1
|
Li XL, Zhou J, Tang NXN, Chai Y, Zhou M, Gao AD, Lu ZK, Min H. Molecular Mechanisms of Synergistic Effect of PRIMA-1 met and Oxaliplatin in Colorectal Cancer With Different p53 Status. Cancer Med 2025; 14:e70530. [PMID: 39757707 DOI: 10.1002/cam4.70530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The toxicity and drug resistance associated with oxaliplatin (L-OHP) limit its long-term use for colorectal cancer (CRC) patients. p53 mutation is a common genetic trait of CRC. PRIMA-1met (APR-246, eprenetapopt) restores the DNA-binding capacity of different mutant P53 proteins. PRIMA-1met has progressed to the Phase III clinical trial. Our study explores the combination therapy of PRIMA-1met and L-OHP for CRC with different p53 status. METHODS Cell viability was assessed with Cell Counting Kit-8 (CCK-8) assay and combination index (CI) was calculated using The Chou-Talalay method. We also employed wound healing assay and colony formation assay to determine the effect of L-OHP, PRIMA-1met and their combination. Weighted gene co-expression network analysis (WGCNA) of RNA-seq data was conducted to identify key modules and central genes related to different treatment modalities. Xenograft CRC mouse model was used to assess the combination treatment in vivo. RESULTS Our findings showed heightened cytotoxicity and inhibition of migration, and colony formation in CRC cells treated with both drugs, irrespective of p53 status, presenting a promising avenue for addressing L-OHP resistance and toxicity. RNA-seq analysis revealed differential responses between p53-wide type HCT116 and p53-mutant DLD-1 cells, with pathway alterations implicated in tumorigenesis. WGCNA identified key modules and hub genes associated with combination therapy response. In vivo studies demonstrated enhanced efficacy of combined therapy over PRIMA-1met alone, while mitigating L-OHP-induced toxicity. CONCLUSIONS In summary, our research reveals the differential molecular mechanisms of combined PRIMA-1met and L-OHP in CRC with wild type p53 and mutant p53. Our data not only demonstrate that this combined regimen exerts synergistic anti-CRC effect in vitro and in vivo, but also suggest the benefit of PRIMA-1met on prevention of L-OHP-related side effects. These findings underscore the clinical potential of PRIMA-1met-L-OHP combination therapy in CRC, offering enhanced efficacy and reduced toxicity, warranting further clinical investigation.
Collapse
Affiliation(s)
- Xiao-Lan Li
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore
| | - Nicole Xin-Ning Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yi Chai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Meng Zhou
- Changzhou No. 4 People's Hospital, Changzhou City, Jiangsu Province, People's Republic of China
| | - Ai-di Gao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Zhong-Kai Lu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Han Min
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Papatsirou M, Kontos CK, Ntanasis‐Stathopoulos I, Malandrakis P, Theodorakakou F, Liacos C, Mavrianou‐Koutsoukou N, Fotiou D, Migkou M, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Scorilas A, Terpos E. ciRS-7 circular RNA overexpression in plasma cells is a promising molecular biomarker of unfavorable prognosis in multiple myeloma. EJHAEM 2024; 5:677-689. [PMID: 39157602 PMCID: PMC11327729 DOI: 10.1002/jha2.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 08/20/2024]
Abstract
Several non-coding RNAs are known to be associated with the pathobiology and progression of multiple myeloma (MM). ciRS-7 (also known as CDR1-AS), a key oncogenic circular RNA (circRNA) that sponges miR-7-5p and other cancer-related microRNAs, was recently found to be downregulated in malignant plasma cells resistant to immunomodulatory drugs. Considering that various circRNAs have a strong potential as molecular biomarkers, we aimed to investigate the expression of ciRS-7 in plasma cell disorders, assess its prognostic importance in MM, and compare these findings with those of individuals with smoldering MM (SMM) and monoclonal gammopathy of unknown significance (MGUS). This study included 171 patients (110 newly diagnosed MM, 34 SMM, and 27 MGUS cases), from which bone marrow aspirate samples were collected for CD138+ plasma cell selection. Total RNA was reversely transcribed using random hexamer primers, and the expression levels of ciRS-7 were quantified using an in-house-developed protocol that includes pre-amplification and real-time quantitative polymerase chain reaction. ciRS-7 levels were found to significantly differ among CD138+ plasma cells of MM, SMM, and MGUS patients. ROC analysis indicated that ciRS-7 expression effectively distinguishes between MM and SMM patients. Moreover, high levels of ciRS-7 were associated with unfavorable prognosis in MM, independently of MM patients' age and Revised International Staging System stage. Additionally, in silico analysis predicted the binding of 85 microRNAs to ciRS-7. In conclusion, this study provides novel insights into the role of ciRS-7 as a promising molecular marker able to distinguish MM from SMM and predict prognosis in MM.
Collapse
Affiliation(s)
- Maria Papatsirou
- Department of Biochemistry and Molecular BiologyFaculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular BiologyFaculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | | | - Panagiotis Malandrakis
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Foteini Theodorakakou
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Christine‐Ivy Liacos
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Nefeli Mavrianou‐Koutsoukou
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Despina Fotiou
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Magdalini Migkou
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Maria Gavriatopoulou
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Efstathios Kastritis
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Meletios A. Dimopoulos
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular BiologyFaculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Evangelos Terpos
- Department of Clinical TherapeuticsSchool of MedicineNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
3
|
Hlavca S, Chan WH, Engel RM, Abud HE. Clusterin: a marker and mediator of chemoresistance in colorectal cancer. Cancer Metastasis Rev 2024; 43:379-391. [PMID: 38319453 PMCID: PMC11015998 DOI: 10.1007/s10555-024-10173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treatment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the LGR5+ve CSC population is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert to a stem-like state in response to chemotherapy treatment which replenishes the LGR5+ve CSC population and maintains tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective target for therapeutic intervention.
Collapse
Affiliation(s)
- Sara Hlavca
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
| | - Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, 3800, Australia.
- Department of Surgery, Cabrini Monash University, Cabrini Hospital, Malvern, VIC, 3144, Australia.
| |
Collapse
|
4
|
Téllez T, Martin-García D, Redondo M, García-Aranda M. Clusterin Expression in Colorectal Carcinomas. Int J Mol Sci 2023; 24:14641. [PMID: 37834086 PMCID: PMC10572822 DOI: 10.3390/ijms241914641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Colorectal cancer is the third most diagnosed cancer, behind only breast and lung cancer. In terms of overall mortality, it ranks second due to, among other factors, problems with screening programs, which means that one of the factors that directly impacts survival and treatment success is early detection of the disease. Clusterin (CLU) is a molecular chaperone that has been linked to tumorigenesis, cancer progression and resistance to anticancer treatments, which has made it a promising drug target. However, it is still necessary to continue this line of research and to adjust the situations in which its use is more favorable. The aim of this paper is to review the current genetic knowledge on the role of CLU in tumorigenesis and cancer progression in general, and discuss its possible use as a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
5
|
Christodoulou S, Katsaraki K, Vassiliu P, Danias N, Michalopoulos N, Tzikos G, Sideris DC, Arkadopoulos N. High Intratumoral i-tRF-Gly GCC Expression Predicts Short-Term Relapse and Poor Overall Survival of Colorectal Cancer Patients, Independent of the TNM Stage. Biomedicines 2023; 11:1945. [PMID: 37509584 PMCID: PMC10377136 DOI: 10.3390/biomedicines11071945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC), one of the most prevalent types of cancer, requires the discovery of new tumor biomarkers for accurate patient prognosis. In this work, the prognostic value of the tRNA fragment i-tRF-GlyGCC in CRC was examined. Total RNA extraction from 211 CRC patient cancer tissue specimens and 83 adjacent normal tissues was conducted. Each RNA extract was subjected to in vitro polyadenylation and reverse transcription. A real-time quantitative PCR assay was used to quantify i-tRF-GlyGCC in all samples. Extensive biostatics analysis showed that i-tRF-GlyGCC levels in CRC tissues were significantly lower than in matched normal colorectal tissues. Additionally, the disease-free survival (DFS) and overall survival (OS) time intervals were considerably shorter in CRC patients with high i-tRF-GlyGCC expression. i-tRF-GlyGCC expression maintained its prognostic value independently of other established prognostic factors, as shown by the multivariate Cox regression analysis. Additionally, survival analysis after TNM stage stratification revealed that higher i-tRF-GlyGCC levels were linked to shorter DFS time intervals in patients with TNM stage II tumors, as well as an increased probability of having a worse OS for patients in TNM stage II. In conclusion, i-tRF-GlyGCC has the potential to be a useful molecular tissue biomarker in CRC, independent of other clinicopathological variables.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Michalopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tzikos
- Propaedeutic Department of Surgery, University General Hospital "AHEPA", Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
6
|
Christodoulou S, Sotiropoulou CD, Vassiliu P, Danias N, Arkadopoulos N, Sideris DC. MicroRNA-675-5p Overexpression Is an Independent Prognostic Molecular Biomarker of Short-Term Relapse and Poor Overall Survival in Colorectal Cancer. Int J Mol Sci 2023; 24:9990. [PMID: 37373137 DOI: 10.3390/ijms24129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the main cause of cancer-related deaths globally, highlighting the importance of accurate biomarkers for early detection and accurate prognosis. MicroRNAs (miRNAs) have emerged as effective cancer biomarkers. The aim of this study was to investigate the prognostic potential of miR-675-5p as a molecular prognostic biomarker in CRC. For this reason, a quantitative PCR assay was developed and applied to determine miR-675-5p expression in cDNAs from 218 primary CRC and 90 paired normal colorectal tissue samples. To assess the significance of miR-675-5p expression and its association with patient outcome, extensive biostatistical analysis was performed. miR-675-5p expression was found to be significantly downregulated in CRC tissue samples compared to that in adjacent normal colorectal tissues. Moreover, high miR-675-5p expression was associated with shorter disease-free (DFS) and overall survival (OS) in CRC patients, while it maintained its unfavorable prognostic value independently of other established prognostic factors. Furthermore, TNM stage stratification demonstrated that higher miR-675-5p levels were associated with shorter DFS and OS intervals, particularly in patients with CRC of TNM stage II or III. In conclusion, our findings suggest that miR-675-5p overexpression constitutes a promising molecular biomarker of unfavorable prognosis in CRC, independent of other established prognostic factors, including TNM staging.
Collapse
Affiliation(s)
- Spyridon Christodoulou
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panteleimon Vassiliu
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Danias
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, University General Hospital "Attikon", National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
7
|
A straightforward method to quantify circulating mRNAs as biomarkers of colorectal cancer. Sci Rep 2023; 13:2739. [PMID: 36792801 PMCID: PMC9932139 DOI: 10.1038/s41598-023-29948-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Optimizing the biomarker combination to be analyzed in liquid biopsies should improve personalized medicine. We developed a method to purify circulating cell-free mRNAs from plasma samples and to quantify them by RT-qPCR. We selected three candidate colorectal cancer biomarkers (B2M, TIMP-1, and CLU). Their mRNA levels were significantly higher in plasma of patients with metastatic colorectal cancer patients (mCRC) (n = 107) than in healthy individuals (HI) (n = 53). To increase the discriminating performance of our method, we analyzed the sum of the three mRNA levels (BTC index). The area under the ROC curve (AUC) to estimate the BTC index capacity to discriminate between mCRC and HI plasma was 0.903. We also determined the optimal BTC index cut-off to distinguish between plasma samples, with 82% of sensitivity and 93% of specificity. By using mRNA as a novel liquid biopsy analytical parameter, our method has the potential to facilitate rapid screening of CRCm.
Collapse
|
8
|
Evaluation of the Small Heat Shock Protein Family Members HSPB2 and HSPB3 in Bladder Cancer Prognosis and Progression. Int J Mol Sci 2023; 24:ijms24032609. [PMID: 36768927 PMCID: PMC9917356 DOI: 10.3390/ijms24032609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Bladder cancer (BlCa) represents the sixth most commonly diagnosed type of male malignancy. Due to the clinical heterogeneity of BlCa, novel markers would optimize treatment efficacy and improve prognosis. The small heat shock proteins (sHSP) family is one of the major groups of molecular chaperones responsible for the maintenance of proteome functionality and stability. However, the role of sHSPs in BlCa remains largely unknown. The present study aimed to examine the association between HSPB2 and HSPB3 expression and BlCa progression in patients, and to investigate their role in BlCa cells. For this purpose, a series of experiments including reverse transcription-quantitative PCR, Western blotting, MTT assay and flow cytometry were performed. Initial analyses revealed increased vs. human transitional carcinoma cells, expression levels of the HSPB2 and HSPB3 genes and proteins in high grade BlCa cell lines. Therefore, we then evaluated the clinical significance of the HSPB2 and HSPB3 genes expression levels in bladder tumor samples and matched adjusted normal bladder specimens. Total RNA from 100 bladder tumor samples and 49 paired non-cancerous bladder specimens were isolated, and an accurate SYBR-Green based real-time quantitative polymerase chain reaction (qPCR) protocol was developed to quantify HSPB2 and HSPB3 mRNA levels in the two cohorts of specimens. A significant downregulation of the HSPB2 and HSPB3 genes expression was observed in bladder tumors as compared to matched normal urothelium; yet, increased HSPB2 and HSPB3 levels were noted in muscle-invasive (T2-T4) vs. superficial tumors (TaT1), as well as in high-grade vs. low-grade tumors. Survival analyses highlighted the significantly higher risk for post-treatment disease relapse in TaT1 patients poorly expressing HSPB2 and HSPB3 genes; this effect tended to be inverted in advanced disease stages (muscle-invasive tumors) indicating the biphasic impact of HSPB2, HSPB3 genes in BlCa progression. The pro-survival role of HSPB2 and HSPB3 in advanced tumor cells was also evident by our finding that HSPB2, HSPB3 genes expression silencing in high grade BlCa cells enhanced doxorubicin toxicity. These findings indicate that the HSPB2, HSPB3 chaperone genes have a likely pro-survival role in advanced BlCa; thus, they can be targeted as novel molecular markers to optimize treatment efficacy in BlCa and to limit unnecessary interventions.
Collapse
|
9
|
Construction of a Colorectal Cancer Prognostic Risk Model and Screening of Prognostic Risk Genes Using Machine-Learning Algorithms. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9408839. [PMID: 36267311 PMCID: PMC9578894 DOI: 10.1155/2022/9408839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/09/2022]
Abstract
This study is aimed at constructing a prognostic risk model for colorectal cancer (CRC) using machine-learning algorithms to provide accurate staging and screening of credible prognostic risk genes. We extracted CRC data from GSE126092 and GSE156355 of the Gene Expression Omnibus (GEO) database and datasets from TCGA to analyze the differentially expressed genes (DEGs) using bioinformatics analysis. Among the 330 shared DEGs related to CRC prognosis, we divided the analysis period into different phases and applied univariate COX regression, LASSO, and multivariate COX regression analysis. GO analysis and KEGG analysis revealed that the functions of these DEGs were primarily focused on cell cycle, DNA replication, cell mitosis, and other related functions, and this confirmed our results from a biological perspective. Finally, a prognostic risk model for CRC based on the CHGA, CLU, PLK1, AXIN2, NR3C2, IL17RB, GCG, and AJUBA genes was constructed, and the risk score enabled us to predict the prognosis for CRC. To obtain a comprehensive and accurate model, we used both internal and external evaluations, and the model was able to correctly differentiate patients with CRC into a high-risk group with poor prognosis and a low-risk group with good prognosis. The AUC values of the 3-, 5-, and 10-year survival ROC curves were 0.715, 0.721, and 0.777, respectively, according to the internal evaluation, and the AUC values were 0.606, 0.698, and 0.608, respectively, for the external evaluation using GSE39582 from the GEO database. We determined that CLU, PLK1, and IL17RB could be considered to be independent prognostic factors for CRC with significantly different expression (P < 0.05). Using machine-learning methods, a prognostic risk model comprised of eight genes was constructed. Not only does this model provide improved treatment guidance, but it also provides a novel perspective for analyzing survival conditions at a deeper biological level.
Collapse
|
10
|
Chen H, Rong Z, Ge L, Yu H, Li C, Xu M, Zhang Z, Lv J, He Y, Li W, Chen L. Leader gene identification for digestive system cancers based on human subcellular location and cancer-related characteristics in protein-protein interaction networks. Front Genet 2022; 13:919210. [PMID: 36226184 PMCID: PMC9548996 DOI: 10.3389/fgene.2022.919210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stomach, liver, and colon cancers are the most common digestive system cancers leading to mortality. Cancer leader genes were identified in the current study as the genes that contribute to tumor initiation and could shed light on the molecular mechanisms in tumorigenesis. An integrated procedure was proposed to identify cancer leader genes based on subcellular location information and cancer-related characteristics considering the effects of nodes on their neighbors in human protein-protein interaction networks. A total of 69, 43, and 64 leader genes were identified for stomach, liver, and colon cancers, respectively. Furthermore, literature reviews and experimental data including protein expression levels and independent datasets from other databases all verified their association with corresponding cancer types. These final leader genes were expected to be used as diagnostic biomarkers and targets for new treatment strategies. The procedure for identifying cancer leader genes could be expanded to open up a window into the mechanisms, early diagnosis, and treatment of other cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Sklirou AD, Gianniou DD, Karousi P, Cheimonidi C, Papachristopoulou G, Kontos CK, Scorilas A, Trougakos IP. High mRNA Expression Levels of Heat Shock Protein Family B Member 2 (HSPB2) Are Associated with Breast Cancer Patients’ Relapse and Poor Survival. Int J Mol Sci 2022; 23:ijms23179758. [PMID: 36077156 PMCID: PMC9456243 DOI: 10.3390/ijms23179758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that contribute to the maintenance of proteome integrity and functionality. Recent evidence suggests that sHSPs are ubiquitously expressed in numerous types of tumors and have been proposed to be implicated in oncogenesis and malignant progression. Heat shock protein family B member 2 (HSPB2) is a member of the sHSPs, which is found to be expressed, among others, in human breast cancer cell lines and constitutes an inhibitor of apical caspase activation in the extrinsic apoptotic pathway. In this study, we investigated the potential prognostic significance of HSPB2 mRNA expression levels in breast cancer, which represents the most frequent malignancy in females and one of the three most common cancer types worldwide. To this end, malignant breast tumors along with paired non-cancerous breast tissue specimens were used. HSPB2 expression levels were quantified in these two cohorts using a sensitive and accurate SYBR green-based quantitative real-time polymerase chain reaction (q-RT-PCR). Extensive biostatistical analyses were performed including Kaplan–Meier and Cox regression survival analyses for the assessment of the results. The significant downregulation of HSPB2 gene expression was revealed in breast tumors compared to their adjacent non-cancerous breast tissues. Notably, high HSPB2 mRNA expression predicts poor disease-free survival and overall survival of breast cancer patients. Multivariate Cox regression analysis revealed that HSPB2 mRNA overexpression is a significant predictor of poor prognosis in breast cancer, independent of other clinicopathological factors. In conclusion, high HSPB2 mRNA expression levels are associated with breast cancer patients’ relapse and poor survival.
Collapse
Affiliation(s)
- Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Correspondence: (A.S.); (I.P.T.); Tel.: +30-210-727-4306 (A.S.); +30-210-727-4555 (I.P.T.)
| |
Collapse
|
12
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
13
|
Park JY, Park SH, Oh SW, Kwon K, Yu E, Choi S, Yang S, Han SB, Jung K, Song M, Cho JY, Lee J. Yellow Chaste Weed and Its Components, Apigenin and Galangin, Affect Proliferation and Oxidative Stress in Blue Light-Irradiated HaCaT Cells. Nutrients 2022; 14:nu14061217. [PMID: 35334874 PMCID: PMC8953766 DOI: 10.3390/nu14061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
While harmful effects of blue light on skin cells have been recently reported, there are few studies regarding natural products that alleviate its negative effects. Therefore, we investigated ameliorating effects of yellow chaste weed (YCW) (Helichrysum arenarium) extract and its components, apigenin and galangin, on blue light-irradiated HaCaT cells. In this study, we found that YCW extract improved the reduced proliferation of HaCaT cells induced by blue light-irradiation and reduced blue light-induced production of reactive oxygen species (ROS) levels. We also found that apigenin and galangin, the main components of YCW extract, showed the same activities as YCW extract. In experiments examining molecular mechanisms of YCW extract and its components such as apigenin and galangin, they all reduced expression of transient receptor potential vanilloid member 1 (TRPV1), its phosphorylation, and calcium ion (Ca2+) influx induced by blue light irradiation. In addition, apigenin and galangin regulated phosphorylation of mitogen-activated protein kinases (MAPKs). They also reduced phosphorylation of mammalian sterile 20-like kinase-1/2 (MST-1/2), inducing phosphorylation of Akt (protein kinase B), one downstream molecule of MST-1/2. Moreover, apigenin and galangin promoted translocation of Forkhead box O3 (FoxO3a) from the nucleus to the cytosol by phosphorylating FoxO3a. Besides, apigenin and galangin interrupted blue light influences on expression of nuclear and secretory clusterin. Namely, they attenuated both upregulation of nuclear clusterin and downregulation of secretory clusterin induced by blue light irradiation. We also found that they downregulated apoptotic protein Bcl-2 associated X protein (Bax) and conversely upregulated anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). Collectively, these findings indicate that YCW extract and its components, apigenin and galangin, antagonize the blue light-induced damage to the keratinocytes by regulating TRPV1/clusterin/FoxO3a and MAPK signaling.
Collapse
Affiliation(s)
- Jung Yoen Park
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong City 30016, Korea;
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Seoyoun Yang
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Su Bin Han
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
| | - Kwangsun Jung
- Biocosmetics Laboratory, TOUN28 Inc., Seongnam 13449, Korea;
| | - Minkyung Song
- Integrative Research of T Cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City 16419, Korea; (J.Y.P.); (S.W.O.); (K.K.); (E.Y.); (S.C.); (S.Y.); (S.B.H.)
- Correspondence: (M.S.); (J.Y.C.); (J.L.); Tel.: +82-31-290-7861 (J.L.)
| |
Collapse
|
14
|
Hammad A, Elshaer M, Tang X. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:8997-9015. [PMID: 34814332 DOI: 10.3934/mbe.2021443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Biomarker discovery is critical to improve CRC diagnosis, however, machine learning offers a new platform to study the etiology of CRC for this purpose. Therefore, the current study aimed to perform an integrated bioinformatics and machine learning analyses to explore novel biomarkers for CRC prognosis. In this study, we acquired gene expression microarray data from Gene Expression Omnibus (GEO) database. The microarray expressions GSE103512 dataset was downloaded and integrated. Subsequently, differentially expressed genes (DEGs) were identified and functionally analyzed via Gene Ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG). Furthermore, protein protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape software to identify hub genes; however, the hub genes were subjected to Support Vector Machine (SVM), Receiver operating characteristic curve (ROC) and survival analyses to explore their diagnostic values. Meanwhile, TCGA transcriptomics data in Gene Expression Profiling Interactive Analysis (GEPIA) database and the pathology data presented by in the human protein atlas (HPA) database were used to verify our transcriptomic analyses. A total of 105 DEGs were identified in this study. Functional enrichment analysis showed that these genes were significantly enriched in biological processes related to cancer progression. Thereafter, PPI network explored a total of 10 significant hub genes. The ROC curve was used to predict the potential application of biomarkers in CRC diagnosis, with an area under ROC curve (AUC) of these genes exceeding 0.92 suggesting that this risk classifier can discriminate between CRC patients and normal controls. Moreover, the prognostic values of these hub genes were confirmed by survival analyses using different CRC patient cohorts. Our results demonstrated that these 10 differentially expressed hub genes could be used as potential biomarkers for CRC diagnosis.
Collapse
Affiliation(s)
- Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
15
|
A Molecular Signature of Circulating MicroRNA Can Predict Osteolytic Bone Disease in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153877. [PMID: 34359778 PMCID: PMC8345491 DOI: 10.3390/cancers13153877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Multiple myeloma bone disease (MMBD) is one of the most important complications of multiple myeloma with a great impact on quality of life. Recent advances in the field of imaging techniques provided clinicians with a variety of imaging modalities with high sensitivity for the diagnosis of MMBD. However, no circulating biomarkers are available to support the diagnosis of MMBD in cases where the results are inconclusive. The aim of our study was to investigate the clinical utility of 19 miRNAs implicated in osteoporosis in MMBD. Our results suggest that the levels of circulating let-7b-5p, miR-143-3p, miR-17-5p, miR-335-5p, and miR-214-3p (standalone or combined in multi-miRNA models) can effectively predict the presence of MMBD in newly diagnosed MM patients. Abstract Background: Multiple myeloma bone disease (MMBD) constitutes a common and severe complication of multiple myeloma (MM), impacting the quality of life and survival. We evaluated the clinical value of a panel of 19 miRNAs associated with osteoporosis in MMBD. Methods: miRNAs were isolated from the plasma of 62 newly diagnosed MM patients with or without MMBD. First-strand cDNA was synthesized, and relative quantification was performed using qPCR. Lastly, we carried out extensive biostatistical analysis. Results: Circulating levels of let-7b-5p, miR-143-3p, miR-17-5p, miR-214-3p, and miR-335-5p were significantly higher in the blood plasma of MM patients with MMBD compared to those without. Receiver operating characteristic curve and logistic regression analyses showed that these miRNAs could accurately predict MMBD. Furthermore, a standalone multi-miRNA–based logistic regression model exhibited the best predictive potential regarding MMBD. Two of those miRNAs also have a prognostic role in MM since survival analysis indicated that lower circulating levels of both let-7b-5p and miR-335-5p were associated with significantly worse progression-free survival, independently of the established prognostic factors. Conclusions: Our study proposes a miRNA signature to facilitate MMBD diagnosis, especially in ambiguous cases. Moreover, we provide evidence of the prognostic role of let-7b-5p and miR-335-5p as non-invasive prognostic biomarkers in MM.
Collapse
|
16
|
Tan J, Guo W, Yang S, Han D, Li H. The multiple roles and therapeutic potential of clusterin in non-small-cell lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2683-2697. [PMID: 34295670 PMCID: PMC8264340 DOI: 10.21037/tlcr-20-1298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Worldwide, lung cancer is the most common form of cancer, with an estimated 2.09 million new cases and 1.76 million of death cause in 2018. It is categorized into two subtypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Although platinum-based chemotherapy or molecular targeted drugs is recommended for advanced stages of NSCLC patients, however, resistance to drug and chemotherapy are hindrances for patients to fully beneficial from these treatments. Clusterin (CLU), also known as apolipoprotein J, is a versatile chaperone molecule which produced by a wide array of tissues and found in most biologic fluids. There are studies reported high expression of CLU confers resistance to chemotherapy and radiotherapy in different lung cancer cell lines. By silencing CLU using Custirsen (OGX-011), a second-generation antisense oligonucleotide (ASO) that inhibits CLU production, not only could sensitized cells to chemo- and radiotherapy, also could decreased their metastatic potential. We will review here the extensive literature linking CLU to NSCLC, update the current state of research on CLU for better understanding of this unique protein and the development of more effective anti- CLU treatment.
Collapse
Affiliation(s)
- Juofang Tan
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingpei Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Sun J, Zhu X, Zhao Y, Zhou Q, Qi R, Liu H. CHN1 is a Novel Prognostic Marker for Diffuse Large B-Cell Lymphoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:397-408. [PMID: 33833551 PMCID: PMC8021264 DOI: 10.2147/pgpm.s301718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Purpose Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy. Thirty to forty percent of DLBCL patients still experience relapse or develop refractory disease even with standard immunochemotherapy, leading to a poor prognosis. Currently, although several gene-based classification methods can be used to predict the prognosis of DLBCL, some patients are still unable to be classified. This study was performed to identify a novel prognostic biomarker for DLBCL. Patients and Methods A total of 1850 B-cell non-Hodgkin lymphoma (B-NHL) patients in 8 independent datasets with microarray gene expression profiles were retrieved from the Gene Expression Omnibus (GEO) database and Lymphoma/Leukemia Molecular Profiling Project (LLMPP). The candidate genes were selected through three filters in a strict pipeline. Survival analysis was performed in two independent datasets of patients with both gene expression data and clinical information. Gene set enrichment analysis (GSEA) and the CIBERSORT algorithm were used to explore the biological functions of the genes. Results We identified 6 candidate genes associated with the clinical outcome of DLBCL patients: CHN1, CD3D, CLU, ICOS, KLRB1 and LAT. Unlike the other five genes, CHN1 has not been previously reported to be implicated in lymphoma. We also observed that CHN1 had prognostic significance in important clinical subgroups; in particular, high CHN1 expression was significantly related to good outcomes in DLBCL patients with the germinal center B-cell-like (GCB) subtype, stage III–IV, or an International Prognostic Index (IPI) score > 2. Multivariate Cox regression analysis of the two datasets showed that CHN1 was an independent prognostic factor for DLBCL. Additionally, GSEA and CIBERSORT indicated that CHN1 was correlated with cell adhesion and T cell immune infiltration. Conclusion Our data indicate for the first time that high CHN1 expression is associated with favorable outcomes in DLBCL patients, suggesting its potential utility as a prognostic marker in DLBCL.
Collapse
Affiliation(s)
- Jie Sun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruomei Qi
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 2021; 134:111174. [DOI: 10.1016/j.biopha.2020.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
|
19
|
Praharaj PP, Patra S, Panigrahi DP, Patra SK, Bhutia SK. Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188500. [PMID: 33385484 DOI: 10.1016/j.bbcan.2020.188500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
20
|
Genomics and prognosis analysis of epithelial-mesenchymal transition in colorectal cancer patients. BMC Cancer 2020; 20:1135. [PMID: 33228590 PMCID: PMC7686680 DOI: 10.1186/s12885-020-07615-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background The epithelial-mesenchymal transition (EMT) plays a pivotal role in various physiological processes, such as embryonic development, tissue morphogenesis, and wound healing. EMT also plays an important role in cancer invasion, metastasis, and chemoresistance. Additionally, EMT is partially responsible for chemoresistance in colorectal cancer (CRC). The aim of this research is to develop an EMT-based prognostic signature in CRC. Methods RNA-seq and microarray data, together with clinical information, were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. A total of 244 differentially expressed EMT-related genes (ERGs) were obtained by comparing the expression between normal and tumor tissues. An EMT-related signature of 11 genes was identified as crucially related to the overall survival (OS) of patients through univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and Cox regression analysis. Finally, we established a clinical nomogram to predict the survival possibility of CRC patients by integrating clinical characteristics and the EMT-related gene signature. Results Two hundred and forty-four differentially expressed ERGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that EMT-related signaling pathway genes were highly related to CRC. Kaplan-Meier analysis revealed that the 11-EMT signature could significantly distinguish high- and low-risk patients in both TCGA and GEO CRC cohorts. In addition, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. Conclusion We developed a novel EMT-related gene signature for the prognosis prediction of CRC patients, which could improve the individualized outcome prediction in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07615-5.
Collapse
|
21
|
Identification of Two Novel Circular RNAs Deriving from BCL2L12 and Investigation of Their Potential Value as a Molecular Signature in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21228867. [PMID: 33238574 PMCID: PMC7709015 DOI: 10.3390/ijms21228867] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The utility of circular RNAs (circRNAs) as molecular biomarkers has recently emerged. However, only a handful of them have already been studied in colorectal cancer (CRC). The purpose of this study was to identify new circRNAs deriving from BCL2L12, a member of the BCL2 apoptosis-related family, and investigate their potential as biomarkers in CRC. Total RNA extracts from CRC cell lines and tissue samples were reversely transcribed. By combining PCR with divergent primers and nested PCR followed by Sanger sequencing, we were able to discover two BCL2L12 circRNAs. Subsequently, bioinformatical tools were used to predict the interactions of these circRNAs with microRNAs (miRNAs) and RNA-binding proteins (RBPs). Following a PCR-based pre-amplification, real-time qPCR was carried out for the quantification of each circRNA in CRC samples and cell lines. Biostatistical analysis was used to assess their potential prognostic value in CRC. Both novel BCL2L12 circRNAs likely interact with particular miRNAs and RBPs. Interestingly, circ-BCL2L12-2 expression is inversely associated with TNM stage, while circ-BCL2L12-1 overexpression is associated with shorter overall survival in CRC, particularly among TNM stage II patients. Overall, we identified two novel BCL2L12 circRNAs, one of which can further stratify TNM stage II patients into two subgroups with substantially distinct prognosis.
Collapse
|
22
|
Pantazis TL, Giotakis AI, Karamagkiolas S, Giotakis I, Konstantoulakis M, Liakea A, Misiakos EP. Low expression of miR-20b-5p indicates favorable prognosis in laryngeal squamous cell carcinoma, especially in patients with non-infiltrated regional lymph nodes. Am J Otolaryngol 2020; 41:102563. [PMID: 32521298 DOI: 10.1016/j.amjoto.2020.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor recurrence and distant metastasis are very common in laryngeal squamous cell carcinoma (LSCC). In this study, we examined the potential prognostic value of microRNA-20b-5p (miR-20b-5p), a component of the tumor-related miR-106a/363 cluster. MATERIALS AND METHODS Total RNA was purified from 105 tissue specimens resected from patients having undergone surgical treatment for primary LSCC. After in vitro polyadenylation and reverse transcription, a sensitive real-time quantitative polymerase chain reaction (qPCR) methodology was applied for the relative quantification of miR-20b-5p levels. Then, we proceeded with biostatistical analysis, seeking to assess the prognostic value of miR-20b-5p expression in LSCC. RESULTS miR-20b-5p positivity constitutes a predictor of inferior DFS and OS in LSCC (P < 0.001 and P = 0.002, respectively). The significant prognostic value of miR-20b-5p expression status seems to be independent of tumor size, histological grade, and TNM stage, as revealed by the multivariate bootstrap Cox regression analysis. Kaplan-Meier survival analysis showed also that miR-20b-5p expression status can stratify LSCC patients with non-infiltrated regional lymph nodes (N0) into two subgroups with distinct prognosis (P = 0.004 and P = 0.004, respectively). CONCLUSIONS The miR-20b-5p expression status is a promising molecular tissue biomarker in LSCC, with an independent prognostic value, and thus merits further validation in larger cohorts of patients.
Collapse
Affiliation(s)
- Theodwros-Leonidas Pantazis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Aris I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Konstantoulakis
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aliki Liakea
- First Department of Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Evangelos P Misiakos
- Third Department of Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Karousi P, Adamopoulos PG, Papageorgiou SG, Pappa V, Scorilas A, Kontos CK. A novel, mitochondrial, internal tRNA-derived RNA fragment possesses clinical utility as a molecular prognostic biomarker in chronic lymphocytic leukemia. Clin Biochem 2020; 85:20-26. [PMID: 32745483 DOI: 10.1016/j.clinbiochem.2020.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults. The prognosis of CLL patients varies considerably. Transfer RNA-derived RNA fragments (tRFs) constitute a class of small non-coding RNA fragments excised from mature tRNAs and pre-tRNAs located in nuclei as well as in mitochondria. In this study, the clinical utility of i-tRF-PheGAA, a novel mitochondrial tRF, was investigated in CLL. DESIGN AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 91 CLL patients and 43 non-leukemic controls. Total RNA was isolated from each sample, polyadenylated at the 3' end and reversely transcribed. An in-house developed real-time quantitative PCR assay was developed and applied, and the results were biostatistically analyzed. For the normalization of the i-tRF-PheGAA expression levels, the expression of a small nucleolar RNA (RNU48) was used as reference. RESULTS Mann-Whitney U test showed that i-tRF-PheGAA can distinguish between CLL samples and normal controls (p < 0.001). As determined by Kaplan-Meier survival analysis, overexpression of i-tRF-PheGAA was related to poor overall survival of the CLL patients (p < 0.001). Univariate bootstrap Cox regression analysis exhibited a higher hazard ratio of 7.95 (95% CI = 2.37-26.72, p < 0.001) for patients with positive i-tRF-PheGAA expression status. Multivariate bootstrap Cox regression analysis showed that the prognostic value of this tRF is independent of clinical stage, mutational status of the immunoglobulin heavy chain variable (IGHV) genetic locus, and CD38 expression status (p = 0.010). CONCLUSIONS Our results show that i-tRF-PheGAA can serve as a molecular biomarker of poor prognosis in CLL, alongside with the existing factors for CLL prognosis.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15701, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15701, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, GR 12462 Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital "Attikon", 1 Rimini St., Haidari, GR 12462 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15701, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens GR-15701, Greece.
| |
Collapse
|
24
|
Wang J, Yu S, Chen G, Kang M, Jin X, Huang Y, Lin L, Wu D, Wang L, Chen J. A novel prognostic signature of immune-related genes for patients with colorectal cancer. J Cell Mol Med 2020; 24:8491-8504. [PMID: 32564470 PMCID: PMC7412433 DOI: 10.1111/jcmm.15443] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with an estimated 1.8 million new cases worldwide and associated with high mortality rates of 881 000 CRC-related deaths in 2018. Screening programs and new therapies have only marginally improved the survival of CRC patients. Immune-related genes (IRGs) have attracted attention in recent years as therapeutic targets. The aim of this study was to identify an immune-related prognostic signature for CRC. To this end, we combined gene expression and clinical data from the CRC data sets of The Cancer Genome Atlas (TCGA) into an integrated immune landscape profile. We identified a total of 476 IRGs that were differentially expressed in CRC vs normal tissues, of which 18 were survival related according to univariate Cox analysis. Stepwise multivariate Cox proportional hazards analysis established an immune-related prognostic signature consisting of SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC. The predictive ability of this signature for 3- and 5-year overall survival was determined using receiver operating characteristics (ROC), and the respective areas under the curve (AUC) were 79.2% and 76.6%. The signature showed moderate predictive accuracy in the validation and GSE38832 data sets as well. Furthermore, the 8-IRG signature correlated significantly with tumour stage, invasion, lymph node metastasis and distant metastasis by univariate Cox analysis, and was established an independent prognostic factor by multivariate Cox regression analysis for CRC. Gene set enrichment analysis (GSEA) revealed a relationship between the IRG prognostic signature and various biological pathways. Focal adhesions and ECM-receptor interactions were positively correlated with the risk scores, while cytosolic DNA sensing and metabolism-related pathways were negatively correlated. Finally, the bioinformatics results were validated by real-time RT-qPCR. In conclusion, we identified and validated a novel, immune-related prognostic signature for patients with CRC, and this signature reflects the dysregulated tumour immune microenvironment and has a potential for better CRC patient management.
Collapse
Affiliation(s)
- Jun Wang
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shaojun Yu
- Department of Surgical Oncologythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guofeng Chen
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Muxing Kang
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoli Jin
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yi Huang
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lele Lin
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Dan Wu
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lie Wang
- Bone Marrow Transplantation Center of the First Affiliated HospitalInstitute of ImmunologyZhejiang University School of MedicineHangzhouChina
| | - Jian Chen
- Department of Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|