1
|
Lee H, Weber C, Linscott EB. Many-Body Study of Iron(III)-Bound Human Serum Transferrin. J Phys Chem Lett 2022; 13:4419-4425. [PMID: 35549239 PMCID: PMC9150111 DOI: 10.1021/acs.jpclett.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
We present the very first density functional theory and dynamical mean field theory calculations of iron-bound human serum transferrin. Peaks in the optical conductivity at 250, 300, and 450 nm were observed, in line with experimental measurements. Spin multiplet analysis suggests that the ground state is a mixed state with high entropy, indicating the importance of strong electronic correlation in this system's chemistry.
Collapse
Affiliation(s)
- Hovan Lee
- Department
of Physics, Faculty of Natural & Mathematical Sciences, King’s College London, London WC2R2LS, U.K.
| | - Cedric Weber
- Department
of Physics, Faculty of Natural & Mathematical Sciences, King’s College London, London WC2R2LS, U.K.
| | - Edward B. Linscott
- Theory
and Simulation of Materials (THEOS), École
Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Jiang Y, Southam AD, Trova S, Beke F, Alhazmi B, Francis T, Radotra A, di Maio A, Drayson MT, Bunce CM, Khanim FL. Valproic acid disables the Nrf2 anti-oxidant response in acute myeloid leukaemia cells enhancing reactive oxygen species-mediated killing. Br J Cancer 2022; 126:275-286. [PMID: 34686779 PMCID: PMC8770569 DOI: 10.1038/s41416-021-01570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We previously demonstrated the in vitro killing of AML cells by the combination of the lipid-lowering agent bezafibrate (BEZ) and the contraceptive hormone medroxyprogesterone acetate (MPA). A phase II trial demonstrated in vivo safety and efficacy of BEZ and MPA (BaP) in elderly, relapsed/refractory AML and high-risk myelodysplastic syndrome (MDS) patients. However, we observed dose-limiting toxicities in a second trial that attempted to improve outcomes via escalation of BaP doses. Thus we sought to identify a third repurposed drug that potentiates activity of low dose BaP (BaP 0.1 mM). METHODS AND RESULTS We demonstrate that addition of a commonly used anti-epileptic, valproic acid (VAL) to low dose BaP (BaP 0.1 mM)(VBaP) enhanced killing of AML cell lines/primary AML cells to levels similar to high dose BaP (BaP 0.5 mM). Similarly, addition of VAL to BaP 0.1 mM enhanced reactive oxygen species (ROS), lipid peroxidation and inhibition of de novo fatty acid synthesis. Overexpression of Nrf2 in K562 and KG1a completely inhibited ROS production and rescued cells from VAL/BaP 0.1 mM/VBaP killing. CONCLUSIONS Given the good safety data of low-dose BaP in elderly/relapsed/refractory AML patients, and that VAL alone is well-tolerated, we propose VBaP as a novel therapeutic combination for AML.
Collapse
Affiliation(s)
- Yao Jiang
- grid.6572.60000 0004 1936 7486School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D. Southam
- grid.6572.60000 0004 1936 7486School of Biosciences, University of Birmingham, Birmingham, UK
| | - Sandro Trova
- grid.6572.60000 0004 1936 7486School of Biosciences, University of Birmingham, Birmingham, UK
| | - Flavio Beke
- grid.5335.00000000121885934CRUK Cancer Institute, University of Cambridge, Cambridge, UK
| | - Bader Alhazmi
- grid.6572.60000 0004 1936 7486School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Francis
- grid.13097.3c0000 0001 2322 6764Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Anshul Radotra
- grid.412570.50000 0004 0400 5079University Hospitals Coventry and Warwickshire, Clifford Bridge Rd, Coventry, UK
| | - Alessandro di Maio
- grid.6572.60000 0004 1936 7486School of Biosciences, University of Birmingham, Birmingham, UK
| | - Mark T. Drayson
- grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Chris M. Bunce
- grid.6572.60000 0004 1936 7486School of Biosciences, University of Birmingham, Birmingham, UK
| | - Farhat L. Khanim
- grid.6572.60000 0004 1936 7486School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Montes P, Guerra-Librero A, García P, Cornejo-Calvo ME, López MDS, de Haro T, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. Effect of 5-Azacitidine Treatment on Redox Status and Inflammatory Condition in MDS Patients. Antioxidants (Basel) 2022; 11:antiox11010139. [PMID: 35052643 PMCID: PMC8773071 DOI: 10.3390/antiox11010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
This study focused on the impact of the treatment with the hypomethylating agent 5-azacitidine on the redox status and inflammation in 24 MDS patients. Clinical and genetic features of MDS patients were recorded, and peripheral blood samples were used to determine the activity of the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathion peroxidase, GPx; and reductase, GRd, activities), markers of oxidative damage (lipid peroxidation, LPO, and advanced oxidation protein products, AOPP). Moreover, pro-inflammatory cytokines and plasma nitrite plus nitrate levels as markers of inflammation, as well as CoQ10 plasma levels, were also measured. Globally, MDS patients showed less redox status in terms of a reduction in the GSSG/GSH ratio and in the LPO levels, as well as increased CAT activity compared with healthy subjects, with no changes in SOD, GPx, and GRd activities, or AOPP levels. When analyzing the evolution from early to advanced stages of the disease, we found that the GPx activity, GSSG/GSH ratio, LPO, and AOPP increased, with a reduction in CAT. GPx changes were related to the presence of risk factors such as high-risk IPSS-R or mutational score. Moreover, there was an increase in IL-2, IL-6, IL-8, and TNF-α plasma levels, with a further increase of IL-2 and IL-10 from early to advanced stages of the disease. However, we did not observe any association between inflammation and oxidative stress. Finally, 5-azacitidine treatment generated oxidative stress in MDS patients, without affecting inflammation levels, suggesting that oxidative status and inflammation are two independent processes.
Collapse
Affiliation(s)
- Paola Montes
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
| | - Paloma García
- UGC de Hematología y Hemoterapia, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (P.G.); (M.E.C.-C.)
| | - María Elena Cornejo-Calvo
- UGC de Hematología y Hemoterapia, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (P.G.); (M.E.C.-C.)
| | - María del Señor López
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Tomás de Haro
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
| | - Germaine Escames
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20196)
| |
Collapse
|
4
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
6
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Rodríguez-García A, García-Vicente R, Morales ML, Ortiz-Ruiz A, Martínez-López J, Linares M. Protein Carbonylation and Lipid Peroxidation in Hematological Malignancies. Antioxidants (Basel) 2020; 9:E1212. [PMID: 33271863 PMCID: PMC7761105 DOI: 10.3390/antiox9121212] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| |
Collapse
|
8
|
Kaphan E, Laurin D, Lafeuillade B, Drillat P, Park S. Impact of transfusion on survival in patients with myelodysplastic syndromes: Current knowledge, new insights and transfusion clinical practice. Blood Rev 2019; 41:100649. [PMID: 31918886 DOI: 10.1016/j.blre.2019.100649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023]
Abstract
Red Blood Cell (RBC) transfusion dependence is a prevalent consequence of anaemia in patients with lower risk Myelodysplastic Syndromes (MDS). These patients have shorter survival compared to patients responding to Erythropoiesis-stimulating agents (ESA), raising the question of potential negative effects of chronic RBC transfusions on MDS prognosis, independently of IPSS-R. Besides commonly identified complications of transfusions like iron toxicity or cardiac events, oxidative stress could be a risk factor for ineffective haematopoiesis. Recently, physicochemical changes of RBC during storage have been described. These changes called storage lesions could play a role in immunomodulation in vivo. We review the currently identified sources of potential impact on transfusion-associated effects in MDS patients and we discuss the unexplored potential role of erythrocyte-derived-extracellular vesicles. They could amplify impairment of haematopoiesis in addition to the negative intrinsic effects underlying the pathology in MDS. Thus, chronic RBC transfusions appear to potentially impact the outcome of MDS.
Collapse
Affiliation(s)
- Eléonore Kaphan
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France.
| | - David Laurin
- Département scientifique, Etablissement Français du Sang Auvergne Rhône-Alpes, La Tronche, France; Institute for Advanced Biosciences, Equipe Pathologie Moléculaire des Cancers et Biomarqueurs, Université Grenoble Alpes, INSERM U1209 & CNRS UMR 5309, France
| | - Bruno Lafeuillade
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France
| | - Philippe Drillat
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France; Département scientifique, Etablissement Français du Sang Auvergne Rhône-Alpes, La Tronche, France
| | - Sophie Park
- Service d'Hématologie, CHU de Grenoble, CS 10 217, Grenoble Cedex 09 38043, France; Institute for Advanced Biosciences, Equipe Pathologie Moléculaire des Cancers et Biomarqueurs, Université Grenoble Alpes, INSERM U1209 & CNRS UMR 5309, France.
| |
Collapse
|
9
|
Sillar JR, Germon ZP, De Iuliis GN, Dun MD. The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:ijms20236003. [PMID: 31795243 PMCID: PMC6929020 DOI: 10.3390/ijms20236003] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with a poor overall survival. Reactive oxygen species (ROS) have been shown to be elevated in a wide range of cancers including AML. Whilst previously thought to be mere by-products of cellular metabolism, it is now clear that ROS modulate the function of signalling proteins through oxidation of critical cysteine residues. In this way, ROS have been shown to regulate normal haematopoiesis as well as promote leukaemogenesis in AML. In addition, ROS promote genomic instability by damaging DNA, which promotes chemotherapy resistance. The source of ROS in AML appears to be derived from members of the “NOX family” of NADPH oxidases. Most studies link NOX-derived ROS to activating mutations in the Fms-like tyrosine kinase 3 (FLT3) and Ras-related C3 botulinum toxin substrate (Ras). Targeting ROS through either ROS induction or ROS inhibition provides a novel therapeutic target in AML. In this review, we summarise the role of ROS in normal haematopoiesis and in AML. We also explore the current treatments that modulate ROS levels in AML and discuss emerging drug targets based on pre-clinical work.
Collapse
Affiliation(s)
- Jonathan R. Sillar
- Haematology Department, Calvary Mater Hospital, Newcastle, NSW 2298, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: (J.R.S.); (M.D.D.); Tel.: +612-4921-5693 (M.D.D.)
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: (J.R.S.); (M.D.D.); Tel.: +612-4921-5693 (M.D.D.)
| |
Collapse
|
10
|
Rodríguez-García A, Morales ML, Garrido-García V, García-Baquero I, Leivas A, Carreño-Tarragona G, Sánchez R, Arenas A, Cedena T, Ayala RM, Bautista JM, Martínez-López J, Linares M. Protein Carbonylation in Patients with Myelodysplastic Syndrome: An Opportunity for Deferasirox Therapy. Antioxidants (Basel) 2019; 8:E508. [PMID: 31652983 PMCID: PMC6912333 DOI: 10.3390/antiox8110508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Control of oxidative stress in the bone marrow (BM) is key for maintaining the interplay between self-renewal, proliferation, and differentiation of hematopoietic cells. Breakdown of this regulation can lead to diseases characterized by BM failure such as the myelodysplastic syndromes (MDS). To better understand the role of oxidative stress in MDS development, we compared protein carbonylation as an indicator of oxidative stress in the BM of patients with MDS and control subjects, and also patients with MDS under treatment with the iron chelator deferasirox (DFX). As expected, differences in the pattern of protein carbonylation were observed in BM samples between MDS patients and controls, with an increase in protein carbonylation in the former. Strikingly, patients under DFX treatment had lower levels of protein carbonylation in BM with respect to untreated patients. Proteomic analysis identified four proteins with high carbonylation levels in MDS BM cells. Finally, as oxidative stress-related signaling pathways can modulate the cell cycle through p53, we analyzed the expression of the p53 target gene p21 in BM cells, finding that it was significantly upregulated in patients with MDS and was significantly downregulated after DFX treatment. Overall, our results suggest that the fine-tuning of oxidative stress levels in the BM of patients with MDS might control malignant progression.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - María Luz Morales
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Vanesa Garrido-García
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Irene García-Baquero
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alejandra Leivas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Gonzalo Carreño-Tarragona
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Ricardo Sánchez
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Alicia Arenas
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Teresa Cedena
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - Rosa María Ayala
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
| | - José M Bautista
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - Joaquín Martínez-López
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Medicine, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | - María Linares
- Department of Hematology, 16473 Hospital Universitario 12 de Octubre, Hematological Malignancies Clinical Research Unit H120-CNIO, 28041 Madrid, Spain.
- Department of Biochemistry and Molecular Biology and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Huang L, Fu R. [Research progress of characteristics and mechanisms of iron overload affecting bone marrow hematopoiesis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:709-712. [PMID: 31495147 PMCID: PMC7342874 DOI: 10.3760/cma.j.issn.0253-2727.2019.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- L Huang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | | |
Collapse
|
12
|
Affiliation(s)
- Emmanuel Gyan
- Service d'hématologie et thérapie cellulaire, Centre Hospitalier Universitaire, Tours, France.,«Leukemic Niche and Redox Metabolism», CNRS ERL 7001, Faculté de Médecine, Université de Tours, Tours, France
| | | |
Collapse
|
13
|
Jiménez-Solas T, López-Cadenas F, Aires-Mejía I, Caballero-Berrocal JC, Ortega R, Redondo AM, Sánchez-Guijo F, Muntión S, García-Martín L, Albarrán B, Alonso JM, Del Cañizo C, Hernández-Hernández Á, Díez-Campelo M. Deferasirox reduces oxidative DNA damage in bone marrow cells from myelodysplastic patients and improves their differentiation capacity. Br J Haematol 2019; 187:93-104. [PMID: 31172513 DOI: 10.1111/bjh.16013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Patients with low-risk myelodysplastic syndromes (MDS) usually develop iron overload. This leads to a high level of oxidative stress in the bone marrow (BM) and increases haematopoietic cell dysfunction. Our objective was to analyse whether chelation with deferasirox (DFX) alleviates the consequences of oxidative stress and improves BM cell functionality. We analysed 13 iron-overloaded MDS patients' samples before and 4-10 months after treatment with DFX. Using multiparametric flow cytometry analysis, we measured intracellular reactive oxygen species (ROS), DNA oxidation and double strand breaks. Haematopoietic differentiation capacity was analysed by colony-forming unit (CFU) assays. Compared to healthy donors, MDS showed a higher level of intracellular ROS and DNA oxidative damage in BM cells. DNA oxidative damage decreased following DFX treatment. Furthermore, the clonogenic assays carried out before treatment suggest an impaired haematopoietic differentiation. DFX seems to improve this capacity, as illustrated by a decreased cluster/CFU ratio, which reached values similar to controls. We conclude that BM cells from MDS are subject to higher oxidative stress conditions and show an impaired haematopoietic differentiation. These adverse features seem to be partially rectified after DFX treatment.
Collapse
Affiliation(s)
- Tamara Jiménez-Solas
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Félix López-Cadenas
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Irene Aires-Mejía
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Juan Carlos Caballero-Berrocal
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rebeca Ortega
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Alba María Redondo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sandra Muntión
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Luís García-Martín
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Beatriz Albarrán
- Servicio de Hematología, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - José María Alonso
- Servicio de Hematología, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | | | - Ángel Hernández-Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - María Díez-Campelo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
14
|
Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants (Basel) 2018; 7:antiox7080102. [PMID: 30061536 PMCID: PMC6115986 DOI: 10.3390/antiox7080102] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
Among the various mechanisms involved in aging, it was proposed long ago that a prominent role is played by oxidative stress. A major way by which the latter can provoke structural damage to biological macromolecules, such as DNA, lipids, and proteins, is by fueling the peroxidation of membrane lipids, leading to the production of several reactive aldehydes. Lipid peroxidation-derived aldehydes can not only modify biological macromolecules, by forming covalent electrophilic addition products with them, but also act as second messengers of oxidative stress, having relatively extended lifespans. Their effects might be further enhanced with aging, as their concentrations in cells and biological fluids increase with age. Since the involvement and the role of lipid peroxidation-derived aldehydes, particularly of 4-hydroxynonenal (HNE), in neurodegenerations, inflammation, and cancer, has been discussed in several excellent recent reviews, in the present one we focus on the involvement of reactive aldehydes in other age-related disorders: osteopenia, sarcopenia, immunosenescence and myelodysplastic syndromes. In these aging-related disorders, characterized by increases of oxidative stress, both HNE and malondialdehyde (MDA) play important pathogenic roles. These aldehydes, and HNE in particular, can form adducts with circulating or cellular proteins of critical functional importance, such as the proteins involved in apoptosis in muscle cells, thus leading to their functional decay and acceleration of their molecular turnover and functionality. We suggest that a major fraction of the toxic effects observed in age-related disorders could depend on the formation of aldehyde-protein adducts. New redox proteomic approaches, pinpointing the modifications of distinct cell proteins by the aldehydes generated in the course of oxidative stress, should be extended to these age-associated disorders, to pave the way to targeted therapeutic strategies, aiming to alleviate the burden of morbidity and mortality associated with these disturbances.
Collapse
|
15
|
Jin X, He X, Cao X, Xu P, Xing Y, Sui S, Wang L, Meng J, Lu W, Cui R, Ni H, Zhao M. Iron overload impairs normal hematopoietic stem and progenitor cells through reactive oxygen species and shortens survival in myelodysplastic syndrome mice. Haematologica 2018; 103:1627-1634. [PMID: 29903757 PMCID: PMC6165791 DOI: 10.3324/haematol.2018.193128] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022] Open
Abstract
There is increasing clinical evidence to suggest a suppressive effect on hematopoiesis in myelodysplastic syndrome patients with iron overload. However, how iron overload influences hematopoiesis in myelodysplastic syndrome (MDS) remains unknown. Here, the RUNX1S291fs-transduced bone marrow mononuclear cells were yielded and transplanted into lethally irradiated recipient mice together with radioprotective bone marrow cells to generate MDS mice. Eight weeks post transplantation, the recipient mice received an intraperitoneal injection of 0.2 mL iron dextran at a concentration of 25 mg/mL once every other day for a total of 8 times to establish an iron overload model. In the present study, we show that iron overload impairs the frequency and colony-forming capacity of normal hematopoietic stem and progenitor cells, especially in erythroid, in MDS mice, which is due, at least in part, to growth differentiation factor 11-induced reactive oxygen species, shortening survival of MDS mice. Given that we are the first to construct an iron overload model in MDS mice, we hope this model will be helpful for further exploring the influence and mechanism of iron overload on MDS.
Collapse
Affiliation(s)
- Xin Jin
- Nankai University School of Medicine, Tianjin, PR China
| | - Xiaoyuan He
- Nankai University School of Medicine, Tianjin, PR China
| | - Xiaoli Cao
- Tianjin Children's Hospital, Tianjin, PR China
| | - Ping Xu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Yi Xing
- Tianjin Children's Hospital, Tianjin, PR China
| | - Songnan Sui
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Luqiao Wang
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Juanxia Meng
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Rui Cui
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Central Hospital, Tianjin, PR China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, PR China .,Nankai University School of Medicine, Tianjin, PR China
| |
Collapse
|
16
|
Antioxidant and Cytoprotective Effects of the Di-O-Caffeoylquinic Acid Family: The Mechanism, Structure-Activity Relationship, and Conformational Effect. Molecules 2018; 23:molecules23010222. [PMID: 29361719 PMCID: PMC6017143 DOI: 10.3390/molecules23010222] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/06/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
In this study, a series of di-O-caffeoylquinic acids (di-COQs) were systematically investigated for their antioxidant and cytoprotective effects towards •OH-damaged bone marrow-derived mesenchymal stem cells (bmMSCs). Five di-COQs were measured using a set of antioxidant assays. The results show that adjacent 4,5-Di-O-caffeoylquinic acid (4,5-COQ) and 3,4-di-O-caffeoylquinic acid (3,4-COQ) always gave lower IC50 values than did non-adjacent di-COQs. In the Fe2+-chelating assay, 4,5-COQ and 3,4-COQ presented greater UV-Vis spectra and darker colors than did non-adjacent di-COQs. In the UPLC-ESI-MS/MS analysis, no corresponding radical adduct formation (RAF) peak was found in the reaction products of di-COQs with PTIO•. In the MTT assay, all di-COQs (especially 1,5-COQ, 1,3-COQ, and 4,5-COQ) dose-dependently increased the cellular viabilities of •OH-damaged bmMSCs. Based on this evidence, we conclude that the five antioxidant di-COQs can protect bmMSCs from •OH-induced damage. Their antioxidant mechanisms may include electron-transfer (ET), H+-transfer, and Fe2+-chelating, except for RAF. Two adjacent di-COQs (4,5-COQ and 3,4-COQ) always possessed a higher antioxidant ability than the non-adjacent di-COQs (1,3-COQ, 1,5-COQ, and 3,5-COQ) in chemical models. However, non-adjacent 1,3-COQ and 1,5-COQ exhibited a higher cytoprotective effect than did adjacent di-COQs. These differences can be attributed to the relative positions of two caffeoyl moieties and, ultimately, to the conformational effect from the cyclohexane skeleton.
Collapse
|