathological situations. This study aimed at examining whether XN ingestion affects wound healing. Wistar rats drinking water, 5% ethanol, stout beer (SB) or stout beer supplemented with 10 mg/L XN (Suppl SB) for 4 weeks, were subjected to a 1.5 cm full skin-thickness longitudinal incision, and further maintained under the same beverage conditions for another week. No differences in beverage consumption or body weight were found throughout the study but food intake decreased in every group relative to controls. Consumption of Suppl SB resulted in decreased serum VEGF levels (18.42%), N-acetylglucosaminidase activity (27.77%), IL1β concentration (9.07%), and NO released (77.06%), accompanied by a reduced redox state as observed by increased GSH/GSSG ratio (to 198.80%). Also, the number of blood vessels within the wound granulation tissue seems to reduce in animals drinking Suppl SB (23.08%). Interestingly, SB and primarily Suppl SB showed a tendency to increase adipocyte number (to 194.26% and 156.68%, respectively) and reduce adipocyte size (4.60% and 24.64%, respectively) within the granuloma. Liver function and metabolism did not change among the animal groups as analyzed by plasma biochemical parameters, indicating no beverage toxicity. This study shows that XN intake in its natural beer context reduced inflammation, oxidative stress, and angiogenesis, ameliorating the wound healing process, suggesting that this polyphenol may exert beneficial effect as a nutritional supplement.
Collapse
Affiliation(s)
- Rita Negrão
- Department of Biochemistry (U38-FCT), University of Porto, Porto 4200-319, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Magalhães PJ, Dostalek P, Cruz JM, Guido LF, Barros AA. The Impact of a Xanthohumol-Enriched Hop Product on the Behavior of Xanthohumol and Isoxanthohumol in Pale and Dark Beers: A Pilot Scale Approach. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2008.tb00335.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Lopes FCM, Rocha A, Pirraco A, Regasini LO, Siqueira JR, Silva DH, Bolzani VS, Carlos IZ, Soares R. Alchornea glandulosa Ethyl Acetate Fraction Exhibits Antiangiogenic Activity: Preliminary Findings from In Vitro Assays Using Human Umbilical Vein Endothelial Cells. J Med Food 2011; 14:1244-53. [DOI: 10.1089/jmf.2010.0204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Flávia Cristine Mascia Lopes
- Hematology and Hemotherapy Center, School of Medical Sciences, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Ana Rocha
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Pirraco
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luis O. Regasini
- Department of Organic Chemistry, Araraquara Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Janaina R. Siqueira
- Department of Organic Chemistry, Araraquara Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Dulce H.S. Silva
- Department of Organic Chemistry, Araraquara Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Vanderlan S. Bolzani
- Department of Organic Chemistry, Araraquara Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Iracilda Z. Carlos
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Raquel Soares
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Negrão R, Costa R, Duarte D, Taveira Gomes T, Mendanha M, Moura L, Vasques L, Azevedo I, Soares R. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. J Cell Biochem 2011; 111:1270-9. [PMID: 20803553 DOI: 10.1002/jcb.22850] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Emerging evidence indicates that chronic inflammation and oxidative stress cluster together with angiogenic imbalance in a wide range of pathologies. In general, natural polyphenols present health-protective properties, which are likely attributed to their effect on oxidative stress and inflammation. Hops used in beer production are a source of polyphenols such as xanthohumol (XN), and its metabolites isoxanthohumol (IXN) and phytoestrogen 8-prenylnaringenin (8PN). Our study aimed to evaluate XN, IXN, and 8PN effects on angiogenesis and inflammation processes. Opposite in vitro effects were observed between 8PN, stimulating endothelial and smooth muscle cell (SMC) growth, motility, invasion and capillary-like structures formation, and XN and IXN, which inhibited them. Mouse matrigel plug and rat skin wound-healing assays confirmed that XN and IXN treatments reduced vessel number as well as serum macrophage enzymatic activity, whereas 8PN increased blood vessels formation in both assays and enzyme activity in the wound-healing assay. A similar profile was found for serum inflammatory interleukin-1β quantification, in the wound-healing assay. Our data indicate that whereas 8PN stimulates angiogenesis, XN and IXN manifested anti-angiogenic and anti-inflammatory effects in identical conditions. These findings suggest that the effects observed for individual compounds on vascular wall cells must be carefully taken into account, as these polyphenols are metabolized after in vivo administration. The modulation of SMC proliferation and migration is also of special relevance, given the role of these cells in many pathological conditions. Furthermore, these results may provide clues for developing useful therapeutic agents against inflammation- and angiogenesis-associated pathologies.
Collapse
Affiliation(s)
- Rita Negrão
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Xuan NT, Shumilina E, Gulbins E, Gu S, Götz F, Lang F. Triggering of dendritic cell apoptosis by xanthohumol. Mol Nutr Food Res 2010; 54 Suppl 2:S214-24. [PMID: 20333722 DOI: 10.1002/mnfr.200900324] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Stracke D, Schulz T, Prehm P. Inhibitors of hyaluronan export from hops prevent osteoarthritic reactions. Mol Nutr Food Res 2010; 55:485-94. [PMID: 20848398 DOI: 10.1002/mnfr.201000210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/19/2010] [Accepted: 08/03/2010] [Indexed: 01/04/2023]
Abstract
SCOPE An early reaction in osteoarthritic chondrocytes is hyaluronan overproduction followed by proteoglycan loss and collagen degradation. We recently found that hyaluronan is exported by the ATP-binding cassette transporter multidrug resistance associated protein 5 (MRP5) in competition with cGMP and that some phosphodiesterase 5 inhibitors also inhibited hyaluronan export. These inhibitors also prevented osteoarthritic reactions in cartilage. In an effort to identify the improved inhibitors directed primarily toward MRP5, we analyzed the flavonoids. METHODS AND RESULTS Prenylflavonoids from hop xanthohumol, isoxanthohumol and 8-prenylnaringenin inhibited MRP5 export at lower concentrations than phosphodiesterase 5 activity. They were analyzed for their effect on IL-induced osteoarthritic reactions in bovine chondrocytes. Xanthohumol was the superior compound to inhibit hyaluronan export, as well as proteoglycan and collagen loss. It also prevented the shedding of metalloproteases into the culture medium. It directly inhibited MRP5, because it reduced the export of the MRP5 substrate fluorescein immediately and did not influence the hyaluronan synthase activity. CONCLUSIONS Xanthohumol may be a natural compound to prevent hyaluronan overproduction and subsequent reactions in osteoarthritis.
Collapse
Affiliation(s)
- Dennis Stracke
- Muenster University Hospital, Institute of Physiological Chemistry and Pathobiochemistry, Muenster, Germany
| | | | | |
Collapse
|
25
|
Lopes FCM, Rocha A, Pirraco A, Regasini LO, Silva DHS, Bolzani VS, Azevedo I, Carlos IZ, Soares R. Anti-angiogenic effects of pterogynidine alkaloid isolated from Alchornea glandulosa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2009; 9:15. [PMID: 19463163 PMCID: PMC2694145 DOI: 10.1186/1472-6882-9-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 05/22/2009] [Indexed: 12/31/2022]
Abstract
Background Angiogenesis, a complex multistep process that comprehends proliferation, migration and anastomosis of endothelial cells (EC), has a major role in the development of pathologic conditions such as inflammatory diseases, tumor growth and metastasis. Brazilian flora, the most diverse in the world, is an interesting spot to prospect for new chemical leads, being an important source of new anticancer drugs. Plant-derived alkaloids have traditionally been of interest due to their pronounced physiological activities. We investigated the anti-angiogenic potential of the naturally occurring guanidine alkaloid pterogynidine (Pt) isolated from the Brazilian plant Alchornea glandulosa. The purpose of this study was to examine which features of the angiogenic process could be disturbed by Pt. Methods Human umbilical vein endothelial cells (HUVEC) were incubated with 8 μM Pt and cell viability, proliferation, apoptosis, invasion and capillary-like structures formation were addressed. Nuclear factor κB (NFκB), a transcription factor implicated in these processes, was also evaluated in HUVEC incubated with Pt. Quantifications were expressed as mean ± SD of five independent experiments and one-way analysis of variance (ANOVA) followed by the Dunnet test was used. Results A significant decrease in proliferation and invasion capacity and an effective increase in apoptosis as assessed by bromodeoxyuridine (BrdU), double-chamber and terminal transferase dUTP nick end labeling (TUNEL) assay, respectively, have been found. Pt also led to a drastic reduction in the number of capillary-like structures formation when HUVEC were cultured on growth factor reduced-Matrigel (GFR-Matrigel) coated plates. In addition, incubation of HUVEC with Pt resulted in reduced NFκB activity. Conclusion These findings emphasize the potential use of Pt against pathological situations where angiogenesis is stimulated as tumor development.
Collapse
|
26
|
Magalhães PJ, Carvalho DO, Cruz JM, Guido LF, Barros AA. Fundamentals and Health Benefits of Xanthohumol, a Natural Product Derived from Hops and Beer. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been a growing interest in phenolic compounds and their presumed role in the prevention of various degenerative diseases, such as cancer and cardiovascular diseases. Xanthohumol, a prenylated chalcone from hops and beer, is among the phenolic compounds which have received the most attention in recent years. This compound has a range of interesting biological properties that may have therapeutic utility. Based on the health-promoting properties of xanthohumol, the production of a beer enriched in this substance would be of huge interest to the brewing industry, for the benefits this could bring to consumer's health. This paper reviews recent and important data with respect to the health benefits or biological activities of xanthohumol and beer. In addition, an overview of the chemistry and biotechnological aspects of xanthohumol is presented.
Collapse
Affiliation(s)
- Paulo J. Magalhães
- REQUIMTE – Departamento de Química da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Daniel O. Carvalho
- REQUIMTE – Departamento de Química da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - José M. Cruz
- IBESA – Instituto de Bebidas e Saúde, apartado 1044, 4466-955 S. Mamede de Infesta, Portugal
| | - Luís F. Guido
- REQUIMTE – Departamento de Química da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Aquiles A. Barros
- REQUIMTE – Departamento de Química da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Abstract
The total synthesis of xanthohumol (1) was accomplished in 10% overall yield from phloracetophenone after six steps. Insertion of a prenyl group onto the aryl ring was achieved by a para-Claisen rearrangement after using a Mitsunobu reaction to establish the key prenyl ether precursor. A Claisen-Schmidt condensation was deployed to construct the chalcone scaffold followed by removal of MOM protecting groups under acidic conditions that were optimized to prevent concomitant cyclization to the flavone.
Collapse
Affiliation(s)
- Rahul S Khupse
- Center for Drug Design and Development, College of Pharmacy, The University of Toledo, Toledo, Ohio 43606-3390, USA
| | | |
Collapse
|