1
|
Dell'Olio F. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering. BIOSENSORS 2021; 11:449. [PMID: 34821665 PMCID: PMC8615571 DOI: 10.3390/bios11110449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
| |
Collapse
|
2
|
Dell'Olio F, Su J, Huser T, Sottile V, Cortés-Hernández LE, Alix-Panabières C. Photonic technologies for liquid biopsies: recent advances and open research challenges. LASER & PHOTONICS REVIEWS 2021; 15:2000255. [PMID: 35360260 PMCID: PMC8966629 DOI: 10.1002/lpor.202000255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 05/15/2023]
Abstract
The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125, Italy
| | - Judith Su
- Department of Biomedical Engineering, College of Optical Sciences, and BIO5 Institute, University of Arizona, 85721, USA
| | - Thomas Huser
- Biomolecular Photonics, Department of Physics, University of Bielefeld, 33615 Germany
| | - Virginie Sottile
- Department of Molecular Medicine, University of Pavia, 27100, Italy
| | | | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 CEDEX 5, France
| |
Collapse
|
3
|
Temilola DO, Wium M, Coulidiati TH, Adeola HA, Carbone GM, Catapano CV, Zerbini LF. The Prospect and Challenges to the Flow of Liquid Biopsy in Africa. Cells 2019; 8:E862. [PMID: 31404988 PMCID: PMC6721679 DOI: 10.3390/cells8080862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022] Open
Abstract
Liquid biopsy technologies have the potential to transform cancer patient management as it offers non-invasive diagnosis and real-time monitoring of disease progression and treatment responses. The use of liquid biopsy for non-invasive cancer diagnosis can have pivotal importance for the African continent where access to medical infrastructures is limited, as it eliminates the need for surgical biopsies. To apply liquid biopsy technologies in the African setting, the influence of environmental and population genetic factors must be known. In this review, we discuss the use of circulating tumor cells, cell-free nucleic acids, extracellular vesicles, protein, and other biomolecules in liquid biopsy technology for cancer management with special focus on African studies. We discussed the prospect, barriers, and other aspects that pose challenges to the use of liquid biopsy in the African continent.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Tangbadioa Herve Coulidiati
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Training and Research unit in Sciences and Technology, University Norbert Zongo, P.O. Box 376, Koudougou 376, Burkina Faso
| | - Henry Ademola Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Giuseppina Maria Carbone
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Carlo Vittorio Catapano
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| |
Collapse
|
4
|
Hassaneen M, Maron JL. Salivary Diagnostics in Pediatrics: Applicability, Translatability, and Limitations. Front Public Health 2017; 5:83. [PMID: 28473973 PMCID: PMC5397421 DOI: 10.3389/fpubh.2017.00083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
In the last decade, technological advances, combined with an improved appreciation of the ability of saliva to inform caregivers about both oral health and systemic disease, have led to the emergence of salivary diagnostic platforms. However, the majority of these assays have targeted diseases that more commonly affect the adult population, largely neglecting infants and children who arguably could benefit the most from non-invasive assessment tools for health monitoring. Gaining access into development, infection, and disease through comprehensive "omic" analyses of saliva could significantly improve care and enhance health access. In this review, we will highlight novel applications of salivary diagnostics in pediatrics across the "omic" spectrum, including at the genomic, transcriptomic, proteomic, microbiomic, and metabolomic level. The challenges to implementing salivary platforms into care, including the effects of age, diet, and developmental stage on salivary components, will be reviewed. Ultimately, large-scale, multicenter trials must be performed to establish normative biomarker values across the age spectrum to accurately discriminate between health and disease. Only then can salivary diagnostics truly translate into pediatric care.
Collapse
Affiliation(s)
- Mona Hassaneen
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, USA
| | - Jill L. Maron
- Mother Infant Research Institute at Tufts Medical Center, Boston, MA, USA
- Division of Newborn Medicine, Floating Hospital for Children at Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Di Meo A, Bartlett J, Cheng Y, Pasic MD, Yousef GM. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol Cancer 2017; 16:80. [PMID: 28410618 PMCID: PMC5391592 DOI: 10.1186/s12943-017-0644-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
There is a growing trend towards exploring the use of a minimally invasive "liquid biopsy" to identify biomarkers in a number of cancers, including urologic malignancies. Multiple aspects can be assessed in circulating cell-free DNA, including cell-free DNA levels, integrity, methylation and mutations. Other prospective liquid biopsy markers include circulating tumor cells, circulating RNAs (miRNA, lncRNAs and mRNAs), cell-free proteins, peptides and exosomes have also emerged as non-invasive cancer biomarkers. These circulating molecules can be detected in various biological fluids, including blood, urine, saliva and seminal plasma. Liquid biopsies hold great promise for personalized medicine due to their ability to provide multiple non-invasive global snapshots of the primary and metastatic tumors. Molecular profiling of circulating molecules has been a stepping-stone to the successful introduction of several non-invasive multi-marker tests into the clinic. In this review, we provide an overview of the current state of cell-free DNA-based kidney, prostate and bladder cancer biomarker research and discuss the potential utility other circulating molecules. We will also discuss the challenges and limitations facing non-invasive cancer biomarker discovery and the benefits of this growing area of translational research.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Jenni Bartlett
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maria D Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, ON, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
6
|
Hofmann E, Seeboeck R, Jacobi N, Obrist P, Huter S, Klein C, Oender K, Wiesner C, Hundsberger H, Eger A. The combinatorial approach of laser-captured microdissection and reverse transcription quantitative polymerase chain reaction accurately determines HER2 status in breast cancer. Biomark Res 2016; 4:8. [PMID: 27057311 PMCID: PMC4823853 DOI: 10.1186/s40364-016-0062-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/01/2016] [Indexed: 01/03/2023] Open
Abstract
Background HER2 expression in breast cancer correlates with increased metastatic potential, higher tumor recurrence rates and improved response to targeted therapies. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are two methods commonly used for the analysis of HER2 in the clinic. However, lack of standardization, technical variability in laboratory protocols and subjective interpretation are major problems associated with these testing procedures. Methods Here we evaluated the applicability of reverse-transcription quantitative polymerase chain reaction (RT-qPCR) for HER2 testing in breast cancer. We tested thirty formaldehyde-fixed and paraffin-embedded tumor samples by RT-qPCR, FISH and IHC and analysed and compared the data from the three methods. Results We found that laser-captured microdissection is essential for the accurate determination of HER2 expression by RT-qPCR. When isolating RNA from total tumor tissue we obtained a significant number of false negative results. However, when using RNA from purified cancer cells the RT-qPCR data were fully consistent with FISH and IHC. In addition we provide evidence that ductal carcinomas might be further classified by the differential expression of HER3 and HER4. Conclusions Laser-captured microdissection in combination with RT-qPCR is a precise and cost-effective diagnostic approach for HER2 testing in cancer. The PCR assay is simple, accurate and robust and can easily be implemented and standardized in clinical laboratories.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria
| | - Rita Seeboeck
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria.,Pathology Laboratory Obrist and Brunhuber, Klostergasse 1, A-6511 Zams, Austria
| | - Nico Jacobi
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria
| | - Peter Obrist
- Pathology Laboratory Obrist and Brunhuber, Klostergasse 1, A-6511 Zams, Austria
| | - Samuel Huter
- Pathology Laboratory Obrist and Brunhuber, Klostergasse 1, A-6511 Zams, Austria
| | - Christian Klein
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria
| | - Kamil Oender
- Research Program for Rational Drug Design in Dermatology and Rheumatology, Department of Dermatology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
| | - Christoph Wiesner
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria
| | - Harald Hundsberger
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria
| | - Andreas Eger
- Department Life Sciences, IMC University of Applied Sciences Krems, Piaristengasse 1, A-3500 Krems, Austria
| |
Collapse
|