1
|
Xu J, Yang M, Shao AZ, Pan HW, Fan YX, Chen KP. Identification and Validation of Common Reference Genes for Normalization of Esophageal Squamous Cell Carcinoma Gene Expression Profiles. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9125242. [PMID: 36467891 PMCID: PMC9711964 DOI: 10.1155/2022/9125242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/04/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the subtypes of esophageal cancer with Chinese characteristics, and its five-year survival rate is less than 20%. Early diagnosis is beneficial to improving the survival rate of ESCC significantly. Quantitative Real-Time Polymerase Chain Reaction is a high-throughput technique that can quantify tumor-related genes for early diagnosis. Its accuracy largely depends on the stability of the reference gene. There is no systematic scientific basis to demonstrate which reference gene expression is stable in ESCC and no consensus on the selection of internal reference. Therefore, this research used four software programs (The comparative delta-Ct method, GeNorm, NormFinder, and BestKeeper) to evaluate the expression stability of eight candidate reference genes commonly used in other tumor tissues and generated a comprehensive analysis by RefFinder. Randomly selected transcriptome sequencing analysis confirmed the SPP1 gene is closely related to ESCC. It was found that the expression trend of SPP1 obtained by RPS18 and PPIA as internal reference genes were the same as that of sequencing. The results show that RPS18 and PPIA are stable reference genes, and PPIA + RPS18 are a suitable reference gene combination. This is a reference gene report that combines transcriptome sequencing analysis and only focuses on ESCC, which makes the quantification more precise, systematic, and standardized, and promotes gene regulation research and the early diagnosis of ESCC in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huaian City, Huaian, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ai-zhong Shao
- Department of Cardiothorac Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui-wen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi-xuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Implication of Pseudo Reference Genes in Normalization of Data from Reverse Transcription-Quantitative PCR. Gene 2020; 757:144948. [DOI: 10.1016/j.gene.2020.144948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/17/2023]
|
3
|
Brunetti M, Agostini A, Staurseth J, Davidson B, Heim S, Micci F. Molecular characterization of carcinosarcomas arising in the uterus and ovaries. Oncotarget 2019; 10:3614-3624. [PMID: 31217897 PMCID: PMC6557202 DOI: 10.18632/oncotarget.26942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Gynaecological carcinosarcomas are rare biphasic tumours which are highly aggressive. We performed molecular investigations on a series of such tumours arising in the uterus (n = 16) and ovaries (n = 10) to gain more information on their mutational landscapes and the expression status of the genes HMGA1/2, FHIT, LIN28A, and MTA1, the pseudogenes HMGA1P6 and HMGA1P7, and the miRNAs known to influence expression of the above-mentioned genes. In uterine carcinosarcomas (UCS), we identified mutations in KRAS, PIK3CA, and TP53 with a frequency of 6%, 31%, and 75%, respectively, whereas in ovarian carcinosarcomas (OCS), TP53 was the only mutated gene found (30%). An inverse correlation was observed between overexpression of HMGA1/2, LIN28A, and MTA1 and downregulation of miRNAs such as let-7a, let-7d, miR26a, miR16, miR214, and miR30c in both UCS and OCS. HMGA2 was expressed in its full length in 14 UCS and 9 OCS; in the remaining tumours, it was expressed in its truncated form. Because FHIT was normally expressed while miR30c was downregulated, not both downregulated as is the case in several other carcinomas, alterations of the epithelial-mesenchymal transition through an as yet unknown mechanism seems to be a feature of carcinosarcomas.
Collapse
Affiliation(s)
- Marta Brunetti
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Antonio Agostini
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Julie Staurseth
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Validation of Suitable Housekeeping Genes for the Normalization of mRNA Expression for Studying Tumor Acidosis. Int J Mol Sci 2018; 19:ijms19102930. [PMID: 30261649 PMCID: PMC6213411 DOI: 10.3390/ijms19102930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Similar to other types of cancer, acidification of tumor microenvironment is an important feature of osteosarcoma, and a major source of cellular stress that triggers cancer aggressiveness, drug resistance, and progression. Among the different effects of low extracellular pH on tumor cells, we have recently found that short-term exposure to acidosis strongly affects gene expression. This alteration might also occur for the most commonly used housekeeping genes (HKG), thereby causing erroneous interpretation of RT-qPCR data. On this basis, by using osteosarcoma cells cultured at different pH values, we aimed to identify the ideal HKG to be considered in studies on tumor-associated acidosis. We verified the stability of 15 commonly used HKG through five algorithms (NormFinder, geNorm, BestKeeper, ΔCT, coefficient of variation) and found that no universal HKG is suitable, since at least four HKG are necessary for proper normalization. Furthermore, according to the acceptable range of values, YWHAZ, GAPDH, GUSB, and 18S rRNA were the most stable reference genes at different pH. Our results will be helpful for future investigations focusing on the effect of altered microenvironment on cancer behavior, particularly on the effectiveness of anticancer therapies in acid conditions.
Collapse
|
5
|
Could miRNA Signatures be Useful for Predicting Uterine Sarcoma and Carcinosarcoma Prognosis and Treatment? Cancers (Basel) 2018; 10:cancers10090315. [PMID: 30200635 PMCID: PMC6162723 DOI: 10.3390/cancers10090315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Changes in microRNA (miRNA) expression may lead to cancer development and/or contribute to its progression; however, their role in uterine sarcomas is poorly understood. Uterine sarcomas (US) belong to a rare class of heterogeneous tumors, representing about 1% of all gynecologic neoplasms. This study aimed to assess the expression profile of 84 cancer-related miRNAs and to evaluate their correlation with clinical pathological features. Eighty-two formalin-fixed paraffin-embedded (FFPE) samples were selected. In leiomyosarcoma (LMS), there was an association of lower cancer-specific survival (CSS) with the downregulation of miR-125a-5p and miR-10a-5p, and the upregulation of miR-196a-5p and miR-34c-5p. In carcinosarcoma (CS), lower CSS was associated with the upregulation of miR-184, and the downregulation of let-7b-5p and miR-124. In endometrial stromal sarcomas (ESS), the upregulation of miR-373-3p, miR-372-3p, and let-7b-5p, and the down-expression of let-7f-5p, miR-23-3p, and let-7b-5p were associated with lower CSS. Only miR-138-5p upregulation was associated with higher survival rates. miR-335-5p, miR-301a-3p, and miR-210-3p were more highly expressed in patients with tumor metastasis and relapse. miR-138-5p, miR-146b-5p, and miR-218-5p expression were associated with higher disease-free survival (DFS) in treated patients. These miRNAs represent potential prediction markers for prognosis and treatment response in these tumors.
Collapse
|
6
|
Yu L, Li K, Xu Z, Cui G, Zhang X. Integrated omics and gene expression analysis identifies the loss of metabolite-metabolite correlations in small cell lung cancer. Onco Targets Ther 2018; 11:3919-3929. [PMID: 30013371 PMCID: PMC6039056 DOI: 10.2147/ott.s166149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Small cell lung cancer (SCLC) is the most aggressive type of lung carcinoma with high metastatic potential and chemoresistance upon relapse. Cancer cells remodel the existing metabolic pathways for their benefits and the perturbations in cellular metabolism are the hallmark of cancer. However, the extent of these changes remains largely unknown for SCLC. MATERIALS AND METHODS We characterized the metabolic perturbations in SCLC cells (SCLCC) by metabolomics. Large-scale correlation analysis was performed between metabolites. Targeted proteomics and gene expression analysis were employed to investigate the changes of key enzymes and genes in the disturbed pathways. RESULTS We found dramatic decrease of metabolite-metabolite correlations in SCLCC compared with normal control cells and non-small cell lung cancer cells. Pathway analysis revealed that the loss of correlations was associated with the alternations of fatty acid oxidation, urea cycle, and purine salvage pathway in SCLCC. Targeted proteomics and gene expression analysis confirmed significant changes of the expression for the key enzymes and genes in the pathways in SCLCC including the upregulation of carbamoyl phosphate synthase 1 (urea cycle) and carnitine palmitoyltransferase 1A (fatty acid oxidation), and the downregulation of hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase in purine salvage pathway. CONCLUSION We demonstrated the loss of metabolite-metabolite correlations in SCLCC associated with the upregulation of fatty acid oxidation and urea cycle and the downregulation of purine salvage pathways. Our findings provide insights into the metabolic reprogramming in SCLCC and highlight the potential therapeutic targets for the treatment of SCLC.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| | - Kefeng Li
- School of Medicine, University of California-San Diego, San Diego, CA, USA
| | - Zhaoguo Xu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| | - Guoyuan Cui
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| | - Xiaoye Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,
| |
Collapse
|
7
|
Lemma S, Avnet S, Salerno M, Chano T, Baldini N. Identification and Validation of Housekeeping Genes for Gene Expression Analysis of Cancer Stem Cells. PLoS One 2016; 11:e0149481. [PMID: 26894994 PMCID: PMC4760967 DOI: 10.1371/journal.pone.0149481] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022] Open
Abstract
The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.
Collapse
Affiliation(s)
- Silvia Lemma
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| | - Sofia Avnet
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Salerno
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nicola Baldini
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS One 2013; 8:e57718. [PMID: 23469057 PMCID: PMC3585193 DOI: 10.1371/journal.pone.0057718] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/25/2013] [Indexed: 01/16/2023] Open
Abstract
To accurately assess gene expression levels, it is essential to normalize real-time quantitative PCR (RT-qPCR) data with suitable internal reference genes. For the red imported fire ant, Solenopsis invicta, reliable reference genes to assess the transcript expression levels of the target genes have not been previously investigated. In this study, we examined the expression levels of five candidate reference genes (rpl18, ef1-beta, act, GAPDH, and tbp) in different developmental stages, castes and tissues of S. invicta. To evaluate the suitability of these genes as endogenous controls, three software-based approaches (geNorm, BestKeeper and NormFinder) and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. Furthermore, the optimal number of reference gene(s) was determined by the pairwise variation value. Our data showed that two of the five candidate genes, rpl18 and ef1-beta, were the most suitable reference genes because they have the most stable expression among different developmental stages, castes and tissues in S. invicta. Although widely used as reference gene in other species, in S. invicta the act gene has high variation in expression and was consequently excluded as a reliable reference gene. The two validated reference genes, rpl18 and ef1-beta, can be widely used for quantification of target gene expression with RT-qPCR technology in S. invicta.
Collapse
|
9
|
Selection of suitable reference genes for normalization of quantitative real-time PCR in cartilage tissue injury and repair in rabbits. Int J Mol Sci 2012. [PMID: 23203068 PMCID: PMC3509584 DOI: 10.3390/ijms131114344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
When studying the altered expression of genes associated with cartilage regeneration by quantitative real-time RT-PCR (RT-qPCR), reference genes with highly stable expression during different stages of chondrocyte developmental are necessary to normalize gene expression accurately. Until now, no reports evaluating expression changes of commonly used reference genes in rabbit articular cartilage have been published. In this study, defects were made in rabbit articular cartilage, with or without insulin-like growth factor 1 (IGF-1) treatment, to create different chondrocyte living environments. The stability and intensity of the expressions of the candidate reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S Ribosomal RNA (18S rRNA), cyclophilin (CYP), hypoxanthine phosphoribosyl transferase (HPRT1), and beta-2-microglobulin (B2M) were evaluated. The data were analyzed by geNorm and NormFinder. B2M and 18S rRNA were identified to be suitable reference genes for rabbit cartilage tissues.
Collapse
|
10
|
Bujko M, Kowalewska M, Danska-Bidzinska A, Bakula-Zalewska E, Siedecki JA, Bidzinski M. The promoter methylation and expression of the O6-methylguanine-DNA methyltransferase gene in uterine sarcoma and carcinosarcoma. Oncol Lett 2012; 4:551-555. [PMID: 22970054 DOI: 10.3892/ol.2012.771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/08/2012] [Indexed: 11/05/2022] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) gene promoter hypermethylation is observed in a number of solid tumors and is correlated with the silencing of MGMT expression. In glioblastoma patients treated with the alkylating agent temozolomide, MGMT gene methylation status was shown to have predictive value in terms of prolonged overall survival. Recently, temozolomide has demonstrated promising activity in the treatment of soft tissue sarcomas, including those of the uterus. The tissue specimens involving tumor samples and normal uterine fragments were obtained from nine patients with smooth muscle uterine sarcoma, 11 with stromal uterine sarcoma and 17 with mixed uterine tumors. MGMT gene promoter methylation was analyzed by combined bisulfite restriction analysis (COBRA) while its expression levels were assessed using the real-time reverse transcription polymerase chain reaction (qRT-PCR). MGMT promoter methylation was observed in 27% of all tumor samples analyzed. When stratified by the disease type, 55.5% (5/9) of smooth muscle sarcomas, 23.5% (4/17) of mixed uterine tumor tissues and 9% (1/11) of stromal sarcomas showed MGMT methylation. The MGMT promoter methylation was associated with lower levels of gene expression in tumors when compared with those with an unmethylated promoter (P=0.0232) or normal tissues (P=0.0141). To conclude, MGMT promoter methylation and downregulation of gene expression is observed in a fraction of carcinosarcomas and non-epithelial malignant tumors of corpus uteri. The assessment of MGMT promoter methylation status may potentially identify patients who would benefit from temozolomide treatment.
Collapse
Affiliation(s)
- Mateusz Bujko
- Department of Molecular Biology, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, 02-781 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|