1
|
Zhu HM, Xiong YY, Chen YB, Xiao J. Serum platelet distribution width predicts cardiovascular and all-cause mortality in patients undergoing peritoneal dialysis. Postgrad Med 2023; 135:394-401. [PMID: 36749999 DOI: 10.1080/00325481.2023.2178755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND Platelet distribution width (PDW) is a predictor for all-cause mortality in patients with cardiovascular diseases (CVD). This study aimed to evaluate the prognostic implication of PDW in predicting cardiovascular and all-cause mortality in patients undergoing peritoneal dialysis (PD). METHODS In total, 762 PD patients from a single center were recruited retrospectively from 2005 to 2017 and followed up until 2021. The primary and secondary outcomes were cardiovascular and all-cause mortality, respectively. Survival analysis was conducted using Kaplan-Meier estimates and Cox regression analysis. RESULTS During a median of 52.2 months of follow-up, 135 (17.7%) cases of CVD and 253 (33.2%) cases of all-cause mortality were reported. After multivariate adjustment, high levels of PDW were associated with an increased risk of death from CVD (HR: 1.583; 95% CI: 1.109-2.258; P = 0.011) and all-cause mortality (HR: 1.313; 95% CI: 1.006-1.758; P = 0.045). Subgroup analysis indicated a stronger association between PDW and all-cause mortality among female participants (P-value for interaction = 0.033). Higher levels of PDW predicted an increased risk of all-cause mortality in female patients (HR: 1.986; 95% CI,1.261-3.127). CONCLUSION High levels of PDW are independently associated with cardiovascular and all-cause mortality in the PD population, and differences by sex exist in the association of PDW with all-cause mortality.
Collapse
Affiliation(s)
- Heng-Mei Zhu
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Nephrology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Yi-Yi Xiong
- Medical College of Nanchang University, Nanchang, China
| | - Yan-Bing Chen
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Xiao
- Department of Nephrology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Xiong Y, Xu J, Zhang D, Wu S, Li Z, Zhang J, Xia Z, Xia P, Xia C, Tang X, Liu X, Liu J, Yu P. MicroRNAs in Kawasaki disease: An update on diagnosis, therapy and monitoring. Front Immunol 2022; 13:1016575. [PMID: 36353615 PMCID: PMC9638168 DOI: 10.3389/fimmu.2022.1016575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 08/15/2023] Open
Abstract
Kawasaki disease (KD) is an acute autoimmune vascular disease featured with a long stage of febrile. It predominantly afflicts children under 5 years old and causes an increased risk of cardiovascular combinations. The onset and progression of KD are impacted by many aspects, including genetic susceptibility, infection, and immunity. In recent years, many studies revealed that miRNAs, a novel class of small non-coding RNAs, may play an indispensable role in the development of KD via differential expression and participation in the central pathogenesis of KD comprise of the modulation of immunity, inflammatory response and vascular dysregulation. Although specific diagnose criteria remains unclear up to date, accumulating clinical evidence indicated that miRNAs, as small molecules, could serve as potential diagnostic biomarkers and exhibit extraordinary specificity and sensitivity. Besides, miRNAs have gained attention in affecting therapies for Kawasaki disease and providing new insights into personalized treatment. Through consanguineous coordination with classical therapies, miRNAs could overcome the inevitable drug-resistance and poor prognosis problem in a novel point of view. In this review, we systematically reviewed the existing literature and summarized those findings to analyze the latest mechanism to explore the role of miRNAs in the treatment of KD from basic and clinical aspects retrospectively. Our discussion helps to better understand the pathogenesis of KD and may offer profound inspiration on KD diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiawei Xu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuqin Wu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongbin Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cai Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianping Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Wicik Z, Czajka P, Eyileten C, Fitas A, Wolska M, Jakubik D, von Lewinski D, Sourij H, Siller-Matula JM, Postula M. The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis. Platelets 2022; 33:1052-1064. [DOI: 10.1080/09537104.2022.2042233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Marta Wolska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Jolanta M. Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology Cept, Warsaw, Poland
| |
Collapse
|
4
|
Pharmacodynamic effects of indobufen compared with aspirin in patients with coronary atherosclerosis. Eur J Clin Pharmacol 2021; 77:1815-1823. [PMID: 34331551 DOI: 10.1007/s00228-021-03177-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study aimed to investigate the pharmacodynamic effects of indobufen and low-dose aspirin in patients with coronary atherosclerosis. METHODS In the first phase, 218 patients with coronary atherosclerosis were randomly assigned to receive aspirin 100 mg once daily (standard dose); 100 mg once every 2 days; 100 mg once every 3 days; 50 mg twice daily; 75 mg once daily; 50 mg once daily; or indobufen 100 mg twice daily for 1 month. In the second phase, 20 healthy subjects were treated with indobufen 100 mg twice daily for 1 week followed after a 2-week washout by aspirin 100 mg once daily for 1 week. The primary outcome was arachidonic acid-induced platelet aggregation (PLAA), and the secondary outcomes included plasma thromboxane B2 (TXB2) and urinary 11-dehydro-TXB2 (11-dh-TXB2) levels at the end of each treatment. RESULTS: In the first phase, compared with aspirin 100 mg once daily: all aspirin groups had similar suppression of PLAA whereas indobufen group had significantly less suppressed PLAA. Aspirin given every second or third day, and indobufen produced less suppression of plasma TXB2. All treatment regimens produced similar inhibition of 11-dh-TXB2. In the second phase, compared with aspirin, indobufen produced less suppression of plasma TXB2 at 8 h and 12 h after the last dose. CONCLUSIONS Aspirin 50 mg twice daily, 75 mg once daily, and aspirin 50 mg once daily produce antiplatelet effects that are similar to aspirin 100 mg once daily. Aspirin given less often than once daily and indobufen 100 mg twice daily do not suppress platelets as effectively as aspirin 100 mg once daily.
Collapse
|
5
|
Gao D, Wu SN, Zhang CE, Li RS, Liu ZJ, Xiao XH, Li L, Wang JB, Zhang L, Niu M. Exploration in the mechanism of rhubarb for the treatment of hyperviscosity syndrome based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113078. [PMID: 32534118 DOI: 10.1016/j.jep.2020.113078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/15/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperviscosity syndrome (HVS) is a major risk factor for thrombotic diseases. Rhubarb, well-known as a traditional Chinese medicine, exhibits multiple pharmacological activities, especially for promoting blood circulation to remove blood stasis (PBRB), which has been become a functional health food for decreasing the risk of cardiovascular diseases. However, due to the complexity of rhubarb components, it is still difficult to clarify the specific targets of effective substances in PBRB, and the pharmacodynamic mechanism needs to be further probed. MATERIALS AND METHODS The "compound-target-cell-disease" network analysis was initially used to predict potential targets and bioactive compounds. The effect of rhubarb for the treatment of HVS was examined by histopathology and biochemical assays based on the HVS rat model. RESULTS Through the "compound-target-cell-disease" network analysis, eight potential therapeutic targets were eventually screened out, and platelets were predicted as the main effector cells of rhubarb in PBRB. Among targets coagulation factor II (prothrombin, F2) and fibrinogen gamma chain (FGG) were closely related to platelets, and five compounds associated with F2 and FGG were predicted including emodin-8-O-beta-D-glucopyranoside (Emo), physcion-8-O-beta-D-glucopyranoside (Phy), procyanidin B-5,3'-O-gallate, torachrysone-8-O-beta-D-(6'-oxayl)-glucoside and epicatechin. Furthermore, thoracic aorta histopathology and biochemical examinations showed middle dose of rhubarb (0.42 g/kg/day) significantly ameliorated pathological changes, hemorheology parameters, as well as levels of representative biomarkers such as plasma P-selectin (P-sel) and thromboxane (TXB2) in platelet activation compared to HVS rat model, whose effects were comparable to the positive drug aspirin or even better. Finally, it was further validated F2 and FGG as the major effective targets of rhubarb as well as its two active ingredients Emo and Phy in PBRB. CONCLUSIONS This study may provide an innovative way and scientific information to further understand the main effective components of rhubarb and its mechanisms about targets of F2 and FGG in PBRB, especially the new therapeutic target FGG, which also provide a basis for establishing a quality control for rhubarb by bioassays that could correlate the clinical efficacy and its mechanism.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China; Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Shan-Na Wu
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Cong-En Zhang
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, 100039, China.
| | - Zhen-Jie Liu
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Xiao-He Xiao
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| | - Jia-Bo Wang
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| |
Collapse
|