1
|
Yin F, Mao LC, Cai QQ, Jiang WH. Effect of Hepatocyte Growth Factor-Transfected Human Umbilical Cord Mesenchymal Stem Cells on Hepatic Stellate Cells by Regulating Transforming Growth Factor-β1/Smads Signaling Pathway. Stem Cells Dev 2021; 30:1070-1081. [PMID: 34514810 DOI: 10.1089/scd.2021.0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) could ameliorate liver fibrosis (LF) through inhibiting the activation of hepatic stellate cells (HSCs). However, the specific mechanisms have not been studied clearly. The purpose of this study was to explore the possible mechanism of hepatocyte growth factor (HGF)-transfected hUCMSCs in inhibiting the proliferation and activation of HSCs-T6. The upper and lower double-cell coculture system was established among HGF-hUCMSCs, LV5-NC-hUCMSCs, hUCMSCs, and HSCs-T6 in experimental groups; HSCs-T6 were cultured alone as control group. After coculturing for 1, 2, and 3 days, results showed that HGF-transfected hUCMSCs could decrease cell viability of HSCs-T6 and promote apoptosis; inhibit their activation and reduce the expression of Collagen I, Collagen III, TGF-β1, Smad2 and Smad3, which may be related to inhibiting the activation of TGF-β1/Smads signaling pathway. These findings suggested that HGF-transfected hUCMSCs may be used as an alternative and novel therapeutic approach for the treatment of LF.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Li-Cui Mao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Qi-Qi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Yin F, Wang WY, Mao LC, Cai QQ, Jiang WH. Effect of Human Umbilical Cord Mesenchymal Stem Cells Transfected with HGF on TGF-β1/Smad Signaling Pathway in Carbon Tetrachloride-Induced Liver Fibrosis Rats. Stem Cells Dev 2020; 29:1395-1406. [DOI: 10.1089/scd.2020.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Li-Cui Mao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Qi-Qi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
3
|
Allameh A, Ahmadi-Ashtiani HR, Maleki N. Glutathione-related inflammatory signature in hepatocytes differentiated from the progenitor mesenchymal stem cells. Heliyon 2020; 6:e04149. [PMID: 32551386 PMCID: PMC7287236 DOI: 10.1016/j.heliyon.2020.e04149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 06/02/2020] [Indexed: 11/03/2022] Open
Abstract
N-acetylcysteine (NAC) as a glutathione inducer is known for its anti-inflammatory effects in inflammatory conditions. The aim of the present study was to know if supplementation of the culture medium with NAC can improve anti-inflammatory activities of hepatocytes during their differentiation from mesenchymal stem cells (MSCs). For this, in vitro hepatic differentiation of MSCs was performed in culture medium supplemented with NAC and selected pro- and anti-inflammatory factors were monitored for two weeks. Treatment of the MSCs undergoing hepatic differentiation with NAC (0.1 and 1.0 mM) caused a significant (~5-fold) increase in proliferation rate of MSCs, whereas the rate of hepatic differentiation was declined in NAC-treated cells as compared to those untreated with NAC. Under these circumstances, NAC caused a significant increase in total glutathione in cell lysate during 2 weeks of differentiation as compared to untreated group. NAC-related increase in glutathione was associated with significant alterations in tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8 and IL-10 levels secreted in the culture medium. A substantial decrease in the IL-6, IL-8 and TNF-α levels in the culture medium supplemented with NAC was obvious in hepatocytes recovered 14 days after differentiation. In contrast, the secretary IL-10 was significantly increased as a result of NAC treatments. These data suggest that NAC supplementation can improve anti-inflammatory activities of the hepatocytes derived from MSCs. NAC function mediated by glutathione synthesis can also help in modulation of proliferation of the stem cells and their differentiation into hepatocyte-like cells.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Reza Ahmadi-Ashtiani
- Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 1941933311, Iran.,The Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Narges Maleki
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci 2018; 75:1307-1324. [PMID: 29181772 PMCID: PMC5852182 DOI: 10.1007/s00018-017-2713-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration.
Collapse
Affiliation(s)
- Salamah M Alwahsh
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| | - Hassan Rashidi
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
5
|
Clinical Application of Pluripotent Stem Cells: An Alternative Cell-Based Therapy for Treating Liver Diseases? Transplantation 2017; 100:2548-2557. [PMID: 27495745 DOI: 10.1097/tp.0000000000001426] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The worldwide shortage of donor livers for organ and hepatocyte transplantation has prompted the search for alternative therapies for intractable liver diseases. Cell-based therapy is envisaged as a useful therapeutic option to recover and stabilize the lost metabolic function for acute liver failure, end-stage and congenital liver diseases, or for those patients who are not considered eligible for organ transplantation. In recent years, research to identify alternative and reliable cell sources for transplantation that can be derived by reproducible methods has been encouraged. Human pluripotent stem cells (PSCs), which comprise both embryonic and induced PSCs, may offer many advantages as an alternative to hepatocytes for liver cell therapy. Their capacity for expansion, hepatic differentiation and self-renewal make them a promising source of unlimited numbers of hepatocyte-like cells for treating and repairing damaged livers. Immunogenicity and tumorigenicity of human PSCs remain the bottleneck for successful clinical application. However, recent advances made to develop disease-corrected hepatocyte-like cells from patients' human-induced PSCs by gene editing have opened up many potential gateways for the autologous treatment of hereditary liver diseases, which may likely reduce the risk of rejection and the need for lifelong immunosuppression. Well-defined methods to reduce the expression of oncogenic genes in induced PSCs, including protocols for their complete and safe hepatic differentiation, should be established to minimize the tumorigenicity of transplanted cells. On top of this, such new strategies are currently being rigorously tested and validated in preclinical studies before they can be safely transferred to clinical practice with patients.
Collapse
|
6
|
Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy. Methods Mol Biol 2016; 1506:17-42. [PMID: 27830543 DOI: 10.1007/978-1-4939-6506-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.
Collapse
|
7
|
Gene expression pattern of some classes of cytochrome P-450 and glutathione S-transferase enzymes in differentiated hepatocytes-like cells from menstrual blood stem cells. In Vitro Cell Dev Biol Anim 2015; 51:530-8. [PMID: 25614436 DOI: 10.1007/s11626-014-9857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022]
Abstract
Recently, valuable characteristics of menstrual blood stem cells (MenSCs) have impelled scientists to take its advantages for cell therapy of different diseases including liver disorders. In this study, we examined messenger RNA (mRNA) expression levels of phases I and II drug metabolizing enzymes including glutathione S-transferase (GST) and cytochrome P-450 (CYP) in differentiated hepatocyte-like cells from MenSCs. The isolated MenSCs were characterized and differentiated into hepatocyte-like cells using hepatocyte growth factor (HGF) and oncostatin M (OSM) in combination with other components in serum-free culture media. After primary characterization of hepatocyte markers, mRNA expression of GSTA1, GSTA2, GSTP1, CYP3A4, and CYP7A1 was assessed in differentiated cells in reference to undifferentiated cells using real-time PCR. Based on immunofluorescent staining and real-time PCR data, the differentiated MenSCs could express functional hepatocyte markers at mRNA and/or protein levels suggesting development of hepatocyte-like cells from MenSCs. Moreover, the expression levels of GSTA1, GSTA2, and CYP3A4 mRNA were upregulated in differentiated cells compared to undifferentiated cells. The expression of CYP7A1 gene was also remarkable on the last day of differentiation process. However, the expression level of GSTP1 did not exhibit statistically significant change during differentiation (P = 0.6). Based on accumulative data, MenSCs could be viewed as an accessible population of stem cells with differentiation ability into drug-metabolizing hepatocyte-like cells.
Collapse
|
8
|
Deng C, Qin A, Zhao W, Feng T, Shi C, Liu T. Up-regulation of CXCR4 in rat umbilical mesenchymal stem cells induced by serum from rat with acute liver failure promotes stem cells migration to injured liver tissue. Mol Cell Biochem 2014; 396:107-16. [PMID: 25098450 DOI: 10.1007/s11010-014-2147-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
The role of C-X-C chemokine receptor type 4 (CXCR4) in umbilical mesenchymal stem cells (UMSCs) as therapy for liver disease is ill understood. The aim of the study was to evaluate rat UMSCs (rUMSCs) on CXCR4 expression and homing to injured liver tissue. rUMSCs were isolated from umbilical cords of pregnant rats. Acute liver failure (ALF) models were developed using D-galactosamine. CXCR4 expression induction by serum from rats with ALF (LFS), cytokines, growth factors, and LPS was analyzed. CXCR4 expression was analyzed by RT-PCR, western blot, and flow cytometry. rUMSCs were labeled with carboxyfluorescein and pretreated with LFS to induce CXCR4 expression and were transplanted into ALF rats. Animals were sacrificed 48 h and 1 week after transplantation. Liver-homing rUMSCs were observed under fluorescence microscopy. rUMSCs were successfully isolated, expressing CD90 and CD106, but not CD34 and CD45. mRNA and protein expressions of CXCR4 were strongly up-regulated by LFS and by the mixture of cytokines, stem cell factor, and LPS (CM). Expression of cell surface CXCR4 on rUMSCs in groups treated with LFS (42.37 ± 1.60 %) and CM (40.17 ± 1.78 %) was higher than that in the untreated control group (9.67 ± 1.06 %) (both P < 0.001). At 48 h after transplantation, more rUMSCs pretreated with LFS appeared in the portal area, and migrated to the liver parenchyma after 1 week. LFS strongly induced the surface expression of CXCR4 on rUMSCs. Increasing CXCR4 expression on rUMSCs may enhance their homing ability to injured liver tissue, and may eventually be used for treating liver diseases.
Collapse
Affiliation(s)
- Changqing Deng
- Department of Infectious Diseases, First Hospital Affiliated to Suzhou University, Suzhou, 215006, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
9
|
Khanjani S, Khanmohammadi M, Zarnani AH, Akhondi MM, Ahani A, Ghaempanah Z, Naderi MM, Eghtesad S, Kazemnejad S. Comparative evaluation of differentiation potential of menstrual blood- versus bone marrow-derived stem cells into hepatocyte-like cells. PLoS One 2014; 9:e86075. [PMID: 24505254 PMCID: PMC3914790 DOI: 10.1371/journal.pone.0086075] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/05/2013] [Indexed: 12/12/2022] Open
Abstract
Menstrual blood has been introduced as an easily accessible and refreshing stem cell source with no ethical consideration. Although recent works have shown that menstrual blood stem cells (MenSCs) possess multi lineage differentiation capacity, their efficiency of hepatic differentiation in comparison to other stem cell resources has not been addressed so far. The aim of this study was to investigate hepatic differentiation capacity of MenSCs compared to bone marrow-derived stem cells (BMSCs) under protocols developed by different concentrations of hepatocyte growth factor (HGF) and oncostatin M (OSM) in combination with other components in serum supplemented or serum-free culture media. Such comparison was made after assessment of immunophenotye, trans-differentiation potential, immunogenicity and tumorigeicity of these cell types. The differential expression of mature hepatocyte markers such as albumin (ALB), cytokeratin 18 (CK-18), tyrosine aminotransferase and cholesterol 7 alpha-hydroxylase activities (CYP7A1) at both mRNA and protein levels in differentiating MenSCs was significantly higher in upper concentration of HGF and OSM (P1) compared to lower concentration of these factors (P2). Moreover, omission of serum during differentiation process (P3) caused typical improvement in functions assigned to hepatocytes in differentiated MenSCs. While up-regulation level of ALB and CYP7A1 was higher in differentiated MenSCs compared to driven BMSCs, expression level of CK-18, detected level of produced ALB and glycogen accumulation were lower or not significantly different. Therefore, based on the overall comparable hepatic differentiation ability of MenSCs with BMSCs, and also accessibility, refreshing nature and lack of ethical issues of MenSCs, these cells could be suggested as an apt and safe alternative to BMSCs for future stem cell therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Sayeh Khanjani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Manijeh Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Ahani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Ghaempanah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Saman Eghtesad
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- * E-mail:
| |
Collapse
|
10
|
Kochat V, Baligar P, Maiwall R, Mukhopadhyay A. Bone marrow stem-cell therapy for genetic and chronic liver diseases. Hepatol Int 2014. [DOI: 10.1007/s12072-013-9499-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Khanjani S, Khanmohammadi M, Zarnani AH, Talebi S, Edalatkhah H, Eghtesad S, Nikokar I, Kazemnejad S. Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. J Tissue Eng Regen Med 2013; 9:E124-34. [PMID: 23505217 DOI: 10.1002/term.1715] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/22/2012] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
Abstract
In recent years, the advantages of menstrual blood-derived stem cells (MenSCs), such as minimal ethical considerations, easy access and high proliferative ability, have inspired scientists to investigate the potential of MenSCs in cell therapy of different diseases. In order to characterize the potency of these cells for future cell therapy of liver diseases, we examined the potential of MenSCs to differentiate into hepatocytes, using different protocols. First, the immunophenotyping properties and potential of MenSCs to differentiate into osteoblasts, adipocytes and chondrocytes were evaluated. Thereafter, the differentiation protocols developed by two concentrations of hepatocyte growth factor (HGF) and oncostatin M (OSM), in combination with other components in serum-supplemented or serum-free culture media, were also investigated. The sequential differentiation was monitored by real-time PCR, immunostaining and functional assays. Our primary data revealed that the isolated MenSCs exhibited mesenchymal stem cell markers in parallel to OCT-4 as an embryonic marker. Regardless of differentiation procedures, the developed cells expressed mature hepatocyte markers, such as albumin, tyrosine aminotransferase and cytokeratin-18 at the mRNA and protein levels. They also showed functional properties of hepatocytes, including albumin secretion, glycogen storage and cytochrome P450 7A1 expression. However, the degree of differentiation was dependent on the concentrations of HGF and OSM. Indeed, omission of serum during the differentiation process caused typical improvement in hepatocyte-specific functions. This study is a novel report demonstrating the differentiation potential of MenSCs into hepatocyte-like cells. We recommend a complementary serum-free differentiation protocol for enrichment of in vitro production of functional MenSC-derived hepatocyte-like cells that could lead to a major step toward applied stem cell therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Sayeh Khanjani
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Manijeh Khanmohammadi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Centre, Tehran University of Medical Sciences, Iran
| | - Saeed Talebi
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Saman Eghtesad
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iraj Nikokar
- Paramedical Faculty of Guilan, University of Medical Sciences, Langroud, Guilan, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Cray J, Cooper GM. Regression modeling to inform cell incorporation into therapies for craniosynostosis. J Craniofac Surg 2013; 24:226-31. [PMID: 23348290 DOI: 10.1097/scs.0b013e31826cfe09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Designing an appropriate tissue engineering solution for craniosynostosis (CS) necessitates determination of whether CS-derived cells differ from normal (wild-type, WT) cells and what assays are appropriate to test for differences. Traditional methodologies to statistically compare cellular behavior may not accurately reflect biologically relevant differences because they poorly address variation. Here, logistic regression was used to determine which assays could identify a biological difference between WT and CS progenitor cells. Quantitative alkaline phosphatase and MTS proliferation assays were performed on adipose, muscle, and bone marrow-derived cells from WT and CS rabbits. Data were stratified by assay, cell type, and days in culture. Coefficients of variation were calculated and assay results coded as predictive variables. Phenotype (WT or CS) was coded as the dependent variable. Sensitivity-specificity curves, classification tables, and receiver operating characteristic curves were plotted for discriminating models. Two data sets were utilized for subsequent analyses; one was used to develop the logistic regression models for prediction, and the other independent data set was used to determine the ability to predict group membership based on the predictive equation. The resulting coefficients of variation were high for all differentiation measures. Upon model implementation, bone marrow assays were observed to result in 72%-100% predictability for phenotype. We found predictive differences in our muscle-derived and bone marrow-derived cells suggesting biologically relevant differences. This data analysis methodology could help identify homogenous cells that do not differ between pathologic and normal individuals or cells that differ in their osteogenic potential, depending on the type of cell-based therapy being developed.
Collapse
Affiliation(s)
- James Cray
- Department of Oral Biology, Surgery/Plastic Surgery, and Orthodontics, Georgia, USA
| | | |
Collapse
|