1
|
Yuan X, Song Y, Xin H, Zhang L, Liu B, Ma J, Sun R, Guan X, Jiang Z. Identification and experimental validation of autophagy-related genes in abdominal aortic aneurysm. Eur J Med Res 2023; 28:368. [PMID: 37737183 PMCID: PMC10515431 DOI: 10.1186/s40001-023-01354-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
AIM Autophagy plays essential roles in abdominal aortic aneurysm (AAA) development and progression. The objective of this study was to verify the autophagy-related genes (ARGs) underlying AAA empirically and using bioinformatics analysis. METHODS Two gene expression profile datasets GSE98278 and GSE57691 were downloaded from the Gene Expression Omnibus (GEO) database, and principal component analysis was performed. Following, the R software (version 4.0.0) was employed to analyze potentially differentially expressed genes related with AAA and autophagy. Subsequently, the candidate genes were screened using protein-protein interaction (PPI), gene ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Finally, quantitative real-time polymerase chain reaction (RT-qPCR) was performed to detect the RNA expression levels of the top five selected abnormal ARGs in clinical samples obtained from the normal and AAA patients. RESULTS According to the information contained (97 AAA patients and 10 healthy controls) in the two datasets, a total of 44 differentially expressed autophagy-related genes (6 up-regulated genes and 38 down-regulated genes) were screened. GO enrichment analysis of differentially expressed autophagy-related genes (DEARGs) demonstrated that some enrichment items were associated with inflammation, and PPI analysis indicated interaction between these genes. RT-qPCR results presented that the expression levels of IL6, PPARG, SOD1, and MAP1LC3B were in accordance with the bioinformatics prediction results acquired from the mRNA chip. CONCLUSION Bioinformatics analysis identified 44 potential autophagy-related differentially expressed genes in AAA. Further verification by RT- qPCR presented that IL6, PPARG, SOD1, and MAP1LC3B may affect the development of AAA by regulating autophagy. These findings might help explain the pathogenesis of AAA and be helpful in its diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Xin
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomei Guan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Liautard-Haag C, Durif G, VanGoethem C, Baux D, Louis A, Cayrefourcq L, Lamairia M, Willems M, Zordan C, Dorian V, Rooryck C, Goizet C, Chaussenot A, Monteil L, Calvas P, Miry C, Favre R, Le Boette E, Fradin M, Roux AF, Cossée M, Koenig M, Alix-Panabière C, Guissart C, Vincent MC. Noninvasive prenatal diagnosis of genetic diseases induced by triplet repeat expansion by linked read haplotyping and Bayesian approach. Sci Rep 2022; 12:11423. [PMID: 35794169 PMCID: PMC9259573 DOI: 10.1038/s41598-022-15307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe field of noninvasive prenatal diagnosis (NIPD) has undergone significant progress over the last decade. Direct haplotyping has been successfully applied for NIPD of few single-gene disorders. However, technical issues remain for triplet-repeat expansions. The objective of this study was to develop an NIPD approach for couples at risk of transmitting dynamic mutations. This method includes targeted enrichment for linked-read libraries and targeted maternal plasma DNA sequencing. We also developed an innovative Bayesian procedure to integrate the Hoobari fetal genotyping model for inferring the fetal haplotype and the targeted gene variant status. Our method of directly resolving parental haplotypes through targeted linked-read sequencing was smoothly performed using blood samples from families with Huntington’s disease or myotonic dystrophy type 1. The Bayesian analysis of transmission of parental haplotypes allowed defining the genotype of five fetuses. The predicted variant status of four of these fetuses was in agreement with the invasive prenatal diagnosis findings. Conversely, no conclusive result was obtained for the NIPD of fragile X syndrome. Although improvements should be made to achieve clinically acceptable accuracy, our study shows that linked-read sequencing and parental haplotype phasing can be successfully used for NIPD of triplet-repeat expansion diseases.Trial registration: NCT04698551_date of first registration: 07/01/2021.
Collapse
|
3
|
Ershova ES, Shmarina GV, Porokhovnik LN, Zakharova NV, Kostyuk GP, Umriukhin PE, Kutsev SI, Sergeeva VA, Veiko NN, Kostyuk SV. In Vitro Analysis of Biological Activity of Circulating Cell-Free DNA Isolated from Blood Plasma of Schizophrenic Patients and Healthy Controls. Genes (Basel) 2022; 13:genes13030551. [PMID: 35328103 PMCID: PMC8955124 DOI: 10.3390/genes13030551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is associated with low-grade systemic inflammation. Circulating cell-free DNA (c-cfDNA) belongs to the DAMP class. The major research question was: can the c-cfDNA of schizophrenic patients (sz-cfDNA) stimulate the DNA sensor genes, which control the innate immunity? We investigated the in vitro response of ten human skin fibroblast (HSF) lines to five DNA probes containing different amounts of a GC-rich marker (the ribosomal repeat) and a DNA oxidation marker (8-oxodG) including sz-cfDNA and healthy control c-cfDNA (hc-cfDNA) probes. After 1 h, 3 h, and 24 h of incubation, the expression of 6 protein genes responsible for cfDNA transport into the cell (EEA1 and HMGB1) and the recognition of cytosolic DNA (TLR9, AIM2, STING and RIG-I) was analyzed at the transcriptional (RT-qPCR) and protein level (flow cytometry and fluorescence microscopy). Additionally, we analyzed changes in the RNA amount of 32 genes (RT-qPCR), which had been previously associated with different cellular responses to cell-free DNA with different characteristics. Adding sz-cfDNA and hc-cfDNA to the HSF medium in equal amounts (50 ng/mL) blocked endocytosis and stimulated TLR9 and STING gene expression while blocking RIG-I and AIM2 expression. Sz-cfDNA and hc-cfDNA, compared to gDNA, demonstrated much stronger stimulated transcription of genes that control cell proliferation, cytokine synthesis, apoptosis, autophagy, and mitochondrial biogenesis. No significant difference was observed in the response of the cells to sz-cfDNA and hc-cfDNA. Sz-cfDNA and hc-cfDNA showed similarly high biological activity towards HSFs, stimulating the gene activity of TLR9 and STING DNA sensor proteins and blocking the activity of the AIM2 protein gene. Since the sz-cfDNA content in the patients’ blood is several times higher than the hc-cfDNA content, sz-cfDNA may upregulate pro-inflammatory cytokines in schizophrenia.
Collapse
Affiliation(s)
- Elizaveta S. Ershova
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Galina V. Shmarina
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Lev N. Porokhovnik
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Correspondence:
| | - Natalia V. Zakharova
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - George P. Kostyuk
- N.A. Alekseev Clinical Psychiatric Hospital No. 1, 117152 Moscow, Russia; (N.V.Z.); (G.P.K.)
| | - Pavel E. Umriukhin
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
- Department of Physiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey I. Kutsev
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Vasilina A. Sergeeva
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Natalia N. Veiko
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| | - Svetlana V. Kostyuk
- Molecular Biology Laboratory, Research Centre for Medical Genetics, 115522 Moscow, Russia; (E.S.E.); (G.V.S.); (P.E.U.); (S.I.K.); (V.A.S.); (N.N.V.); (S.V.K.)
| |
Collapse
|
4
|
Zhang X, Xu R, Feng W, Xu J, Liang Y, Mu J. Autophagy-related genes contribute to malignant progression and have a clinical prognostic impact in colon adenocarcinoma. Exp Ther Med 2021; 22:932. [PMID: 34306201 PMCID: PMC8281215 DOI: 10.3892/etm.2021.10364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/15/2021] [Indexed: 12/23/2022] Open
Abstract
Autophagy has an important role in regulating tumor cell survival. However, the roles of autophagy-related genes (ARGs) during colon adenocarcinoma (COAD) progression and their prognostic value have remained elusive. The present study aimed to identify the correlation between ARGs and the progression of COAD, as well as the prognostic significance of ARGs. The transcriptome profiles and the corresponding clinicopathological information of patients with COAD were downloaded from The Cancer Genome Atlas and Genotype-Tissue Expression databases. A list of ARGs was obtained from the Human Autophagy Database and bioinformatics analysis was performed to investigate the functions of these ARGs. Statistical analyses of these genes were performed to identify independent prognostic markers. The selected prognostic markers were then validated in 15 patients with COAD via immunohistochemistry. Differentially expressed ARGs between normal and tumor tissues were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the differentially expressed ARGs were mainly enriched in toxoplasmosis and pathways in cancer. The ATG4B, DAPK1 and SERPINA1 genes were determined to be associated with COAD progression. In addition, a risk signature was proposed that may serve as an independent prognostic marker. In conclusion, ATG4B, DAPK1 and SERPINA1 are crucial participants in tumorigenesis of COAD. The present study may promote the development of novel treatment strategies for COAD.
Collapse
Affiliation(s)
- Xianyi Zhang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Runtao Xu
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Wenjing Feng
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jiapeng Xu
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yulong Liang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jinghui Mu
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
5
|
Rabinowitz T, Shomron N. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput Struct Biotechnol J 2020; 18:2463-2470. [PMID: 33005308 PMCID: PMC7509788 DOI: 10.1016/j.csbj.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/17/2020] [Accepted: 09/01/2020] [Indexed: 02/09/2023] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) is a risk-free alternative to invasive methods for prenatal diagnosis, e.g. amniocentesis. NIPD is based on the presence of fetal DNA within the mother’s plasma cell-free DNA (cfDNA). Though currently available for various monogenic diseases through detection of point mutations, NIPD is limited to detecting one mutation or up to several genes simultaneously. Noninvasive prenatal whole exome/genome sequencing (WES/WGS) has demonstrated genome-wide detection of fetal point mutations in a few studies. However, Genome-wide NIPD of monogenic disorders currently has several challenges and limitations, mainly due to the small amounts of cfDNA and fetal-derived fragments, and the deep coverage required. Several approaches have been suggested for addressing these hurdles, based on various technologies and algorithms. The first relevant software tool, Hoobari, recently became available. Here we review the approaches proposed and the paths required to make genome-wide monogenic NIPD widely available in the clinic.
Collapse
Affiliation(s)
- Tom Rabinowitz
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Tang Girdwood SC, Morrison JM, Forster CS. Cell-Free DNA Sequencing, Pathogen Detection, and the Journey to Value. Hosp Pediatr 2020; 10:806-809. [PMID: 32859603 DOI: 10.1542/hpeds.2020-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Sonya C Tang Girdwood
- Divisions of Hospital Medicine and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - John M Morrison
- Division of Hospital Medicine, Johns Hopkins All Children's Hospital, St Petersburg, Florida.,Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Catherine S Forster
- Division of Hospital Medicine, Children's National Medical Center, Washington DC; and.,Department of Pediatrics, School of Medicine, George Washington University, Washington DC
| |
Collapse
|
7
|
Manoharan A, Sambandam R, Bhat V. Recent technologies enhancing the clinical utility of circulating tumor DNA. Clin Chim Acta 2020; 510:498-506. [PMID: 32795543 DOI: 10.1016/j.cca.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Circulating tumor DNA (ctDNA) is a promising blood based biomarker that is set to revolutionize cancer management. Non-invasive biopsy takes precedence over tissue biopsy for enabling longitudinal monitoring, providing a comprehensive profile of tumor heterogeneity and the ease of repeated sampling. Advanced genomic technologies enable real-time disease monitoring, detect minimal residual disease and recurrence at the earliest stages, the potential time points when treatment significantly reduces morbidity and mortality and enable tailored and personalized therapy. The review highlights evidence from literature that make ctDNA a potential liquid biopsy marker and the clinical utility of the recent techniques that leverage up on ctDNA.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital (Deemed-to-be-University), Kirumampakkam, Puducherry 607402, India
| | - Ravikumar Sambandam
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital (Deemed-to-be-University), Kirumampakkam, Puducherry 607402, India.
| | - Vishnu Bhat
- Multi-Disciplinary Center for Biomedical Research, Vinayaka Mission's Research Foundation, Aarupadai Veedu Medical College and Hospital (Deemed-to-be-University), Kirumampakkam, Puducherry 607402, India
| |
Collapse
|
8
|
Li Z, Dong K, Guo P, Tan Z, Zhang F, Tian Y, Lv H. Identification of Autophagy-Related Genes and Small-Molecule Drugs in Esophageal Carcinoma. Med Sci Monit 2020; 26:e921855. [PMID: 32415055 PMCID: PMC7247420 DOI: 10.12659/msm.921855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Esophageal carcinoma (ESCA) is associated with a poor prognosis and high mortality rate. Autophagy plays important roles in promoting or suppressing tumor cell survival at different stages of cancer development. However, the roles of autophagy-related genes (ARGs) during ESCA progression and in patient prognosis remain unclear. Accordingly, in this study, we aimed to identify the relationships of ARGs with ESCA progression and patient prognosis. Material/Methods Clinicopathological information for patients with ESCA was downloaded from The Cancer Genome Atlas (TCGA) database. Transcriptome expression profiles were downloaded from TCGA and GTEx databases, and ARGs were downloaded from the Human Autophagy Database. We investigated the functions of ARGs by bioinformatics analysis. Moreover, statistical analysis of these genes was performed to identify independent prognostic markers. Results Differentially expressed genes between normal and tumor tissues were detected and identified. GO and KEGG analyses of differentially expressed ARGs were performed. Moreover, we derived a risk signature based on the identified independent prognostic markers. The identified genes also could predict the clinicopathological features of ESCA. Conclusions ARGs were key participants in the tumorigenesis and development of ESCA. Our findings may be useful for developing improved therapeutic approaches for ESCA.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Keqin Dong
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Peiyuan Guo
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Zirui Tan
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Huilai Lv
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
9
|
Comparison of commercially available whole-genome sequencing kits for variant detection in circulating cell-free DNA. Sci Rep 2020; 10:6190. [PMID: 32277101 PMCID: PMC7148341 DOI: 10.1038/s41598-020-63102-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Circulating cell-free DNA (ccfDNA) has great potential for non-invasive diagnosis, prognosis and monitoring treatment of disease. However, a sensitive and specific whole-genome sequencing (WGS) method is required to identify novel genetic variations (i.e., SNVs, CNVs and INDELS) on ccfDNA that can be used as clinical biomarkers. In this article, five WGS methods were compared: ThruPLEX Plasma-seq, QIAseq cfDNA All-in-One, NEXTFLEX Cell Free DNA-seq, Accel-NGS 2 S PCR FREE DNA and Accel-NGS 2 S PLUS DNA. The Accel PCR-free kit did not produce enough material for sequencing. The other kits had significant common number of SNVs, INDELs and CNVs and showed similar results for SNVs and CNVs. The detection of variants and genomic signatures depends more upon the type of plasma sample rather than the WGS method used. Accel detected several variants not observed by the other kits. ThruPLEX seemed to identify more low-abundant SNVs and SNV signatures were similar to signatures observed with the QIAseq kit. Accel and NEXTFLEX had similar CNV and SNV signatures. These results demonstrate the importance of establishing a standardized workflow for identifying non-invasive candidate biomarkers. Moreover, the combination of variants discovered in ccfDNA using WGS has the potential to identify enrichment pathways, while the analysis of signatures could identify new subgroups of patients.
Collapse
|
10
|
Abstract
Prenatal testing in recent years has been moving toward non-invasive methods to determine the fetal risk for genetic disorders without incurring the risk of miscarriage. Rapid progress of modern high-throughput molecular technologies along with the discovery of cell-free fetal DNA in maternal plasma led to novel screening methods for fetal chromosomal aneuploidies. Such tests are referred to as non-invasive prenatal tests (NIPTs), non-invasive prenatal screening, or prenatal cell-free DNA screening. Owing to many advantages, the adoption of NIPT in routine clinical practice was very rapid and global. As an example, NIPT has recently become a standard screening procedure for all pregnant women in the Netherlands. On the other hand, invasive sampling procedures remain important, especially for their diagnostic value in the confirmation of NIPT-positive findings and the detection of Mendelian disorders. In this review, we focus on current trends in the field of NIPT and discuss their benefits, drawbacks, and consequences in regard to routine diagnostics.
Collapse
Affiliation(s)
- Ondrej Pös
- Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Jaroslav Budiš
- University Science Park, Comenius University, Bratislava, 84104, Slovakia
| | - Tomáš Szemes
- Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia.,University Science Park, Comenius University, Bratislava, 84104, Slovakia
| |
Collapse
|
11
|
Bonner ER, Bornhorst M, Packer RJ, Nazarian J. Liquid biopsy for pediatric central nervous system tumors. NPJ Precis Oncol 2018; 2:29. [PMID: 30588509 PMCID: PMC6297139 DOI: 10.1038/s41698-018-0072-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Central nervous system (CNS) tumors are the most common solid tumors in children, and the leading cause of cancer-related death. Over the past decade, molecular profiling has been incorporated into treatment for pediatric CNS tumors, allowing for a more personalized approach to therapy. Through the identification of tumor-specific changes, it is now possible to diagnose, assign a prognostic subgroup, and develop targeted chemotherapeutic treatment plans for many cancer types. The successful incorporation of informative liquid biopsies, where the liquid biome is interrogated for tumor-associated molecular clues, has the potential to greatly complement the precision-based approach to treatment, and ultimately, to improve clinical outcomes for children with CNS tumors. In this article, the current application of liquid biopsy in cancer therapy will be reviewed, as will its potential for the diagnosis and therapeutic monitoring of pediatric CNS tumors.
Collapse
Affiliation(s)
- Erin R Bonner
- 1Center for Genetic Medicine, Children's National Health System, Washington, DC 20010 USA.,2Institute for Biomedical Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052 USA
| | - Miriam Bornhorst
- 1Center for Genetic Medicine, Children's National Health System, Washington, DC 20010 USA.,3Brain Tumor Institute, Children's National Health System, Washington, DC 20010 USA
| | - Roger J Packer
- 3Brain Tumor Institute, Children's National Health System, Washington, DC 20010 USA
| | - Javad Nazarian
- 1Center for Genetic Medicine, Children's National Health System, Washington, DC 20010 USA.,3Brain Tumor Institute, Children's National Health System, Washington, DC 20010 USA.,4Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052 USA
| |
Collapse
|
12
|
Harris G, O'Toole S, George P, Browett P, Print C. Massive parallel sequencing of solid tumours - challenges and opportunities for pathologists. Histopathology 2016; 70:123-133. [DOI: 10.1111/his.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gavin Harris
- Department of Molecular Medicine and Pathology and Bioinformatics Institute; University of Auckland; Auckland New Zealand
- Canterbury Health Laboratories; Christchurch New Zealand
| | - Sandra O'Toole
- Department of Tissue Pathology and Diagnostic Oncology; Royal Prince Alfred Hospital; Camperdown NSW Australia
- Sydney Medical School; Sydney University; Sydney Australia
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Darlinghurst NSW Australia
| | - Peter George
- Canterbury Health Laboratories; Christchurch New Zealand
| | - Peter Browett
- Department of Molecular Medicine and Pathology and Bioinformatics Institute; University of Auckland; Auckland New Zealand
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Bioinformatics Institute; University of Auckland; Auckland New Zealand
- Maurice Wilkins Centre; c/o University of Auckland; Auckland New Zealand
| |
Collapse
|
13
|
Basnet S, Zhang ZY, Liao WQ, Li SH, Li PS, Ge HY. The Prognostic Value of Circulating Cell-Free DNA in Colorectal Cancer: A Meta-Analysis. J Cancer 2016; 7:1105-13. [PMID: 27326254 PMCID: PMC4911878 DOI: 10.7150/jca.14801] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) is a promising candidate biomarker for detection, monitoring and survival prediction of colorectal cancer (CRC). However, its prognostic significance for patients with CRC remains controversial. To derive a precise estimation of the prognostic significance of cfDNA, a meta-analysis was performed. METHODS We made a systematic search in data base of the Science Citation Index Embase and Pubmed for studies reporting prognostic data of cfDNA in CRC patients. The data of cfDNA on recurrences-free survival (RFS) and overall survival (OS) were extracted and measured in hazard rates (HRs) and 95% confident intervals (CIs). Subgroup analyses were carried out as well. Finally, the meta-analysis is accompanied with nine studies including 19 subunits. RESULTS The pooled HRs with 95% CIs revealed strong associations between cfDNA and RFS (HR [95%CI]=2.78[2.08-3.72], I(2)=32.23%, n=7) along with OS (HR [95%CI]=3.03[2.51-3.66], I(2)=29.24%, n=12) in patients with CRC. Entire subgroup analyses indicated strong prognostic value of cfDNA irrespective tumor stage, study size, tumor markers, detection methods and marker origin. CONCLUSIONS All the results exhibits that appearance of cfDNA in blood is an indicator for adverse RFS and OS in CRC patients.
Collapse
Affiliation(s)
- Shiva Basnet
- 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen-yu Zhang
- 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-qiang Liao
- 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shu-heng Li
- 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-shu Li
- 2. Department of Research Administration, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-yan Ge
- 1. Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
|