1
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Liu K, Liu J, Liu Y, Wang H, Wang Z, Liu J, Wen S. Association study of WNK1 genetic variants and essential hypertension risk in the Northern Han Chinese in Beijing. Front Genet 2023; 14:1234536. [PMID: 37779914 PMCID: PMC10541150 DOI: 10.3389/fgene.2023.1234536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Essential hypertension (EH) is a complex disorder resulting from interaction of genetic and environmental factors. Lysine deficient protein kinase 1 (WNK1) plays a very important role in maintaining renal potassium, sodium and chlorine ions balance as well as the regulation of blood pressure, so the WNK1 gene is considered a key gene for EH. This study thus sought to evaluate possible genetic associations between the WNK1 genetic variants and EH risk in the Northern Han Chinese population in Beijing. Methods: This study included 476 hypertensive subjects and 491 normotensive subjects. A total of 12 tag SNVs of WNK1 gene were genotyped successfully by TaqMan assay. Comparisons of the genotypic and allelic frequency between cases and controls were made by using the chi-square test. Logistic regression analyses were performed under different genetic models, and haplotype analysis was also conducted. Results: A total of 12 SNVs were identified as the tag SNVs for WNK1 gene. Significant associations were observed between WNK1 gene rs7305099 variant and EH risk, and T allele influenced hypertension risk in a protective manner. After correcting for multiple testing using Bonferroni, the significance remained for the SNV of rs7305099 in three genetic models [allele comparison, p < 0.0002, OR = 0.627, 95%CI (0.491-0.801); homozygote comparison, p < 0.0003, OR = 0.278, 95%CI (0.140-0.552); additive model, p < 0.0003, OR = 0.279, 95%CI (0.140-0.553)]. In the haplotype analyses, we found that the haplotype A-A-A-C-G-G-G was significantly associated with increased risk for EH (p = 0.043, OR = 1.23). Conclusion: Our data suggested that the rs7305099 genetic variant and the haplotype A-A-A-C-G-G-G on WNK1 gene might be associated with the susceptibility of EH in the Northern Han Chinese population. These could provide evidences to the risk assessment, early prevention and individualized therapy of EH to some extent.
Collapse
Affiliation(s)
- Kuo Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Jielin Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Ya Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Zuoguang Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Shaojun Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Shi R, Li J, He J, Meng Q, Qian Z, Shi D, Liu Q, Cai Y, Li X, Chen X. Association of with-no-lysine kinase 1 and Serine/Threonine kinase 39 gene polymorphisms and haplotypes with essential hypertension in Tibetans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:151-160. [PMID: 28945285 DOI: 10.1002/em.22140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Tibetans have a higher essential hypertension prevalence compared with other ethnics in China. The reason might be due to their unique environmental influence, as well as genetic factor. However, limited studies focus on Tibetan genetics and its association with hypertension. The aim of this study was to investigate the association between With-No-Lysine (K) Kinase 1 (WNK1), Serine/Threonine kinase 39(STK39) genes variants and hypertension in the Tibetan population. 204 Tibetan hypertensive patients and 305 normotensive controls were recruited in an epidemiological survey conducted at 2 sites in the Ganzi Tibetan autonomous region. Patients were genotyped for nineteen WNK1 candidate tag single nucleotide polymorphisms (SNPs) and three STK39 SNPs, and haplotype analysis was performed. Results showed that the allele A in rs1468326 was overrepresented in hypertensive patients versus control (53.4% vs 42.9%, P < 0.05). The multivariable-adjusted odds ratio (OR) for hypertension among CA + AA genotypes carriers was 1.60 (95% CI: 1.02-2.62, P < 0.05), and they also had a higher systolic blood pressure (136.5 ± 28.6 vs 131.7 ± 24.8 mmHg, P < 0.05). However, the TT genotype ratio in rs6749447 was lower in hypertensives (5.4% vs 10.8%, P < 0.05), and the hypertension risk for the TT genotype carriers in rs6749447 decreased after adjustment (OR 0.49, 95% CI 0.19-0.95, P < 0.05). Subjects with haplotype AGACAGGAATCGT showed 1.57 times higher risk of hypertension (95% CI 1.02-2.41, P < 0.05). In conclusion, SNP rs1468326 of WNK1, rs6749447 of STK39, and WNK1 haplotype AGACAGGAATCGT were associated with hypertension in Tibetan individuals. Environ. Mol. Mutagen. 59:151-160, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Jiangbo Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Jiyun He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Zhiping Qian
- Ganzi Tibetan Autonomous Prefecture People's Hospital, Kangding 626000, Tibetan Autonomous Prefecture, PRC
| | - Di Shi
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Qi Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Yali Cai
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Xinran Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, PRC
| |
Collapse
|
5
|
Andrews JL, Fernandez-Enright F. A decade from discovery to therapy: Lingo-1, the dark horse in neurological and psychiatric disorders. Neurosci Biobehav Rev 2015; 56:97-114. [PMID: 26143511 DOI: 10.1016/j.neubiorev.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 06/02/2015] [Indexed: 01/19/2023]
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein (Lingo-1) is a potent negative regulator of neuron and oligodendrocyte survival, neurite extension, axon regeneration, oligodendrocyte differentiation, axonal myelination and functional recovery; all processes highly implicated in numerous brain-related functions. Although playing a major role in developmental brain functions, the potential application of Lingo-1 as a therapeutic target for the treatment of neurological disorders has so far been under-estimated. A number of preclinical studies have shown that various methods of antagonizing Lingo-1 results in neuronal and oligodendroglial survival, axonal growth and remyelination; however to date literature has only detailed applications of Lingo-1 targeted therapeutics with a focus primarily on myelination disorders such as multiple sclerosis and spinal cord injury; omitting important information regarding Lingo-1 signaling co-factors. Here, we provide for the first time a complete and thorough review of the implications of Lingo-1 signaling in a wide range of neurological and psychiatric disorders, and critically examine its potential as a novel therapeutic target for these disorders.
Collapse
Affiliation(s)
- Jessica L Andrews
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| | - Francesca Fernandez-Enright
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522, NSW, Australia; Faculty of Social Sciences, University of Wollongong, Wollongong 2522, NSW, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522, NSW, Australia; Schizophrenia Research Institute, 405 Liverpool St, Darlinghurst 2010, NSW, Australia.
| |
Collapse
|
6
|
Guo XG, Ding J, Xu H, Xuan TM, Jin WQ, Yin X, Shang YP, Zhang FR, Zhu JH, Zheng LR. Comprehensive assessment of the association of WNK4 polymorphisms with hypertension: evidence from a meta-analysis. Sci Rep 2014; 4:6507. [PMID: 25266424 PMCID: PMC4195396 DOI: 10.1038/srep06507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023] Open
Abstract
The relationship between with-no-lysine [K] kinase 4 (WNK4) gene polymorphisms and hypertension has been widely investigated, However, the studies yielded contradictory results. To evaluate these inconclusive findings comprehensively, we therefore performed a meta-analysis. Ten articles encompassing 16 independent case-control studies with 6089 hypertensive cases and 4881 normotensive controls were selected for this meta-analysis. Four WNK4 gene polymorphisms were identified (G1155942T, G1156666A, T1155547C, and C6749T). The results showed statistically significant associations of G1155942T polymorphism (allelic genetic model: odds ration or OR = 1.62, 95% confidence interval or CI: 1.11–2.38, P = 0.01; dominant model: OR = 1.85, 95% CI: 1.07–3.19, P = 0.03) and C6749T polymorphism (allele contrast: OR = 2.04, 95% CI: 1.60–2.59, P<0.01; dominant model: OR = 2.04, 95%CI: 1.59–2.62, P<0.01; and homozygous model: OR = 5.01, 95% CI: 1.29–19.54, P = 0.02) with hypertension risk. However, neither C1155547T nor G1156666A was associated significantly with hypertension susceptibility. In conclusion, this meta-analysis suggested that WNK4 G1155942T and C6749T gene polymorphisms may contribute to the susceptibility and development of hypertension. Further well-designed studies with larger sample size are required to elucidate the association of WNK4 gene multiple polymorphisms with hypertension risk.
Collapse
Affiliation(s)
- Xiao-gang Guo
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Ding
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hui Xu
- 1] Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China [2] Xiuzhou District, Gaozhao Street Community Health Service Center, Jiaxing 314031, China
| | - Tian-ming Xuan
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wei-quan Jin
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiang Yin
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yun-peng Shang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fu-rong Zhang
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian-hua Zhu
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Liang-rong Zheng
- Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
7
|
Between candidate genes and whole genomes: time for alternative approaches in blood pressure genetics. Curr Hypertens Rep 2012; 14:46-61. [PMID: 22161147 DOI: 10.1007/s11906-011-0241-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood pressure has a significant genetic component, but less than 3% of the observed variance has been attributed to genetic variants identified to date. Candidate gene studies of rare, monogenic hypertensive syndromes have conclusively implicated several genes altering renal sodium balance, and studies of essential hypertension have inconsistently implicated over 50 genes in pathways affecting renal sodium balance and other functions. Genome-wide linkage scans have replicated numerous quantitative trait loci throughout the genome, and over 50 single nucleotide polymorphisms (SNPs) have been replicated in multiple genome-wide association studies. These studies provide considerable evidence that epistasis and other interactions play a role in the genetic architecture of blood pressure regulation, but candidate gene studies have limited scope to test for epistasis, and genome-wide studies have low power for both main effects and interactions. This review summarizes the genetic findings to date for blood pressure, and it proposes focused, pathway-based approaches involving epistasis, gene-environment interactions, and next-generation sequencing to further the genetic dissection of blood pressure and hypertension.
Collapse
|