1
|
Mandlekar S, Sutaria DS, Yang X, Johnson R, Zou Y, Dean B, Chen L, Sane R, Williams K, Cardenas A, Simon M, Fischer S. Evaluation of Patient-Centric Sample Collection Technologies for Pharmacokinetic Assessment of Large and Small Molecules. Clin Pharmacol Ther 2024; 116:782-794. [PMID: 38671563 DOI: 10.1002/cpt.3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024]
Abstract
Low-volume sampling devices offer the promise of lower discomfort and greater convenience for patients, potentially reducing patient burden and enabling decentralized clinical trials. In this study, we determined whether low-volume sampling devices produce pharmacokinetic (PK) data comparable to conventional venipuncture for a diverse set of monoclonal antibodies (mAbs) and small molecules. We adopted an open-label, non-randomized, parallel-group, single-site study design, with four cohorts of 10 healthy subjects per arm. The study drugs, doses, and routes of administration included: crenezumab (15 mg/kg, intravenous infusion), etrolizumab (210 mg, subcutaneous), GDC-X (oral), and hydroxychloroquine (HCQ, 200 mg, oral). Samples were collected after administration of a single dose of each drug using conventional venipuncture and three low-volume capillary devices: TassoOne Plus for liquid blood, Tasso-M20 for dry blood, both applied to the arm, and Neoteryx Mitra® for dry blood obtained from fingertips. Serum/plasma concentrations from venipuncture and TassoOne Plus samples overlapped and PK parameters were comparable for all drugs, except HCQ. After applying a baseline hematocrit value, the dry blood concentrations and PK parameters for the two monoclonal antibodies were comparable to those obtained from venipuncture. For the two small molecules, two bridging strategies were evaluated for converting dry blood concentrations to equivalent plasma concentrations. A baseline hematocrit correction and/or linear regression-based correction was effective for GDC-X, but not for HCQ. Additionally, the study evaluated the bioanalytical data quality and comparability from the various collection methods, as well as patient preference for the devices.
Collapse
Affiliation(s)
| | | | - Xiaoyun Yang
- Genentech, Inc., South San Francisco, California, USA
| | - Ryan Johnson
- Genentech, Inc., South San Francisco, California, USA
| | - Yixuan Zou
- Genentech, Inc., South San Francisco, California, USA
| | - Brian Dean
- Genentech, Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Genentech, Inc., South San Francisco, California, USA
| | - Rucha Sane
- Genentech, Inc., South San Francisco, California, USA
| | | | | | - Mary Simon
- Genentech, Inc., South San Francisco, California, USA
| | | |
Collapse
|
2
|
Couacault P, Avella D, Londoño‐Osorio S, Lorenzo AS, Gradillas A, Kärkkäinen O, Want E, Witting M. Targeted and untargeted metabolomics and lipidomics in dried blood microsampling: Recent applications and perspectives. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400002. [PMID: 38948320 PMCID: PMC11210747 DOI: 10.1002/ansa.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
Blood microsampling (BµS) offers an alternative to conventional methods that use plasma or serum for profiling human health, being minimally invasive and cost effective, especially beneficial for vulnerable populations. We present a non-systematic review that offers a synopsis of the analytical methods, applications and perspectives related to dry blood microsampling in targeted and untargeted metabolomics and lipidomics research in the years 2022 and 2023. BµS shows potential in neonatal and paediatric studies, therapeutic drug monitoring, metabolite screening, biomarker research, sports supervision, clinical disorders studies and forensic toxicology. Notably, dried blood spots and volumetric absorptive microsampling options have been more extensively studied than other volumetric technologies. Therefore, we suggest that a further investigation and application of the volumetric technologies will contribute to the use of BµS as an alternative to conventional methods. Conversely, we support the idea that harmonisation of the analytical methods when using BµS would have a positive impact on its implementation.
Collapse
Affiliation(s)
- Pauline Couacault
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
| | - Dennisse Avella
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Londoño‐Osorio
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Ana S. Lorenzo
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesUrbanización MontepríncipeBoadilla del MonteMadridSpain
| | - Olli Kärkkäinen
- Afekta Technologies Ltd.KuopioFinland
- School of PharmacyFaculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elizabeth Want
- Department of MetabolismDigestion and ReproductionImperial College LondonLondonUK
| | - Michael Witting
- Metabolomics and Proteomics CoreHelmholtz Zentrum MünchenNeuherbergGermany
- Chair of Analytical Food ChemistryTUM School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
3
|
Lamond MK, Chetwynd AJ, Salama AD, Oni L. A Systematic Literature Review on the Use of Dried Biofluid Microsampling in Patients With Kidney Disease. J Clin Lab Anal 2024; 38:e25032. [PMID: 38525922 PMCID: PMC11033336 DOI: 10.1002/jcla.25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/19/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Kidney disease is fairly unique due to the lack of symptoms associated with disease activity, and it is therefore dependent on biological monitoring. Dried biofluids, particularly dried capillary blood spots, are an accessible, easy-to-use technology that have seen increased utility in basic science research over the past decade. However, their use is yet to reach the kidney patient population clinically or in large-scale discovery science initiatives. The aim of this study was to systematically evaluate the existing literature surrounding the use of dried biofluids in kidney research. METHODS A systematic literature review was conducted using three search engines and a predefined search term strategy. Results were summarised according to the collection method, type of biofluid, application to kidney disease, cost, sample stability and patient acceptability. RESULTS In total, 404 studies were identified and 67 were eligible. In total, 34,739 patients were recruited to these studies with a skew towards male participants (> 73%). The majority of samples were blood, which was used either for monitoring anti-rejection immunosuppressive drug concentrations or for kidney function. Dried biofluids offered significant cost savings to the patient and healthcare service. The majority of patients preferred home microsampling when compared to conventional monitoring. CONCLUSION There is an unmet need in bringing dried microsampling technology to advance kidney disease despite its advantages. This technology provides an opportunity to upscale patient recruitment and longitudinal sampling, enhance vein preservation and overcome participation bias in research.
Collapse
Affiliation(s)
- Megan K. Lamond
- Department of Women's and Children's Health, Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Andrew J. Chetwynd
- Department of Women's and Children's Health, Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
- Department of Biochemistry and Systems Biology, Centre for Proteome Research, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Alan D. Salama
- Department of Renal MedicineUniversity College LondonLondonUK
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical SciencesUniversity of LiverpoolLiverpoolUK
- Department of Paediatric NephrologyAlder Hey Children's NHS Foundation Trust HospitalLiverpoolUK
| |
Collapse
|
4
|
de Sá e Silva DM, Thaitumu M, Theodoridis G, Witting M, Gika H. Volumetric Absorptive Microsampling in the Analysis of Endogenous Metabolites. Metabolites 2023; 13:1038. [PMID: 37887363 PMCID: PMC10609074 DOI: 10.3390/metabo13101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Volumetric absorptive microsampling (VAMS) has arisen as a relevant tool in biological analysis, offering simplified sampling procedures and enhanced stability. Most of the attention VAMS has received in the past decade has been from pharmaceutical research, with most of the published work employing VAMS targeting drugs or other exogenous compounds, such as toxins and pollutants. However, biomarker analysis by employing blood microsampling has high promise. Herein, a comprehensive review on the applicability of VAMS devices for the analysis of endogenous metabolites/biomarkers was performed. The study presents a full overview of the analysis process, incorporating all the steps in sample treatment and validation parameters. Overall, VAMS devices have proven to be reliable tools for the analysis of endogenous analytes with biological importance, often offering improved analyte stability in comparison with blood under ambient conditions as well as a convenient and straightforward sample acquisition model.
Collapse
Affiliation(s)
- Daniel Marques de Sá e Silva
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Marlene Thaitumu
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece (G.T.)
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 6, 85354 Freising, Germany
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 57001 Thessaloniki, Greece;
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Müller IR, Linden G, Charão MF, Antunes MV, Linden R. Dried blood spot sampling for therapeutic drug monitoring: challenges and opportunities. Expert Rev Clin Pharmacol 2023; 16:691-701. [PMID: 37300458 DOI: 10.1080/17512433.2023.2224562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The use of dried blood spots (DBS) has gained interest in the field of therapeutic drug monitoring (TDM) due to its potential advantages, such as minimally invasive capillary blood collection, potential stabilization of drugs and metabolites at room or high temperatures, and lower biohazard, allowing for inexpensive storage and transportation. However, there are several drawbacks to the clinical use of DBS in TDM, mostly related to hematocrit (Hct) effects, differences between venous and capillary blood concentrations, among others, that must be evaluated during analytical and clinical method validation. AREA COVERED This review focuses on the most recent publications on the applications of DBS sampling for TDM (2016-2022), with a special focus on the challenges presented by this alternative sampling strategy, as well as the opportunities for clinical applications. Real-life studies presenting clinical applications were reviewed. EXPERT OPINION With the availability of method development and validation guidelines for DBS-based methods in TDM, higher levels of assay validation standardization have been achieved, expanding the clinical applications of DBS sampling in patient care. New sampling devices that overcome the limitations of classical DBS, such as the Hct effects, will further encourage the use of DBS in routine TDM.
Collapse
Affiliation(s)
| | - Gabriel Linden
- Laboratory of Analytical Toxicology, Universidade Feevale, Novo Hamburgo, Brazil
| | | | | | - Rafael Linden
- Laboratory of Analytical Toxicology, Universidade Feevale, Novo Hamburgo, Brazil
| |
Collapse
|
6
|
Thangavelu MU, Wouters B, Kindt A, Reiss IKM, Hankemeier T. Blood microsampling technologies: Innovations and applications in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:154-180. [PMID: 38716066 PMCID: PMC10989553 DOI: 10.1002/ansa.202300011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2024]
Abstract
With the development of highly sensitive bioanalytical techniques, the volume of samples necessary for accurate analysis has reduced. Microsampling, the process of obtaining small amounts of blood, has thus gained popularity as it offers minimal-invasiveness, reduced logistical costs and biohazard risks while simultaneously showing increased sample stability and a potential for the decentralization of the approach and at-home self-sampling. Although the benefits of microsampling have been recognised, its adoption in clinical practice has been slow. Several microsampling technologies and devices are currently available and employed in research studies for various biomedical applications. This review provides an overview of the state-of-the-art in microsampling technology with a focus on the latest developments and advancements in the field of microsampling. Research published in the year 2022, including studies (i) developing strategies for the quantitation of analytes in microsamples and (ii) bridging and comparing the interchangeability between matrices and choice of technology for a given application, is reviewed to assess the advantages, challenges and limitations of the current state of microsampling. Successful implementation of microsampling in routine clinical care requires continued efforts for standardization and harmonization. Microsampling has been shown to facilitate data-rich studies and a patient-centric approach to healthcare and is foreseen to play a central role in the future digital revolution of healthcare through continuous monitoring to improve the quality of life.
Collapse
Affiliation(s)
| | - Bert Wouters
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| | - Alida Kindt
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| | - Irwin K. M. Reiss
- Department of Neonatal and Pediatric Intensive CareDivision of NeonatologyErasmus MCRotterdamThe Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics CentreLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
7
|
Deprez S, Heughebaert L, Boffel L, Stove CP. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Talanta 2023; 254:124111. [PMID: 36462285 DOI: 10.1016/j.talanta.2022.124111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fully automated dried blood spot (DBS) analysis for therapeutic drug monitoring (TDM) of the immunosuppressants tacrolimus, sirolimus, everolimus and cyclosporin A suffers from a so-called hematocrit (hct) effect. This effect is related to the analysis of a partial DBS punch and extractability differences imposed by blood with different hcts. As this is intrinsic to automated DBS analysis, this poses a serious drawback for accurate immunosuppressant quantification. Knowledge of a sample's hct allows to correct the derived immunosuppressant concentrations for this effect. Unfortunately, when using the DBS approach for sampling at patients' homes, this hct will typically not be available. The aim of this study was to investigate the validity of a correction algorithm during fully automated DBS analysis of immunosuppressants, based on knowledge of the DBS' hct, obtained via two distinct non-contact hematocrit prediction strategies, using either near-infrared (NIR) or ultra-violet/visible (UV/VIS) spectroscopy. For tacrolimus, sirolimus, everolimus, and cyclosporin A, 48, 47, 58 and 48 paired venous whole blood and venous DBS patient samples were collected, respectively, and analyzed using an automated DBS-MS 500 HCT extraction unit coupled to a liquid chromatography tandem mass spectrometry system. Additionally, for all 201 samples the hct of the DBS was predicted based on NIR and UV/VIS spectroscopy. For tacrolimus and cyclosporin A, both hct prediction strategies allowed for adequate correction of the hct effect. Also for sirolimus and everolimus the results greatly improved after hct correction, although a hct bias remained for sirolimus and for everolimus a slightly significant hct effect was observed after NIR- and UV/VIS-based correction. Application of both hct prediction strategies ensured that clinical acceptance limits (i.e. ≥ 80% of the samples within 20% difference compared to whole blood) were met for all analytes. In conclusion, we demonstrated that non-contact hct prediction strategies, applied in tandem with fully automated DBS analysis, can be used to adequately correct immunosuppressant concentrations, yielding a good agreement with whole blood.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Liesl Heughebaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laura Boffel
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Gao L, Smith N, Kaushik D, Milner S, Kong R. Validation and application of volumetric absorptive microsampling (VAMS) dried blood method for phenylalanine measurement in patients with phenylketonuria. Clin Biochem 2023; 116:65-74. [PMID: 37001750 DOI: 10.1016/j.clinbiochem.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Frequent blood phenylalanine (Phe) measurement is required for phenylketonuria (PKU) patients for diagnosis and disease status monitoring. Though various methods are available for blood Phe measurement, there is a lack of validated quantitative methods for measuring Phe with less than 15% variability. A method to allow at home blood sample collection for the PKU community is in high demand. METHODS A volumetric absorptive microsampling (VAMS) dried blood collection high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and fully validated for blood Phe measurement in compliance with regulatory guidances. The method accuracy, precision, stability, selectivity, matrix and hematocrit effects were assessed. A venous plasma collection HPLC-MS/MS method was developed and validated as a reference method. 311 matching VAMS and plasma samples were collected from 24 PKU subjects in a Phase 2 clinical study. Phe measurements using the two methods were compared. RESULTS Both VAMS and the plasma sample collection methods met the acceptance criteria for Good Laboratory Practice (GLP) bioanalytical analysis. Comparisons showed a high Pearson's correlation of 0.9813. The Passing-Bablok analysis showed that the difference was estimated to be less than 5% and Bland Altman analysis indicated that the difference was proportional with Phe concentration and for the majority of samples (88.85%) the measurement was within ±20% difference. Following 7 days treatment with 60 or 20 mg/kg/day PTC923 (Sepiapterin) or 20 mg/kg/day sapropterin, PKU patients exhibited respectively -206.4, -146.9, and -91.5 µmol/L reductions of blood Phe as measured by the VAMS method. CONCLUSIONS Concordant results were obtained using VAMS and plasma methods, which demonstrated that VAMS is a reliable method for clinical applications to monitor blood Phe for PKU patients.
Collapse
|
9
|
Deprez S, Van Uytfanghe K, Stove CP. Liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of immunosuppressants and creatinine from a single dried blood spot using the Capitainer® qDBS device. Anal Chim Acta 2023; 1242:340797. [PMID: 36657891 DOI: 10.1016/j.aca.2023.340797] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
In recent years, a lot of attention has been given to a more patient-centric therapeutic drug monitoring (TDM) of immunosuppressant drugs (tacrolimus, sirolimus, everolimus and cyclosporin A) by the use of microsampling techniques. By adopting Dried Blood Spots (DBS) after a finger prick, instead of conventional venous blood draws, follow-up can (partially) be established from patients' homes. Despite the many advantages of DBS, one of the major disadvantages associated with this technique is the well described hematocrit (hct) effect. In order to overcome the hct area bias, different strategies have been proposed, amongst which the use of dried blood sampling techniques based on the volumetric collection of blood. The aim of this study was to evaluate the use of the Capitainer® qDBS (quantitative Dried Blood Spot) device for the combined TDM of four immunosuppressants and creatinine from a single qDBS. The set-up of an adequate sample preparation allowing both immunosuppressants and creatinine quantification was one of the key challenges in the method development due to device-specific interferences. Liquid chromatography tandem-mass spectrometry methods for the quantification of tacrolimus, sirolimus, everolimus, cyclosporin A and creatinine from qDBS (10 μL) were developed and validated based on international guidelines, also taking into account DBS-specific parameters. The methods proved to be accurate and reproducible, with absolute biases below 10% and within-run CVs (%) below 8% over a calibration range from 1 to 50 ng/mL for tacrolimus, sirolimus and everolimus, 20-1500 ng/mL for cyclosporin A, and 15-700 μmol/L for creatinine. Reproducible (CV < 15%) IS-compensated relative recovery values were obtained, showing no hematocrit-dependence (compared to a hct of 0.37), except for cyclosporin A at higher hct values. Application on venous blood left-over patient samples showed good agreement between the results of Capitainer® qDBS and whole blood with 98% (47/48), 93% (41/44), 89% (41/46), 88% (38/43) and 89% (116/131) of the samples lying within 20% of the whole blood result for tacrolimus, sirolimus, everolimus, cyclosporin A and plasma/serum for creatinine, respectively. For creatinine a blood/plasma ratio of 0.85 was found and used to convert qDBS results to plasma/serum results. As a next step, capillary finger prick samples will need to demonstrate the clinical applicability of the method in a real life setting.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium; Ref4U - Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
10
|
Deprez S, Stove CP. Dried blood microsampling-assisted therapeutic drug monitoring of immunosuppressants: An overview. J Chromatogr A 2023; 1689:463724. [PMID: 36592482 DOI: 10.1016/j.chroma.2022.463724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the field of solid organ transplantation, chemotherapy and autoimmune disorders, treatment with immunosuppressant drugs requires intensive follow-up of the blood concentrations via therapeutic drug monitoring (TDM) because of their narrow therapeutic window and high intra- and inter-subject variability. This requires frequent hospital visits and venepunctures to allow the determination of these analytes, putting a high burden on the patients. In the context of patient-centric thinking, it is becoming increasingly established that at least part of these conventional blood draws could be replaced by microsampling, allowing home-sampling and increasing the quality of life for these patients. In this review we discuss the published methods - mostly using liquid chromatography coupled to tandem mass spectrometry - that have utilized (volumetric) dried blood samples as an alternative for conventional liquid whole blood for the TDM of immunosuppressant drugs. Furthermore, some pre-analytical considerations using DBS or volumetric alternatives are considered, as well as the applicability on clinical samples. The implementation status in clinical practice is also discussed, including (1) the cost-effectiveness of this approach compared to venepuncture, (2) the availability of multiplexed methods, (3) the status of harmonization and (4) patient perception. A brief perspective on potential future developments for the dried blood-based TDM of immunosuppressant drugs is provided, by considering how obstacles for the implementation of these strategies into clinical practice might be overcome.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Kocur A, Marszałek D, Rubik J, Czajkowska A, Pawiński T. Therapeutic Drug Monitoring of Tacrolimus Based on Volumetric Absorptive Microsampling Technique (VAMS) in Renal Transplant Pediatric Recipients-LC-MS/MS Method Development, Hematocrit Effect Evaluation, and Clinical Application. Pharmaceutics 2023; 15:pharmaceutics15010299. [PMID: 36678927 PMCID: PMC9864564 DOI: 10.3390/pharmaceutics15010299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Tacrolimus (TAC) is post-transplant pharmacotherapy's most widely used immunosuppressant. In routine clinical practice, frequent uncomfortable venipuncture is necessary for whole-blood (WB) collection to check trough TAC levels. Volumetric absorptive microsampling (VAMS) is an alternative strategy to WB collection. In this study, we aimed to validate and develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for TAC quantification in WB and VAMS samples. After extraction with water and protein precipitation, the samples were directly analyzed using LC-MS/MS. Whole-blood and VAMS capillary-blood samples were collected from 50 patients treated with TAC during the follow-up visits. The cross-correlation between the developed methods was evaluated using Passing-Bablok regression and a Bland-Altman bias plot. The matrix effect (ME) and carry-over were insignificant for both scenarios. There was a high correlation between the processes and no significant clinical deviation. LC-MS/MS methods were successfully developed and validated in the 0.5-60 ng/mL calibration range. This study demonstrated and confirmed the utility of VAMS-based TAC monitoring in the pediatric population. This is the first study to directly develop and validate the VAMS LC-MS/MS method for evaluating the hematocrit effect in the pediatric population. The statistical correlation between immunochemical and VAMS-based methods was satisfactory.
Collapse
Affiliation(s)
- Arkadiusz Kocur
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-572-06-35
| | - Dorota Marszałek
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jacek Rubik
- Department of Nephrology, Kidney Transplantation and Arterial Hypertension, The Children’s Memorial Health Institute, Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Agnieszka Czajkowska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Pharmacokinetics Laboratory, The Children’s Memorial Health Institute, Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
Volumetric Absorptive Microsampling to Enhance the Therapeutic Drug Monitoring of Tacrolimus and Mycophenolic Acid: A Systematic Review and Critical Assessment. Ther Drug Monit 2023:00007691-990000000-00082. [PMID: 36728554 DOI: 10.1097/ftd.0000000000001066] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/23/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Volumetric absorptive microsampling (VAMS) is an emerging technique that may support multisample collection to enhance therapeutic drug monitoring in solid organ transplantation. This review aimed to assess whether tacrolimus and mycophenolic acid can be reliably assayed using VAMS and to identify knowledge gaps by providing granularity to existing analytical methods and clinical applications. METHODS A systematic literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PubMed, Embase, and Scopus databases were accessed for records from January 2014 to April 2022 to identify scientific reports on the clinical validation of VAMS for monitoring tacrolimus and mycophenolic acid concentrations. Data on the study population, sample sources, analytical methods, and comparison results were compiled. RESULTS Data from 12 studies were collected, including 9 studies pertaining to tacrolimus and 3 studies on the concurrent analysis of tacrolimus and mycophenolic acid. An additional 14 studies that provided information relevant to the secondary objectives (analytical validation and clinical application) were also included. The results of the clinical validation studies generally met the method agreement requirements described by regulatory agencies, but in many cases, it was essential to apply correction factors. CONCLUSIONSS Current evidence suggests that the existing analytical methods that use VAMS require additional optimization steps for the analysis of tacrolimus and mycophenolic acid. The recommendations put forth in this review can help guide future studies in achieving the goal of improving the care of transplant recipients by simplifying multisample collection for the dose optimization of these drugs.
Collapse
|
13
|
Kocur A, Pawiński T. Volumetric Absorptive Microsampling in Therapeutic Drug Monitoring of Immunosuppressive Drugs-From Sampling and Analytical Issues to Clinical Application. Int J Mol Sci 2022; 24:681. [PMID: 36614123 PMCID: PMC9821248 DOI: 10.3390/ijms24010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Miniaturisation and simplification are novel approaches in clinical bioanalysis, especially in therapeutic drug monitoring (TDM). These contemporary trends are related to the sampling, pre-treatment, and analysis of biological fluids. Currently, dried blood spot (DBS), one of the most popular microsampling techniques, is feasible and inexpensive. However, obtaining reliable results with sample homogeneity and volume variability is difficult. Volumetric Absorptive Microsampling (VAMS) has recently enabled the accurate and precise collection of a fixed blood volume. It reduced the hematocrit effect, improved volumetric accuracy, and generated results correlating with the dose and drug exposure from wet blood. This review focuses on VAMS-Mitra™ devices, which have become increasingly important since 2014, mainly for TDM and toxicology studies. First, the current literature has been reviewed based on immunosuppressants and their determination in samples obtained using Mitra™. Second, the critical points, weaknesses, and strengths have been characterized in contrast to classic venipuncture and other microsampling methods. Finally, we indicate the points of attention according to the perspective of Mitra™ as well as its usefulness in clinical practice. VAMS is currently state-of-the-art in microsampling and seems to be a good instrument for improving adherence to immunosuppressive therapy, especially in the pediatric population.
Collapse
Affiliation(s)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Zwart TC, Metscher E, van der Boog PJM, Swen JJ, de Fijter JW, Guchelaar H, de Vries APJ, Moes DJAR. Volumetric microsampling for simultaneous remote immunosuppressant and kidney function monitoring in outpatient kidney transplant recipients. Br J Clin Pharmacol 2022; 88:4854-4869. [PMID: 35670960 PMCID: PMC9796409 DOI: 10.1111/bcp.15433] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/01/2023] Open
Abstract
AIMS Immunosuppressant and kidney function monitoring are crucial for kidney transplant recipient follow-up. Microsamples enable remote sampling and minimise patient burden as compared to conventional venous sampling at the clinic. We developed a liquid chromatography-tandem mass spectrometry assay to quantify tacrolimus, mycophenolic acid (MPA), creatinine and iohexol in dried blood spot (DBS), and volumetric absorptive microsample (VAMS) samples. METHODS The assay was successfully validated analytically for all analytes. Clinical validation was conducted by direct comparison of paired DBS, VAMS and venous reference samples from 25 kidney transplant recipients. Patients received iohexol 5-15 minutes before immunosuppressant intake and were sampled 0, 1, 2 and 3 hours thereafter, enabling tacrolimus and MPA area under the concentration-time curve (AUC) and creatinine-based and iohexol-based glomerular filtration rate (GFR) estimation. Method agreement was evaluated using Passing-Bablok regression, Bland-Altman analysis and the percentages of values within 15-30% of the reference (P15 -P30 ) with a P20 acceptance threshold of 80%. RESULTS For DBS samples, method agreement was excellent for tacrolimus trough concentrations (n = 25, P15 = 92.0%) and AUCs (n = 25; P20 = 95.8%) and adequate for creatinine-based GFR trend monitoring (n = 25; P20 = 80%). DBS-based MPA AUC assessment showed suboptimal agreement (n = 16; P20 = 68.8%), but was considered acceptable given its P30 of 100%. The assay performed inadequately for DBS-based iohexol GFR determination (n = 24; P20 = 75%). The VAMS technique generally showed inferior performance, but can be considered for certain situations. CONCLUSION The assay was successfully validated for tacrolimus, MPA and creatinine quantification in DBS samples, enabling simultaneous remote kidney function trend monitoring and immunosuppressant therapeutic drug monitoring in kidney transplant recipients.
Collapse
Affiliation(s)
- Tom C. Zwart
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Metscher
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Paul J. M. van der Boog
- Department of Internal Medicine (Nephrology)Leiden University Medical CenterLeidenThe Netherlands
- LUMC Transplant CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Johan W. de Fijter
- Department of Internal Medicine (Nephrology)Leiden University Medical CenterLeidenThe Netherlands
- LUMC Transplant CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Aiko P. J. de Vries
- Department of Internal Medicine (Nephrology)Leiden University Medical CenterLeidenThe Netherlands
- LUMC Transplant CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|