1
|
Nimisha, Saluja SS, Sharma AK, Nekarakanti PK, Apurva, Kumar A, Sattar RSA, Anjum H, Batra VV, Husain SA. Molecular aspects of ABCB1 and ABCG2 in Gallbladder cancer and its clinical relevance. Mol Cell Biochem 2023; 478:2379-2394. [PMID: 36720839 DOI: 10.1007/s11010-023-04667-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The function of ABC transporters in the body is manifold; such as maintenance of homeostasis, effect on multi-drug resistance and their role in tumor initiation & progression. Evidence pointing towards the direct or indirect role of ABC transporter genes in particular; ABCB1 and ABCG2 in cancer genesis is increasing. However, their role in gallbladder cancer is unexplored. Therefore, we investigated the methylation status and expression pattern of ABCB1 and ABCG2in gallbladder carcinogenesis. The methylation and expression study of ABCB1/MDR1 and ABCG2/BCRP was performed in tumour and normal fresh tissue samples collected from 61 histopathologically diagnosed gallbladder cancer patients. The methylation status was analysed by Methylation-Specific PCR and expression was determined by Real-Time PCR and Immunohistochemistry. Hypomethylation of ABCB1 and ABCG2 was found in 44 (72.13%) and 48 (78.6%) cases, respectively. ABCB1 hypomethylation pattern showed association with female patients (p = 0.040) and GradeII tumors (p = 0.036) while, ABCG2 hypomethylation was more frequent in early tumors (T1-T2). The mRNA expression ofABCB1 and ABCG2 was up-regulated in 33 (54.10%) and 41 (67.21%) patients with fold change of 4.7 and 5.5, respectively. The mRNA expression of both genes showed association with Grade II tumours and the increased fold change of ABCG2 was higher in (T1-T2) depth of invasion (p = 0.02) and Stage I-II disease (p = 0.08). The protein expression on IHC was strongly positive for ABCB1/MDR1and ABCG2/BCRP in 32 (52.46%) and 45 (73.77%) patients, respectively. The protein expression in ABCG2 showed association with patients age > 50 years (p = 0.04) and GradeII differentiation (p = 0.07). Interestingly, the hypomethylation of both the genes showed significant correlation with increased expression. ABCB1/MDR1 and ABCG2/BCRP hypomethylation and overexpression could have a potential role in gallbladder cancer tumorigenesis especially in early stages. The epigenetic change might be a plausible factor for altered gene expression of ABCB1 and ABCG2 in gallbladder cancer.
Collapse
Affiliation(s)
- Nimisha
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Phani Kumar Nekarakanti
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Hasib Anjum
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Vineeta Vijay Batra
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | | |
Collapse
|
2
|
Ma L, Li C, Yin H, Huang J, Yu S, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. The Mechanism of DNA Methylation and miRNA in Breast Cancer. Int J Mol Sci 2023; 24:9360. [PMID: 37298314 PMCID: PMC10253858 DOI: 10.3390/ijms24119360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is the most prevalent cancer in the world. Currently, the main treatments for breast cancer are radiotherapy, chemotherapy, targeted therapy and surgery. The treatment measures for breast cancer depend on the molecular subtype. Thus, the exploration of the underlying molecular mechanisms and therapeutic targets for breast cancer remains a hotspot in research. In breast cancer, a high level of expression of DNMTs is highly correlated with poor prognosis, that is, the abnormal methylation of tumor suppressor genes usually promotes tumorigenesis and progression. MiRNAs, as non-coding RNAs, have been identified to play key roles in breast cancer. The aberrant methylation of miRNAs could lead to drug resistance during the aforementioned treatment. Therefore, the regulation of miRNA methylation might serve as a therapeutic target in breast cancer. In this paper, we reviewed studies on the regulatory mechanisms of miRNA and DNA methylation in breast cancer from the last decade, focusing on the promoter region of tumor suppressor miRNAs methylated by DNMTs and the highly expressed oncogenic miRNAs inhibited by DNMTs or activating TETs.
Collapse
Affiliation(s)
- Lingyuan Ma
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Chenyu Li
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Hanlin Yin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Jiashu Huang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Shenghao Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.M.); (C.L.); (H.Y.); (J.H.); (S.Y.); (J.Z.); (Y.T.); (M.Y.); (J.L.)
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming 650214, China
| |
Collapse
|
3
|
DNA Copy Number Aberrations and Expression of ABC Transporter Genes in Breast Tumour: Correlation with the Effect of Neoadjuvant Chemotherapy and Prognosis of the Disease. Pharmaceutics 2022; 14:pharmaceutics14050948. [PMID: 35631534 PMCID: PMC9146568 DOI: 10.3390/pharmaceutics14050948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. Materials and Methods. The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. Results. This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). Conclusions. The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.
Collapse
|
4
|
Wang M, Yu F, Zhang Y, Zhang L, Chang W, Wang K. The Emerging Roles of Circular RNAs in the Chemoresistance of Gastrointestinal Cancer. Front Cell Dev Biol 2022; 10:821609. [PMID: 35127685 PMCID: PMC8814461 DOI: 10.3389/fcell.2022.821609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer represents a major global health problem due to its aggressive characteristics and poor prognosis. Despite the progress achieved in the development of treatment regimens, the clinical outcomes and therapeutic responses of patients with GI cancer remain unsatisfactory. Chemoresistance arising throughout the clinical intervention is undoubtedly a critical barrier for the successful treatment of GI cancer. However, the precise mechanisms associated with chemoresistance in GI cancer remain unclear. In the past decade, accumulating evidence has indicated that circular RNAs (circRNAs) play a key role in regulating cancer progression and chemoresistance. Notably, circRNAs function as molecular sponges that sequester microRNAs (miRNAs) and/or proteins, and thus indirectly control the expression of specific genes, which eventually promote or suppress drug resistance in GI cancer. Therefore, circRNAs may represent potential therapeutic targets for overcoming drug resistance in patients with GI cancer. This review comprehensively summarizes the regulatory roles of circRNAs in the development of chemoresistance in different GI cancers, including colorectal cancer, gastric cancer and esophageal cancer, as well as deciphers the underlying mechanisms and key molecules involved. Increasing knowledge of the important functions of circRNAs underlying drug resistance will provide new opportunities for developing efficacious therapeutic strategies against GI cancer.
Collapse
Affiliation(s)
- Man Wang
- *Correspondence: Man Wang, ; Kun Wang,
| | | | | | | | | | - Kun Wang
- *Correspondence: Man Wang, ; Kun Wang,
| |
Collapse
|
5
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
6
|
Ivanova E, Ward A, Wiegmans AP, Richard DJ. Circulating Tumor Cells in Metastatic Breast Cancer: From Genome Instability to Metastasis. Front Mol Biosci 2020; 7:134. [PMID: 32766277 PMCID: PMC7378584 DOI: 10.3389/fmolb.2020.00134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical resistance in repeatedly treated cancers extends from the primary tumor's capability to exploit genome instability to adapt, escape, and progress. Triple negative breast cancer serves as a good example of such a response demonstrating poor clinical outcome due to a high rate of cellular heterogeneity resulting in metastatic relapse. The capability to effectively track the emergence of therapeutic resistance in real-time and adapt the clinical response is the holy grail for precision medicine and has yet to be realized. In this review we present liquid biopsy using CTCs and ctDNA as a potential replacement and/or addition to the current diagnostic tests to deliver personalized therapies to patients with advanced breast cancer. We outline current uses of liquid biopsy in the metastatic breast cancer setting and discuss their limitations. In addition, we provide a detailed overview of common genome instability events in patients with metastatic breast cancer and how these can be tracked using liquid biopsy.
Collapse
Affiliation(s)
- Ekaterina Ivanova
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolongabba, QLD, Australia.,Centre for Tumour and Immune Biology (ZTI), Philipps University Marburg, Marburg, Germany
| | - Ambber Ward
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston, QLD, Australia
| | - Adrian P Wiegmans
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolongabba, QLD, Australia
| | - Derek John Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolongabba, QLD, Australia
| |
Collapse
|
7
|
Padayachee J, Singh M. Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine (Rij) 2020; 7:1849543520983196. [PMID: 33488814 PMCID: PMC7768851 DOI: 10.1177/1849543520983196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Globally, approximately 1 in 4 cancers in women are diagnosed as breast cancer (BC). Despite significant advances in the diagnosis and therapy BCs, many patients develop metastases or relapses. Hence, novel therapeutic strategies are required, that can selectively and efficiently kill malignant cells. Direct targeting of the genetic and epigenetic aberrations that occur in BC development is a promising strategy to overcome the limitations of current therapies, which target the tumour phenotype. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, composed of only an easily modifiable single guide RNA (sgRNA) sequence bound to a Cas9 nuclease, has revolutionised genome editing due to its simplicity and efficiency compared to earlier systems. CRISPR/Cas9 and its associated catalytically inactivated dCas9 variants facilitate the knockout of overexpressed genes, correction of mutations in inactivated genes, and reprogramming of the epigenetic landscape to impair BC growth. To achieve efficient genome editing in vivo, a vector is required to deliver the components to target cells. Gold nanomaterials, including gold nanoparticles and nanoclusters, display many advantageous characteristics that have facilitated their widespread use in theranostics, as delivery vehicles, and imaging and photothermal agents. This review highlights the therapeutic applications of CRISPR/Cas9 in treating BCs, and briefly describes gold nanomaterials and their potential in CRISPR/Cas9 delivery.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
8
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
9
|
Pharmaco-epigenomics: On the Road of Translation Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1168:31-42. [DOI: 10.1007/978-3-030-24100-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Lee JH, Jeong H, Choi JW, Oh HE, Kim YS. Liquid biopsy prediction of axillary lymph node metastasis, cancer recurrence, and patient survival in breast cancer: A meta-analysis. Medicine (Baltimore) 2018; 97:e12862. [PMID: 30334995 PMCID: PMC6211877 DOI: 10.1097/md.0000000000012862] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Liquid biopsies using circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) have been developed for early cancer detection and patient monitoring. To investigate the clinical usefulness of ctDNA aberrations and cfDNA levels in patients with breast cancer (BC), we conducted a meta-analysis of 69 published studies on 5736 patients with BC. METHODS The relevant publications were identified by searching PubMed and Embase databases. The effect sizes of outcome parameters were pooled using a random-effects model. RESULTS The ctDNA mutation rates of TP53, PIK3CA, and ESR1 were approximately 38%, 27%, and 32%, respectively. High levels of cfDNA were associated with BCs rather than with healthy controls. However, these detection rates were not satisfactory for BC screening. Although the precise mechanisms have been unknown, high cfDNA levels were significantly associated with axillary lymph node metastasis (odds ratio [OR] = 2.148, P = .030). The ctDNA mutations were significantly associated with cancer recurrence (OR = 3.793, P < .001), short disease-free survival (univariate hazard ratio [HR] = 5.180, P = .026; multivariate HR = 3.605, P = .001), and progression-free survival (HR = 1.311, P = .013) rates, and poor overall survival outcomes (HR = 2.425, P = .007). CONCLUSION This meta-analysis demonstrates that ctDNA mutation status predicts disease recurrence and unfavorable survival outcomes, while cfDNA levels can be predictive of axillary lymph node metastasis in patients with BC.
Collapse
|
11
|
Spitzwieser M, Pirker C, Koblmüller B, Pfeiler G, Hacker S, Berger W, Heffeter P, Cichna-Markl M. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients. Oncotarget 2018; 7:73347-73369. [PMID: 27689338 PMCID: PMC5341984 DOI: 10.18632/oncotarget.12332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Overexpression of ABCB1, ABCC1 and ABCG2 in tumor tissues is considered a major cause of limited efficacy of anticancer drugs. Gene expression of ABC transporters is regulated by multiple mechanisms, including changes in the DNA methylation status. Most of the studies published so far only report promoter methylation levels for either ABCB1 or ABCG2, and data on the methylation status for ABCC1 are scarce. Thus, we determined the promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in 19 human cancer cell lines. In order to contribute to the elucidation of the role of DNA methylation changes in acquisition of a multidrug resistant (MDR) phenotype, we also analyzed the promoter methylation patterns in drug-resistant sublines of the cancer cell lines GLC-4, SW1573, KB-3-1 and HL-60. In addition, we investigated if aberrant promoter methylation levels of ABCB1, ABCC1 and ABCG2 occur in tumor and tumor-surrounding tissues from breast cancer patients. Our data indicates that hypomethylation of the ABCC1 promoter is not cancer type-specific but occurs in cancer cell lines of different origins. Promoter methylation was found to be an important mechanism in gene regulation of ABCB1 in parental cancer cell lines and their drug-resistant sublines. Overexpression of ABCC1 in MDR cell models turned out to be mediated by gene amplification, not by changes in the promoter methylation status of ABCC1. In contrast to the promoters of ABCC1 and ABCG2, the promoter of ABCB1 was significantly higher methylated in tumor tissues than in tumor-adjacent and tumor-distant tissues from breast cancer patients.
Collapse
Affiliation(s)
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | - Bettina Koblmüller
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, Division of Gynecology and Gynecological Oncology, Medical University of Vienna, Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center of the Medical University, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
12
|
Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 2018; 51:22-35. [PMID: 29339244 DOI: 10.1016/j.semcancer.2018.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/15/2017] [Accepted: 01/11/2018] [Indexed: 02/09/2023]
Abstract
In the last years, mortality from breast cancer has declined in western countries as a consequence of a more widespread screening resulting in earlier detection, as well as an improved molecular classification and advances in adjuvant treatment. Nevertheless, approximately one third of breast cancer patients will develop distant metastases and eventually die for the disease. There is now a compelling body of evidence suggesting that epigenetic modifications comprising DNA methylation and chromatin remodeling play a pivotal role since the early stages of breast cancerogenesis. In addition, recently, increasing emphasis is being placed on the property of ncRNAs to finely control gene expression at multiple levels by interacting with a wide array of molecules such that they might be designated as epigenetic modifiers. In this review, we summarize the current knowledge about the involvement of epigenetic modifications in breast cancer, and provide an overview of the significant association of epigenetic traits with the breast cancer clinicopathological features, emphasizing the potentiality of epigenetic marks to become biomarkers in the context of precision medicine.
Collapse
Affiliation(s)
- Barbara Pasculli
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Raffaela Barbano
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
13
|
Tsyganov MM, Freidin MB, Ibragimova MK, Deryusheva IV, Kazantseva PV, Slonimskaya EM, Cherdyntseva NV, Litviakov NV. Genetic variability in the regulation of the expression cluster of MDR genes in patients with breast cancer. Cancer Chemother Pharmacol 2017; 80:251-260. [DOI: 10.1007/s00280-017-3354-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
|
14
|
Wang H, Wang X, Liao A, Liu Z. Hypomethylation agent decitabine restores drug sensitivity by depressing P-glycoprotein activity through MAPK signaling pathway. Mol Cell Biochem 2017; 433:141-148. [PMID: 28405849 DOI: 10.1007/s11010-017-3022-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
The multidrug resistance (MDR) continues to be an obstacle in the treatment of both hematological and solid tumors. Hypomethylation agent, decitabine (5-Aza-dC), is an experimental agent in MDR therapy, while the mechanism is not very clear. In the present study, we demonstrated 5-Aza-dC may reverse MDR induced by P-glycoprotein (P-gp) coded by mdr1 gene in both hematologic K562/ADR cells and solid tumor MCF-7/ADR cells with time and dose-dependent manner. 5-Aza-dC significantly increased drug sensitivity in patients' leukemic cells which had higher expression of mdr1 gene. Both total protein and membrane P-gp expression were up-regulated with 5-Aza-dC treatment in K562/ADR and MCF-7/ADR cells. However, accumulation of adriamycin and rhodamine 123 were increased which suggested the depression of P-gp activity. Gene expression profiling was performed and activation of MAPK signaling pathway was identified as the most significant change affected by 5-Aza-dC. Inhibition of MAPK pathway could increase P-gp activity. Our data suggested that hypomethylation agent decitabine restores drug sensitivity in the P-gp-induced MDR phenotype by depressing of P-gp activity as drug pump partly through MAPK signaling pathway.
Collapse
Affiliation(s)
- Huihan Wang
- Department of Hematology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Street, Shenyang, 110021, China
| | - Xiaobin Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Street, Shenyang, 110021, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital, China Medical University, No. 39 Huaxiang Street, Shenyang, 110021, China.
| |
Collapse
|
15
|
|
16
|
Wang J, Han X, Sun Y. DNA methylation signatures in circulating cell-free DNA as biomarkers for the early detection of cancer. SCIENCE CHINA-LIFE SCIENCES 2017; 60:356-362. [DOI: 10.1007/s11427-016-0253-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023]
|
17
|
Litviakov NV, Cherdyntseva NV, Tsyganov MM, Slonimskaya EM, Ibragimova MK, Kazantseva PV, Kzhyshkowska J, Choinzonov EL. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget 2016; 7:7829-41. [PMID: 26799285 PMCID: PMC4884957 DOI: 10.18632/oncotarget.6953] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/05/2015] [Indexed: 01/10/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) is intensively used for the treatment of primary breast cancer. In our previous studies, we reported that clinical tumor response to NAC is associated with the change of multidrug resistance (MDR) gene expression in tumors after chemotherapy. In this study we performed a combined analysis of MDR gene locus deletions in tumor DNA, MDR gene expression and clinical response to NAC in 73 BC patients. Copy number variations (CNVs) in biopsy specimens were tested using high-density microarray platform CytoScanTM HD Array (Affymetrix, USA). 75%–100% persons having deletions of MDR gene loci demonstrated the down-regulation of MDR gene expression. Expression of MDR genes was 2–8 times lower in patients with deletion than in patients having no deletion only in post-NAC tumors samples but not in tumor tissue before chemotherapy. All patients with deletions of ABCB1 ABCB 3 ABCC5 gene loci – 7q21.1, 6p21.32, 3q27 correspondingly, and most patients having deletions in ABCC1 (16p13.1), ABCC2 (10q24), ABCG1 (21q22.3), ABCG2 (4q22.1), responded favorably to NAC. The analysis of all CNVs, including both amplification and deletion showed that the frequency of 13q14.2 deletion was 85% among patients bearing tumor with the deletion at least in one MDR gene locus versus 9% in patients with no deletions. Differences in the frequency of 13q14.2 deletions between the two groups were statistically significant (p = 2.03 ×10−11, Fisher test, Bonferroni-adjusted p = 1.73 × 10−8). In conclusion, our study for the first time demonstrates that deletion MDR gene loci can be used as predictive marker for tumor response to NAC.
Collapse
Affiliation(s)
- Nikolai V Litviakov
- Laboratory of Oncovirology, Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation
| | - Nadezhda V Cherdyntseva
- Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation.,Laboratory of Molecular Oncology and Immunology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Matvey M Tsyganov
- Laboratory of Oncovirology, Tomsk Cancer Research Institute, Tomsk, Russian Federation.,Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation
| | - Elena M Slonimskaya
- Department of General Oncology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Marina K Ibragimova
- Laboratory of Oncovirology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Polina V Kazantseva
- Department of General Oncology, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cell and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation.,Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Eugeniy L Choinzonov
- Department of Head and Neck Cancer, Tomsk Cancer Research Institute, Tomsk, Russian Federation
| |
Collapse
|
18
|
Berman M, Mattheolabakis G, Suresh M, Amiji M. Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opin Drug Deliv 2016; 13:987-98. [DOI: 10.1080/17425247.2016.1178236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Melissa Berman
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - George Mattheolabakis
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Megha Suresh
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
A study of the role of Notch1 and JAG1 gene methylation in development of breast cancer. Med Oncol 2016; 33:35. [PMID: 26971121 DOI: 10.1007/s12032-016-0750-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
This study is to explore the roles of gene methylation of Notch1 and JAG1 in development of invasive ductal carcinoma of breast. Quantitative analysis the DNA methylation levels of Notch1 and JAG1 gene by the MassARRAY method in invasive ductal carcinoma of breast (IDC; n = 89), atypical ductal hyperplasia of breast (ADH; n = 11), and ordinary ductal hyperplasia of breast (UDH; n = 20). The expressions of JAG1 and Notch1 protein in four breast tissues were detected by immunohistochemistry SP method. (1) Positive expression rates of Notch1 protein in IDC and DCIS were 88.7 % (79/89) and 70.0 % (14/20), respectively, which were significantly higher than the levels in ADH (36.0 %, 4/11) and UDH (25.0 %, 5/20; P < 0.05). Notch1 protein expression was significant positively correlated with lymph node metastasis, pathological grades, and TNM stages of IDC. (2) Positive expression rates of JAG1 protein in IDC and DCIS were 89.9 % (80/89) and 75.0 % (15/20), respectively, which were significantly higher than those of ADH (45.0 %, 5/11) and UDH (30.0 %, 6/20; P < 0.05). JAG1 protein expression was significant positive correlation with lymph node metastasis, pathological grades and TNM stages of IDC. There is an overall hypomethylation alteration of Notch1 and JAG gene in IDC, with corresponding over-expression of Notch1 and JAG1 protein. This inverse correlation shows that the alteration of protein expression results from hypomethylation oncogene Notch1 and JAG1, and this change may play an important role in occurrence and progression of breast cancer.
Collapse
|
20
|
Ma M, Zhu H, Zhang C, Sun X, Gao X, Chen G. "Liquid biopsy"-ctDNA detection with great potential and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:235. [PMID: 26539452 DOI: 10.3978/j.issn.2305-5839.2015.09.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Circulating tumor DNA (ctDNA) is now being extensively studied as it is a noninvasive "real-time" biomarker that can provide diagnostic and prognostic information before, during treatment and at progression. These include DNA mutations, epigenetic alterations and other forms of tumor-specific abnormalities such as microsatellite instability (MSI) and loss of heterozygosity (LOH). ctDNA is of great value in the process of cancer treatment. However, up to date, there is no strict standard considering the exact biomarker because the development and progression of cancer is extremely complicated. Also, results of the studies evaluating ctDNA are not consistent due to the different detection methods and processing. The major challenge is still assay sensitivity and specificity for analysis of ctDNA. This review mainly focuses on the tumor specific DNA mutations, epigenetic alterations as well as detecting methods of ctDNA. The advantages and disadvantages will also be discussed.
Collapse
Affiliation(s)
- Mingwei Ma
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Hongcheng Zhu
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Chi Zhang
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Xinchen Sun
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Xianshu Gao
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Gang Chen
- 1 Department of Radiation Oncology, Peking University First Hospital, No.7, Xishiku Str., Xicheng District, Beijing 100034, China ; 2 Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China ; 3 Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
21
|
Deng S, Wu Q, Zhao Y, Zheng X, Wu N, Pang J, Li X, Bi C, Liu X, Yang L, Liu L, Su W, Wei Y, Gong C. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells. NANOSCALE 2015; 7:5270-80. [PMID: 25721713 DOI: 10.1039/c4nr07641a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Doxorubicin (Dox) micelles showed improved anti-metastasis activity by killing circulating tumor cells (CTCs) in zebrafish and mouse models, which may have potential applications in cancer therapy.
Collapse
Affiliation(s)
- Senyi Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Yuwei Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Xin Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Ni Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Jing Pang
- Department of Medical Oncology
- Cancer Center
- West China Hospital
- West China Medical School
- Sichuan University
| | - Xuejing Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Cheng Bi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Xinyu Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Li Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Lei Liu
- Department of Medical Oncology
- Cancer Center
- West China Hospital
- West China Medical School
- Sichuan University
| | - Weijun Su
- School of Medicine
- Nankai University
- Tianjin, P. R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy
- Cancer Center
- West China Hospital
- Sichuan University
- Chengdu, P. R. China
| |
Collapse
|
22
|
Jeschke J, Collignon E, Fuks F. DNA methylome profiling beyond promoters - taking an epigenetic snapshot of the breast tumor microenvironment. FEBS J 2014; 282:1801-14. [PMID: 25331982 DOI: 10.1111/febs.13125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/06/2014] [Accepted: 10/19/2014] [Indexed: 12/22/2022]
Abstract
Breast cancer, one of the most common and deadliest malignancies in developed countries, is a remarkably heterogeneous disease, which is clinically reflected by patients who display similar pathological features but respond differently to treatments. In the search for mediators of responsiveness, the tumor microenvironment (TME), in particular tumor-associated immune cells, has been pushed into the spotlight as it has become clear that the TME is an active component of breast cancer disease that affects clinical outcomes. Thus, the characterization of the TME in terms of cell identities and their frequencies has generated a great deal of interest. The common methods currently used for this purpose are either limited in accuracy or application, and DNA methylation has recently been proposed as an alternative approach. The aim of this review is to discuss DNA methylation profiling beyond promoters as a potential clinical tool for TME characterization and cell typing within tumors. With respect to this, we review the role of DNA methylation in breast cancer and cell-lineage specification, as well as inform about the composition and clinical relevance of the TME.
Collapse
Affiliation(s)
- Jana Jeschke
- Laboratory of Cancer Epigenetics, Université Libre de Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
23
|
Schwarzenbach H. The potential of circulating nucleic acids as components of companion diagnostics for predicting and monitoring chemotherapy response. Expert Rev Mol Diagn 2014; 15:267-75. [PMID: 25382372 DOI: 10.1586/14737159.2015.980817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An effective personalized medicine is associated with the ability of identifying cancer patients who respond to anticancer targeted therapies. Therefore, new companion biomarkers that facilitate drug development are urgently needed. Since clinically relevant genetic and epigenetic alterations can be detected in cell-free nucleic acids in the blood circulation of cancer patients, these molecules may be a new promising class of potential liquid biomarkers. They can be obtained in real-time from blood, and their analyses could, consequently, facilitate treatment decisions. Screening of these liquid biopsies may provide information on the aberrant signaling pathway that should be blocked by the chosen targeted therapy. This article will discuss the potential of circulating nucleic acids as therapeutics for overcoming chemotherapeutic resistance in anticancer strategies.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
24
|
Corrêa S, Binato R, Du Rocher B, Ferreira G, Cappelletti P, Soares-Lima S, Pinto LF, Mencalha A, Abdelhay E. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter. Epigenetics 2014; 9:1172-83. [PMID: 25089713 DOI: 10.4161/epi.29675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.
Collapse
Affiliation(s)
- Stephany Corrêa
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| | - Renata Binato
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| | | | - Gerson Ferreira
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| | | | | | | | - André Mencalha
- Universidade do Estado do Rio de Janeiro; UERJ; Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Martin HL, Smith L, Tomlinson DC. Multidrug-resistant breast cancer: current perspectives. BREAST CANCER (DOVE MEDICAL PRESS) 2014; 6:1-13. [PMID: 24648765 PMCID: PMC3929252 DOI: 10.2147/bctt.s37638] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. By understanding the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be developed. Here we review the recent advances in this understanding, emphasizing the common mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastuzumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, and epigenetic alterations affecting gene expression, and discuss how these mechanisms can interact in multidrug resistance. The development of therapeutics targeting these mechanisms is also addressed.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| | - Laura Smith
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Marzese DM, Hirose H, Hoon DSB. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 2014; 13:827-44. [DOI: 10.1586/14737159.2013.845088] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Yan H, Yu N, Tong J. Effects of 5-Aza-2'-deoxycytidine on the methylation state and function of the WWOX gene in the HO-8910 ovarian cancer cell line. Oncol Lett 2013; 6:845-849. [PMID: 24137423 PMCID: PMC3789030 DOI: 10.3892/ol.2013.1438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/13/2013] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to explore the effects of 5-Aza-2′-deoxycytidine (5-Aza-CdR), a DNA methylation inhibitor, on the methylation state and function of the WWOX gene in the HO-8910 ovarian cancer cell line. The HO-8910 cells were divided into two groups, a control group and a 5-Aza-CdR-treated group. The methylation state of the WWOX gene was evaluated using a methylation-specific PCR assay. The effect of 5-Aza-CdR on the HO-8910 cells was analyzed using MTT and cell invasion assays, as well as flow cytometry. The animal models were established by intraperitoneal transplantation of the cells into nude mice. Following treatment with 5-Aza-CdR, a demethylation state was detected in the HO-8910 cells. WWOX protein expression was significantly higher in the 5-Aza-CdR-treated group compared with that in the control group. The cell growth rate at each tested time point and the number of invasive cells were lower in the 5-Aza-CdR-treated group compared with that in the control group. Flow cytometry revealed that 67.13% of the cells were arrested at the G0/G1 stage in the 5-Aza-CdR-treated group. The tumorigenic ability of the 5-Aza-CdR-treated group was lower compared with that of the control group. In conclusion, the methylation state of the WWOX gene in HO-8910 cells may be reversed using 5-Aza-CdR, which may also inhibit the growth of these cells.
Collapse
Affiliation(s)
- Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | | | | |
Collapse
|
28
|
Xiaoping L, Zhibin Y, Wenjuan L, Zeyou W, Gang X, Zhaohui L, Ying Z, Minghua W, Guiyuan L. CPEB1, a histone-modified hypomethylated gene, is regulated by miR-101 and involved in cell senescence in glioma. Cell Death Dis 2013; 4:e675. [PMID: 23788032 PMCID: PMC3702288 DOI: 10.1038/cddis.2013.197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epigenetic mechanisms have important roles in carcinogenesis. We certified that the mRNA translation-related gene cytoplasmic polyadenylation element-binding protein 1 (CPEB1) is hypomethylated and overexpressed in glioma cells and tissues. The knockdown of CPEB1 reduced cell senescence by regulating the expression or distribution of p53 in glioma cells. CPEB1 is also regulated directly by the tumor suppressor miR-101, a potential marker of glioma. It is known that the histone methyltransferase enhancer of zeste homolog 2 (EZH2) and embryonic ectoderm development (EED) are direct targets of miR-101. We demonstrated that miR-101 downregulated the expression of CPEB1 through reversing the methylation status of the CPEB1 promoter by regulating the presence on the promoter of the methylation-related histones H3K4me2, H3K27me3, H3K9me3 and H4K20me3. The epigenetic regulation of H3K27me3 on CPEB1 promoter is mediated by EZH2 and EED. EZH2 has a role in the regulation of H3K4me2. Furthermore, the downregulation of CPEB1 induced senescence in a p53-dependent manner.
Collapse
Affiliation(s)
- L Xiaoping
- Cancer Research Institute, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ozdemir S, Uludag A, Silan F, Atik SY, Turgut B, Ozdemir O. Possible Roles of the Xenobiotic Transporter P-glycoproteins Encoded by the MDR1 3435 C>T Gene Polymorphism in Differentiated Thyroid Cancers. Asian Pac J Cancer Prev 2013; 14:3213-7. [DOI: 10.7314/apjcp.2013.14.5.3213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Wan ES, Qiu W, Baccarelli A, Carey VJ, Bacherman H, Rennard SI, Agustí A, Anderson WH, Lomas DA, DeMeo DL. Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186:1248-55. [PMID: 23065012 PMCID: PMC3622442 DOI: 10.1164/rccm.201207-1280oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Systemic glucocorticoids are used therapeutically to treat a variety of medical conditions. Epigenetic processes such as DNA methylation may reflect exposure to glucocorticoids and may be involved in mediating the responses and side effects associated with these medications. OBJECTIVES To test the hypothesis that differences in DNA methylation are associated with current systemic steroid use. METHODS We obtained DNA methylation data at 27,578 CpG sites in 14,475 genes throughout the genome in two large, independent cohorts: the International COPD Genetics Network (n(discovery) = 1,085) and the Boston Early Onset COPD study (n(replication) = 369). Sites were tested for association with current systemic steroid use using generalized linear mixed models. MEASUREMENTS AND MAIN RESULTS A total of 511 sites demonstrated significant differential methylation by systemic corticosteroid use in all three of our primary models. Pyrosequencing validation confirmed robust differential methylation at CpG sites annotated to genes such as SLC22A18, LRP3, HIPK3, SCNN1A, FXYD1, IRF7, AZU1, SIT1, GPR97, ABHD16B, and RABGEF1. Functional annotation clustering demonstrated significant enrichment in intrinsic membrane components, hemostasis and coagulation, cellular ion homeostasis, leukocyte and lymphocyte activation and chemotaxis, protein transport, and responses to nutrients. CONCLUSIONS Our analyses suggest that systemic steroid use is associated with site-specific differential methylation throughout the genome. Differentially methylated CpG sites were found in biologically plausible and previously unsuspected pathways; these genes and pathways may be relevant in the development of novel targeted therapies.
Collapse
Affiliation(s)
- Emily S Wan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Locke WJ, Clark SJ. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis. Breast Cancer Res 2012; 14:215. [PMID: 23168266 PMCID: PMC4053120 DOI: 10.1186/bcr3237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic gene regulation has influence over a diverse range of cellular functions, including the maintenance of pluripotency, differentiation, and cellular identity, and is deregulated in many diseases, including cancer. Whereas the involvement of epigenetic dysregulation in cancer is well documented, much of the mechanistic detail involved in triggering these changes remains unclear. In the current age of genomics, the development of new sequencing technologies has seen an influx of genomic and epigenomic data and drastic improvements in both resolution and coverage. Studies in cancer cell lines and clinical samples using next-generation sequencing are rapidly delivering spectacular insights into the nature of the cancer genome and epigenome. Despite these improvements in technology, the timing and relationship between genetic and epigenetic changes that occur during the process of carcinogenesis are still unclear. In particular, what changes to the epigenome are playing a driving role during carcinogenesis and what influence the temporal nature of these changes has on cancer progression are not known. Understanding the early epigenetic changes driving breast cancer has the exciting potential to provide a novel set of therapeutic targets or early-disease biomarkers or both. Therefore, it is important to find novel systems that permit the study of initial epigenetic events that potentially occur during the first stages of breast cancer. Non-malignant human mammary epithelial cells (HMECs) provide an exciting in vitro model of very early breast carcinogenesis. When grown in culture, HMECs are able to temporarily escape senescence and acquire a pre-malignant breast cancer-like phenotype (variant HMECs, or vHMECs). Cultured HMECs are composed mainly of cells from the basal breast epithelial layer. Therefore, vHMECs are considered to represent the basal-like subtype of breast cancer. The transition from HMECs to vHMECs in culture recapitulates the epigenomic phenomena that occur during the progression from normal breast to pre-malignancy. Therefore, the HMEC model system provides the unique opportunity to study the very earliest epigenomic aberrations occurring during breast carcinogenesis and can give insight into the sequence of epigenomic events that lead to breast malignancy. This review provides an overview of epigenomic research in breast cancer and discusses in detail the utility of the HMEC model system to discover early epigenomic changes involved in breast carcinogenesis.
Collapse
|
32
|
Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol 2012; 71:153-63. [DOI: 10.1007/s00280-012-1992-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
|
33
|
Huynh KT, Chong KK, Greenberg ES, Hoon DSB. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev Mol Diagn 2012; 12:371-82. [PMID: 22616702 DOI: 10.1586/erm.12.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Increasingly, breast cancer is being recognized as a heterogeneous disease comprised of molecularly and phenotypically distinct intrinsic tumor subtypes with different clinical outcomes. This biological heterogeneity has significant implications, particularly as it relates to expression profiling of estrogen receptor (ER) status, as classifying breast cancers based on hormone receptor expression impacts not only prognosis but also treatment options and long-term outcomes. Epigenetics has emerged as a promising field for the assessment of hormone receptor status. Epigenetic aberrations have been shown to regulate ER and offer reversible targets for development of new therapies. This review covers ER-negative breast tumor epigenetic aberrations and summarizes the major epigenetic mechanisms governing ER expression and how it impacts treatment of ER-negative breast cancer.
Collapse
Affiliation(s)
- Kelly T Huynh
- Department of Molecular Oncology, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | | | | | |
Collapse
|
34
|
Kacevska M, Ivanov M, Ingelman-Sundberg M. Epigenetic-dependent regulation of drug transport and metabolism: an update. Pharmacogenomics 2012; 13:1373-85. [DOI: 10.2217/pgs.12.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pharmacokinetics of a drug are subject to large interindividual variability, which can result in lack of response or adverse drug reactions. In addition to genetic polymorphisms and drug interactions, key genes involved in the metabolism and transport of drugs are demonstrated to have epigenetic influences that can potentially affect interindividual variability in drug response. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug action and resistance, particularly in cancer. However, the epigenetic and ncRNA-dependent regulation of these genes, as well as the pharmacological consequences, is in need of greater attention. In the current review we provide an update of epigenetic and ncRNA-dependent regulation of ADME genes.
Collapse
Affiliation(s)
- Marina Kacevska
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Maxim Ivanov
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
35
|
Role of epigenetics in cancer initiation and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 720:91-104. [PMID: 21901621 DOI: 10.1007/978-1-4614-0254-1_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epigenome which comprises DNA methylation, histone modifications, chromatin structures and non-coding RNAs controls gene expression patterns. In cancer cells, there are aberrant changes in the epigenome. The question in cancer epigenetics is that whether these changes are the cause of cell transformation, or rather the consequence of it. We will discuss the epigenetic phenomenon in cancer, as well as the recent interests in the epigenetic reprogramming events, and their implications in the cancer stem cell theory. We will also look at the progression of cancers as they become more aggressive, with focus on the role of epigenetics in tumor metastases exemplified with the urokinase plasminogen activator (uPA) system. Last but not least, with therapeutics intervention in mind, we will highlight the importance of balance in the design of epigenetic based anti-cancer therapeutic strategies.
Collapse
|
36
|
Mirza S, Sharma G, Parshad R, Srivastava A, Gupta SD, Ralhan R. Clinical significance of promoter hypermethylation of ERβ and RARβ2 in tumor and serum DNA in Indian breast cancer patients. Ann Surg Oncol 2012; 19:3107-15. [PMID: 22451234 DOI: 10.1245/s10434-012-2323-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine concordance of promoter hypermethylation of ERβ (estrogen receptor β) and RARβ2 (retinoic acid receptor β2) in tumor and circulating DNA of Indian breast cancer patients and their association with clinicopathologic parameters and disease prognosis. METHODS ERβ and RARβ2 methylation was analyzed by methylation-specific PCR in the tumors and circulating DNA of 100 patients with invasive ductal breast carcinoma. Promoter hypermethylation was associated with the expression of the encoded protein in tumors by immunohistochemistry, and their prognostic utility was explored in a follow-up study. RESULTS Significant correlation was observed between promoter hypermethylation of ERβ (r = + 0.77; p ≤ 0.001) and RARβ2 (r = + 0.85; p ≤ 0.001) in tumors and paired sera. No association was found between ERβ and RARβ2 promoter hypermethylation and loss of protein expression. Kaplan-Meier survival curve showed loss of ERβ expression, and RARβ2 promoter hypermethylation was associated with poor overall survival (OS) (p = 0.03, p = 0.001). Breast cancer patients showing concurrent hypermethylation of ERβ and RARβ2 had a significantly shorter median OS (p = 0.02), underscoring that hypermethylation of these two genes may serve as an adverse prognosticator for breast carcinoma. CONCLUSIONS Methylation status of ERβ and RARβ2 in serum could potentially be used to predict invasive ductal breast carcinoma. Furthermore, concurrent ERβ and RARβ2 methylation as well as loss of ERβ expression may serve as a good prognostic marker.
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
37
|
Lee J, Jiffar T, Kupferman ME. A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS One 2012; 7:e30246. [PMID: 22276165 PMCID: PMC3262811 DOI: 10.1371/journal.pone.0030246] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/15/2011] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of resistance for HNSCC to cisplatin (CDDP), the foundational chemotherapeutic agent in the treatment of this disease, remain poorly understood. We previously demonstrated that cisplatin resistance (CR) can be overcome by targeting Trk receptor. In the current study, we explored the potential mechanistic role of the BDNF-TrkB signaling system in the development of CDDP resistance in HNSCC. Utilizing an in vitro system of acquired CR, we confirmed a substantial up-regulation of both BDNF and TrkB at the protein and mRNA levels in CR cells, suggesting an autocrine pathway dysregulation in this system. Exogenous BDNF stimulation led to an enhanced expression of the drug-resistance and anti-apoptotic proteins MDR1 and XiAP, respectively, in a dose-dependently manner, demonstrating a key role for BDNF-TrkB signaling in modulating the response to cytotoxic agents. In addition, modulation of TrkB expression induced an enhanced sensitivity of cells to CDDP in HNSCC. Moreover, genetic suppression of TrkB resulted in changes in expression of Bim, XiAP, and MDR1 contributing to HNSCC survival. To elucidate intracellular signaling pathways responsible for mechanisms underlying BDNF/TrkB induced CDDP-resistance, we analyzed expression levels of these molecules following inhibition of Akt. Inhibition of Akt eliminated BDNF effect on MDR1 and Bim expression in OSC-19P cells as well as modulated expressions of MDR1, Bim, and XiAP in OSC-19CR cells. These results suggest BDNF/TrkB system plays critical roles in CDDP-resistance development by utilizing Akt-dependent signaling pathways.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Bcl-2-Like Protein 11
- Blotting, Western
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Enzyme-Linked Immunosorbent Assay
- Head and Neck Neoplasms/metabolism
- Humans
- Immunohistochemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Squamous Cell Carcinoma of Head and Neck
- X-Linked Inhibitor of Apoptosis Protein/genetics
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Junegoo Lee
- Department of Head and Neck Surgery, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Tilahun Jiffar
- Department of Head and Neck Surgery, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Michael E. Kupferman
- Department of Head and Neck Surgery, MD Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
DNA, mRNA and microRNA are released and circulate in the blood of cancer patients. Changes in the levels of circulating nucleic acids have been associated with tumour burden and malignant progression. In the past decade a wealth of information indicating the potential use of circulating nucleic acids for cancer screening, prognosis and monitoring of the efficacy of anticancer therapies has emerged. In this Review, we discuss these findings with a specific focus on the clinical utility of cell-free nucleic acids as blood biomarkers.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Institute of Tumour Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | | |
Collapse
|
39
|
|
40
|
Baer-Dubowska W, Majchrzak-Celińska A, Cichocki M. Pharmocoepigenetics: a new approach to predicting individual drug responses and targeting new drugs. Pharmacol Rep 2011; 63:293-304. [DOI: 10.1016/s1734-1140(11)70498-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/19/2010] [Indexed: 12/14/2022]
|
41
|
Abstract
DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a methyl group occurs generally in cytosine within CpG dinucleotides which are concentrated in large clusters called CpG islands. DNA methyltransferases are responsible for establishing and maintenance of methylation pattern. It is commonly known that inactivation of certain tumor-suppressor genes occurs as a consequence of hypermethylation within the promoter regions and a numerous studies have demonstrated a broad range of genes silenced by DNA methylation in different cancer types. On the other hand, global hypomethylation, inducing genomic instability, also contributes to cell transformation. Apart from DNA methylation alterations in promoter regions and repetitive DNA sequences, this phenomenon is associated also with regulation of expression of noncoding RNAs such as microRNAs that may play role in tumor suppression. DNA methylation seems to be promising in putative translational use in patients and hypermethylated promoters may serve as biomarkers. Moreover, unlike genetic alterations, DNA methylation is reversible what makes it extremely interesting for therapy approaches. The importance of DNA methylation alterations in tumorigenesis encourages us to decode the human epigenome. Different DNA methylome mapping techniques are indispensable to realize this project in the future.
Collapse
Affiliation(s)
- Marta Kulis
- The Bellvitge Institute forBiomedical Research , L'Hospitalet de Llobregat, Barcelona,Catalonia, Spain
| | | |
Collapse
|
42
|
Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker--a critical appraisal of the literature. Clin Chim Acta 2010; 411:1611-24. [PMID: 20688053 DOI: 10.1016/j.cca.2010.07.032] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/24/2010] [Accepted: 07/25/2010] [Indexed: 12/21/2022]
Abstract
Circulating cell-free DNA (cfDNA) has been suggested as a cancer biomarker. Several studies assessed the usefulness of quantitative and qualitative tumor-specific alterations of cfDNA, such as DNA strand integrity, frequency of mutations, abnormalities of microsatellites, and methylation of genes, as diagnostic, prognostic, and monitoring markers in cancer patients. Most of the papers that could be evaluated in this review resulted in a positive conclusion. However, methodical diversity without the traceability of data and differently designed and often underpowered studies resulted in divergent results between studies. In addition, the limited diagnostic sensitivity and specificity of cfDNA alterations temper the effusive hope of novel tumor markers, raising similar issues as those for other tumor markers. To validate the actual clinical validity of various cfDNA alterations as potential cancer biomarkers in practice for individual tumor types, the main problems of the observed uncertainties must be considered in future studies. These include methodical harmonization concerning sample collection, processing, and analysis with the traceability of measurement results as well as the realization of well-designed prospective studies based on power analysis and sample size calculations.
Collapse
Affiliation(s)
- Klaus Jung
- Department of Urology, Research Division, University Hospital Charité, Schumannstr. 20/21, 10117 Berlin, Germany.
| | | | | |
Collapse
|
43
|
Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 2010; 15:5-17. [PMID: 20101446 PMCID: PMC2824126 DOI: 10.1007/s10911-010-9165-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/06/2010] [Indexed: 02/02/2023] Open
Abstract
Both appropriate DNA methylation and histone modifications play a crucial role in the maintenance of normal cell function and cellular identity. In cancerous cells these "epigenetic belts" become massively perturbed, leading to significant changes in expression profiles which confer advantage to the development of a malignant phenotype. DNA (cytosine-5)-methyltransferase 1 (Dnmt1), Dnmt3a and Dnmt3b are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells. Intriguingly, DNMTs were found to be overexpressed in cancerous cells, which is believed to partly explain the hypermethylation phenomenon commonly observed in tumors. However, several lines of evidence indicate that further layers of gene regulation are critical coordinators of DNMT expression, catalytic activity and target specificity. Splice variants of DNMT transcripts have been detected which seem to modulate methyltransferase activity. Also, the DNMT mRNA 3'UTR as well as the coding sequence harbors multiple binding sites for trans-acting factors guiding post-transcriptional regulation and transcript stabilization. Moreover, microRNAs targeting DNMT transcripts have recently been discovered in normal cells, yet expression of these microRNAs was found to be diminished in breast cancer tissues. In this review we summarize the current knowledge on mechanisms which potentially lead to the establishment of a DNA hypermethylome in cancer cells.
Collapse
Affiliation(s)
- Jürgen Veeck
- Cancer Epigenetics and Biology Program (PEBC), The Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Av. Gran Via de L’Hospitalet 199-203, 08907 L’Hospitalet de Llobregat, Barcelona, Catalonia Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), The Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Av. Gran Via de L’Hospitalet 199-203, 08907 L’Hospitalet de Llobregat, Barcelona, Catalonia Spain
| |
Collapse
|
44
|
|