1
|
Chen X, Myers CA, Clary CW, Varga P, Coombs D, DeWall RJ, Fritz B, Rullkoetter PJ. Impact of bone health on the mechanics of plate fixation for Vancouver B1 periprosthetic femoral fractures. Clin Biomech (Bristol, Avon) 2022; 100:105801. [PMID: 36327548 DOI: 10.1016/j.clinbiomech.2022.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Condyle-spanning plate-screw constructs have shown potential to lower the risks of femoral refractures after the healing of a primary Vancouver type B1 periprosthetic femoral fracture. Limited information exists to show how osteoporosis (a risk factor for periprosthetic femoral fractures) may affect the plate fixation during activities of daily living. METHODS Using total hip arthroplasty and plate-implanted finite element models of three osteoporotic femurs, this study simulated physiological loads of three activities of daily living, as well as osteoporosis associated muscle weakening, and compared the calculated stress/strain, load transfer and local stiffness with experimentally validated models of three healthy femurs. Two plating systems and two construct lengths (a diaphyseal construct and a condyle-spanning construct) were modeled. FINDINGS Osteoporotic femurs showed higher bone strain (21.9%) and higher peak plate stress (144.3%) as compared with healthy femurs. Compared with shorter diaphyseal constructs, condyle-spanning constructs of two plating systems reduced bone strains in both healthy and osteoporotic femurs (both applying 'the normal' and 'the weakened muscle forces') around the most distal diaphyseal screw and in the distal metaphysis, both locations where secondary fractures are typically reported. The lowered resultant compressive force and the increased local compressive stiffness in the distal diaphysis and metaphysis may be associated with strain reductions via condyle-spanning constructs. INTERPRETATION Strain reductions in condyle-spanning constructs agreed with the clinically reported lowered risks of femoral refractures in the distal diaphysis and metaphysis. Multiple condylar screws may mitigate the concentrated strains in the lateral condyle, especially in osteoporotic femurs.
Collapse
Affiliation(s)
- Xiang Chen
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Casey A Myers
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Chadd W Clary
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Peter Varga
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Paul J Rullkoetter
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA.
| |
Collapse
|
2
|
Katzengold R, Orlov A, Gefen A. A novel system for dynamic stretching of cell cultures reveals the mechanobiology for delivering better negative pressure wound therapy. Biomech Model Mechanobiol 2020; 20:193-204. [PMID: 32803464 DOI: 10.1007/s10237-020-01377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Serious wounds, both chronic and acute (e.g., surgical), are among the most common, expensive and difficult-to-treat health problems. Negative pressure wound therapy (NPWT) is considered a mainstream procedure for treating both wound types. Soft tissue deformation stimuli are the crux of NPWT, enhancing cell proliferation and migration from peri-wound tissues which contributes to healing. We developed a dynamic stretching device (DSD) contained in a miniature incubator for applying controlled deformations to fibroblast wound assays. Prior to the stretching experiments, fibroblasts were seeded in 6-well culture plates with elastic substrata and let to reach confluency. Squashing damage was then induced at the culture centers, and the DSD was activated to deliver stretching regimes that represented common clinical NPWT protocols at two peak strain levels, 0.5% and 3%. Analyses of the normalized maximal migration rate (MMR) data for the collective cell movement revealed that for the 3% strain level, the normalized MMR of cultures subjected to a 0.1 Hz stretch frequency regime was ~ 1.4 times and statistically significantly greater (p < 0.05) than that of the cultures subjected to no-stretch (control) or to static stretch (2nd control). Correspondingly, analysis of the time to gap closure data indicated that the closure time of the wound assays subjected to the 0.1 Hz regime was ~ 30% shorter than that of the cultures subjected to the control regimes (p < 0.05). Other simulated NPWT protocols did not emerge as superior to the controls. The present method and system are a powerful platform for further revealing the mechanobiology of NPWT and for improving this technology.
Collapse
Affiliation(s)
- Rona Katzengold
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alexey Orlov
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Amit Gefen
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
3
|
Colabella L, Cisilino A, Fachinotti V, Capiel C, Kowalczyk P. Multiscale design of artificial bones with biomimetic elastic microstructures. J Mech Behav Biomed Mater 2020; 108:103748. [PMID: 32310104 DOI: 10.1016/j.jmbbm.2020.103748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Cancellous bone is a highly porous, heterogeneous, and anisotropic material which can be found at the epiphyses of long bones and in the vertebral bodies. The hierarchical architecture makes cancellous bone a prime example of a lightweight natural material that combines strength with toughness. Better understanding the mechanics of cancellous bone is of interest for the diagnosis of bone diseases, the evaluation of the risk of fracture, and for the design of artificial bones and bone scaffolds for tissue engineering. A multiscale optimization method to maximize the stiffness of artificial bones using biomimetic cellular microstructures described by a finite set of geometrical micro-parameters is presented here. The most outstanding characteristics of its implementation are the use of: an interior point optimization algorithm, a precalculated response surface methodology for the evaluation of the elastic tensor of the microstructure as an analytical function of the micro-parameters, and the adjoint method for the computation of the sensitivity of the macroscopic mechanical response to the variation of the micro-parameters. The performance and effectiveness of the tool are evaluated by solving a problem that consists in finding the optimal distribution of the microstructures for a proximal end of a femur subjected to physiological loads. Two strategies for the specification of the solid volume fraction constraints are assessed. The results are compared with data of a computed tomography study of an actual human bone. The model successfully predicts the main features of the spatial arrangement of the trabecular and cortical microstructures of the natural bone.
Collapse
Affiliation(s)
- Lucas Colabella
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Juan B. Justo, 4302, Mar del Plata, Argentina.
| | - Adriáan Cisilino
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Juan B. Justo, 4302, Mar del Plata, Argentina
| | - Victor Fachinotti
- Centro de Investigación de Métodos Computacionales (CIMEC), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Predio CCT-CONICET Santa Fe, Ruta 168, Paraje El Pozo, 3000, Santa Fe, Argentina
| | - Carlos Capiel
- Departmento de Radiología, Instituto Radiológico, Catamarca, 1542, Mar del Plata, Argentina
| | - Piotr Kowalczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106, Warsaw, Poland
| |
Collapse
|
4
|
Im S, Lim DY, Sohn MK, Kim Y. Frequency of and Reasons for Unplanned Transfers From the Inpatient Rehabilitation Facility in a Tertiary Hospital. Ann Rehabil Med 2020; 44:151-157. [PMID: 32392654 PMCID: PMC7214139 DOI: 10.5535/arm.2020.44.2.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To characterize the patients in the inpatient rehabilitation facility who were transferred to acute care facilities and identify the frequency of and reasons for the unplanned transfer. METHODS Medical records of patients admitted to the inpatient rehabilitation facility from October 2017 to December 2018 were reviewed. Patients were categorized according to their diagnoses. The included patients were divided into the unplanned transfer and control groups based on whether they required to transfer to another department for acute care before completing an uninterrupted rehabilitation course. The groups were compared in terms of sex, age, length of stay, admission sources, and disease groups. The reasons for unplanned transfers were classified based on medical or surgical conditions. RESULTS Of the 1,378 patients were admitted to the inpatient rehabilitation facility, 1,301 satisfied inclusion criteria. Among them, 121 (9.3%) were unexpectedly transferred to the medical or surgical department. The unplanned transfer group had a higher age (69.54±12.53 vs. 64.39±15.32 years; p=0.001) and longer length of stay (85.69±66.08 vs. 37.81±31.13 days; p<0.001) than the control group. The top 3 reasons for unplanned transfers were infectious disease, cardiopulmonary disease, and orthopedic problem. CONCLUSION The unplanned transfer group had a significantly higher age and longer length of stay. The most common reason for the unplanned transfer was infectious disease. However, the proportions of those with orthopedic and neurological problems were relatively high. Therefore, further studies of these patient populations may help organize systematic strategies that are needed to reduce unplanned transfers to acute facilities for patients in rehabilitation facilities.
Collapse
Affiliation(s)
- Soobin Im
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Da Young Lim
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yeongwook Kim
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
5
|
Oshima M, Iida-Klein A, Maruta T, Deitiker PR, Atassi MZ. Decreased bone mineral density in experimental myasthenia gravis in C57BL/6 mice. Autoimmunity 2017; 50:346-353. [PMID: 28850269 DOI: 10.1080/08916934.2017.1367772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Experimental autoimmune myasthenia gravis (EAMG), an animal model of myasthenia gravis (MG), can be induced in C57BL/6 (B6, H-2 b) mice by 2-3 injections with Torpedo californica AChR (tAChR) in complete Freund's adjuvant. Some EAMG mice exhibit weight loss with muscle weakness. The loss in body weight, which is closely associated with bone structure, is particularly evident in EAMG mice with severe muscle weakness. However, the relationship between muscle weakness and bone loss in EAMG has not been studied before. Recent investigations on bone have shed light on association of bone health and immunological states. It is possible that muscle weakness in EAMG developed by anti-tAChR immune responses might accompany bone loss. We determined whether reduced muscle strength associates with decreased bone mineral density (BMD) in EAMG mice. EAMG was induced by two injections at 4-week interval of tAChR and adjuvants in two different age groups. The first tAChR injection was either at age 8 weeks or at 15 weeks. We measured BMD at three skeletal sites, including femur, tibia, and lumbar vertebrae, using dual energy X-ray absorptiometry. Among these bone areas, femur of EAMG mice in both age groups showed a significant decrease in BMD compared to control adjuvant-injected and to non-immunized mice. Reduction in BMD in induced EAMG at a later-age appears to parallel the severity of the disease. The results indicate that anti-tAChR autoimmune response alone can reduce bone density in EAMG mice. BMD reduction was also observed in adjuvant-injected mice in comparison to normal un-injected mice, suggesting that BMD decrease can occur even when muscle activity is normal. Decreased BMD observed in both tAChR-injected and adjuvant-injected mice groups were discussed in relation to innate immunity and bone-related immunology involving activated T cells and tumour necrosis factor-related cytokines that trigger osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Minako Oshima
- a Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , TX , USA
| | - Akiko Iida-Klein
- b Regional Bone Center , Helen Hayes Hospital , West Haverstraw , NY , USA.,c Department of Clinical Pathology , Columbia University College of Physicians and Surgeons , New York , NY , USA
| | - Takahiro Maruta
- a Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , TX , USA
| | - Philip R Deitiker
- a Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , TX , USA
| | - M Zouhair Atassi
- a Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , TX , USA.,d Department of Pathology and Immunology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
6
|
Mimetization of the elastic properties of cancellous bone via a parameterized cellular material. Biomech Model Mechanobiol 2017; 16:1485-1502. [PMID: 28374083 DOI: 10.1007/s10237-017-0901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Bone tissue mechanical properties and trabecular microarchitecture are the main factors that determine the biomechanical properties of cancellous bone. Artificial cancellous microstructures, typically described by a reduced number of geometrical parameters, can be designed to obtain a mechanical behavior mimicking that of natural bone. In this work, we assess the ability of the parameterized microstructure introduced by Kowalczyk (Comput Methods Biomech Biomed Eng 9:135-147, 2006. doi: 10.1080/10255840600751473 ) to mimic the elastic response of cancellous bone. Artificial microstructures are compared with actual bone samples in terms of elasticity matrices and their symmetry classes. The capability of the parameterized microstructure to combine the dominant isotropic, hexagonal, tetragonal and orthorhombic symmetry classes in the proportions present in the cancellous bone is shown. Based on this finding, two optimization approaches are devised to find the geometrical parameters of the artificial microstructure that better mimics the elastic response of a target natural bone specimen: a Sequential Quadratic Programming algorithm that minimizes the norm of the difference between the elasticity matrices, and a Pattern Search algorithm that minimizes the difference between the symmetry class decompositions. The pattern search approach is found to produce the best results. The performance of the method is demonstrated via analyses for 146 bone samples.
Collapse
|
7
|
Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016; 432:83-95. [PMID: 26525415 DOI: 10.1016/j.mce.2015.10.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine.
Collapse
Affiliation(s)
| | - Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Johannes Grillari
- Evercyte GmbH, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria.
| |
Collapse
|
8
|
Florio CS. Development and implementation of a coupled computational muscle force optimization bone shape adaptation modeling method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02699. [PMID: 25645885 DOI: 10.1002/cnm.2699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
Improved methods to analyze and compare the muscle-based influences that drive bone strength adaptation can aid in the understanding of the wide array of experimental observations about the effectiveness of various mechanical countermeasures to losses in bone strength that result from age, disuse, and reduced gravity environments. The coupling of gradient-based and gradientless numerical optimization routines with finite element methods in this work results in a modeling technique that determines the individual magnitudes of the muscle forces acting in a multisegment musculoskeletal system and predicts the improvement in the stress state uniformity and, therefore, strength, of a targeted bone through simulated local cortical material accretion and resorption. With a performance-based stopping criteria, no experimentally based or system-based parameters, and designed to include the direct and indirect effects of muscles attached to the targeted bone as well as to its neighbors, shape and strength alterations resulting from a wide range of boundary conditions can be consistently quantified. As demonstrated in a representative parametric study, the developed technique effectively provides a clearer foundation for the study of the relationships between muscle forces and the induced changes in bone strength. Its use can lead to the better control of such adaptive phenomena.
Collapse
Affiliation(s)
- C S Florio
- Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, U.S.A
| |
Collapse
|
9
|
Ma HT, Griffith JF, Xu L, Leung PC. The functional muscle-bone unit in subjects of varying BMD. Osteoporos Int 2014; 25:999-1004. [PMID: 24030288 DOI: 10.1007/s00198-013-2482-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 08/05/2013] [Indexed: 01/23/2023]
Abstract
SUMMARY This study used the "functional muscle-bone unit" concept to investigate muscle-bone interaction of the lumbar spine in subjects of varying bone mineral density. It was found that unit bone mass corresponded to a relatively more muscle mass in subjects with reduced bone mineral density, indicating a relatively higher mechanical load from muscles exerted on trabecular bone. INTRODUCTION Bone is an architecturally adaptive tissue which responds to mechanical loading. This study is proposed to use "functional muscle-bone unit" to reflect this muscle-bone interaction at spine in subjects with different bone mineral density. METHODS The study was carried out in young normal subjects (21 females; age, 29 ± 3) and elderly subjects (155 females; age, 73 ± 3.9) with varying bone mineral density. Cross-sectional area of paravertebral muscle groups was measured in MR images to indicate the muscle mass, while the bone mineral content by dual X-ray absorptiometry was used to represent the bone mass. The functional muscle-bone unit was calculated as the ratio between the bone mass to muscle mass. RESULTS It showed that with aging, the muscle mass decreased with the bone mass losing. However, more pronounced reduction was found in bone mass than in muscle mass in the subjects with lower bone mineral density. CONCLUSIONS Muscle-bone interaction was changed in elderly, especially in those with osteoporosis. Unit bone mass corresponded to a higher muscle mass in subjects with reduced bone mineral density than those normal subjects. This may be contributory to the occurrence of nontraumatic vertebral fractures in elderly subjects with reduced bone mineral density.
Collapse
Affiliation(s)
- H T Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Rm 205C, C Building, HIT Campus, University Town, Xili, Nanshan, Shenzhen, China, 518055,
| | | | | | | |
Collapse
|
10
|
Lindberg G, Banks-Sills L, Ståhle P, Svensson I. A two-dimensional model for stress driven diffusion in bone tissue. Comput Methods Biomech Biomed Engin 2013; 18:457-67. [PMID: 23865643 DOI: 10.1080/10255842.2013.807507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The growth and resorption of bone are governed by interaction between several cells such as bone-forming osteoblasts, osteocytes, lining cells and bone-resorbing osteoclasts. The cells considered in this study reside in the periosteum. Furthermore, they are believed to be activated by certain substances to initiate bone growth. This study focuses on the role that stress driven diffusion plays in the transport of these substances from the medullary cavity to the periosteum. Calculations of stress driven diffusion are performed under steady state conditions using a finite element method with the concentration of nutrients in the cambium layer of the periosteum obtained for different choices of load frequencies. The results are compared with experimental findings, suggesting that increased bone growth occurs in the neighbourhood of relatively high nutrient concentration.
Collapse
Affiliation(s)
- Gustav Lindberg
- a Division of Solid Mechanics, Lund Institute of Technology, Lund University , SE-221 00 Lund , Sweden
| | | | | | | |
Collapse
|
11
|
Marzban A, Nayeb-Hashemi H, Vaziri A. Numerical simulation of load-induced bone structural remodelling using stress-limit criterion. Comput Methods Biomech Biomed Engin 2013; 18:259-68. [DOI: 10.1080/10255842.2013.792915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Marzban A, Canavan P, Warner G, Vaziri A, Nayeb-Hashemi H. Parametric investigation of load-induced structure remodeling in the proximal femur. Proc Inst Mech Eng H 2012; 226:450-60. [PMID: 22783761 DOI: 10.1177/0954411912444067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The process of adaptive bone remodeling can be simulated with a self-optimizing finite element method. The basic remodeling rules attempt to obtain a constant value for the strain energy per unit bone mass, by adapting density. The precise solution is dependent on the loads, initial conditions, and the parameters of the remodeling rule. While there are several investigations on developing algorithms leading to the bone density distribution in the proximal femur, these algorithms often require a large number of iterations. The aim of this study was to develop a more efficient adaptive bone remodeling algorithm, and to identify how the bone density distribution of the proximal femur was affected by parameters that govern the remodeling process. The forces at different phases of the gait cycle were applied as boundary conditions. The bone density distributions from these forces were averaged to estimate the density distribution in the proximal femur. The effect of varying the initial bone density, spatial influence function, non-linear order of the adaptive algorithm, and the influence range on the converged solution were investigated. The proposed procedure was shown to converge in a fewer number of iterations and requiring less computational time, while still generating a realistic bone density distribution. It was also shown that varying the identified parameters within reasonable upper and lower bounds had very little impact on the qualitative form of the converged solution. In contrast, the convergence rate was affected to a greater degree by variation of these parameters. In all cases, the solutions obtained are comparable with the actual density in the proximal femur, as measured by Dual-energy X-ray absorptiometry (DEXA) scans.
Collapse
Affiliation(s)
- Ali Marzban
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
13
|
Levy A, Enzer S, Shoham N, Zaretsky U, Gefen A. Large, but not small sustained tensile strains stimulate adipogenesis in culture. Ann Biomed Eng 2011; 40:1052-60. [PMID: 22203192 DOI: 10.1007/s10439-011-0496-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/17/2011] [Indexed: 12/13/2022]
Abstract
Understanding the mechanoresponsiveness of adipocytes and the characteristics of the mechanical stimuli that regulate adipogenesis is critically important in establishing knowledge in regard to the long-term effects of a sedentary lifestyle (or immobility in extreme medical conditions) as well as concerning obesity and related diseases. In this study we subjected 3T3-L1 preadipocytes cultured on elastic substrata to different levels of static equiaxial tensile strains within the physiological range, up to substrate tensile strain (STS) of 12%, while inducing differentiation in the cultures. Based on prior work which revealed that adipogenesis is accelerated in cultures subjected to STS of 12% by activating the mitogen-activated protein kinase kinase signaling pathway, we were specifically interested in identifying the STS levels which trigger this process. We hence monitored the production and accumulation of lipid droplets (LDs) using a non-destructive, image-processing-based method that we have previously developed, for a period of 4 weeks. The experimental data demonstrated accelerated adipogenesis in the cultures subjected to STS levels of 6%, 9%, and 12% with respect to cultures subjected to STS of 3% and (non-stretched) control cultures. This accelerated adipogenic response to the large sustained STS manifested in significantly larger numbers and greater sizes of LDs in the cultures that were stretched to large STS levels (p < 0.05), starting at approximately day 14 following induction of differentiation. Hence, indeed, there appears to be a certain tensile strain threshold, or domain-which is found within the physiological range-above which the responsiveness of adipocytes to sustained static stretching increases and is manifested in accelerated adipogenesis.
Collapse
Affiliation(s)
- Ayelet Levy
- Department of Biomedical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
14
|
Shoham N, Gottlieb R, Sharabani-Yosef O, Zaretsky U, Benayahu D, Gefen A. Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am J Physiol Cell Physiol 2011; 302:C429-41. [PMID: 22012328 DOI: 10.1152/ajpcell.00167.2011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Understanding mechanotransduction in adipocytes is important for research of obesity and related diseases. We cultured 3T3-L1 preadipocytes on elastic substrata and applied static tensile strains of 12% to the substrata while inducing differentiation. Using an image processing method, we monitored lipid production for a period of 3-4 wk. The ratio of %-lipid area per field of view (FOV) in the stretched over nonstretched cultures was significantly greater than unity (P < 0.05), reaching ∼1.8 on average starting from experimental day ∼10. The superior coverage of the FOV by lipids in the stretched cultures was due to significantly greater sizes of lipid droplets (LDs) with respect to nonstretched cultures, starting from experimental day ∼10 (P < 0.05), and due to significantly more LDs per cell between days ∼10 and ∼17 (P < 0.05). The statically stretched cells also differentiated significantly faster than the nonstretched cells within the first ∼10 days (P < 0.05). Adding peroxisome proliferator-activated receptor-γ (PPARγ) antagonist did not change these trends, as the %-lipid area per FOV in the stretched cultures that received this treatment was still significantly greater than in the nonstretched cultures without the PPARγ antagonist (14.44 ± 1.96% vs. 10.21 ± 3%; P < 0.05). Hence, the accelerated adipogenesis in the stretched cultures was not mediated through PPARγ. Nonetheless, inhibiting the MEK/MAPK signaling pathway reduced the extent of adipogenesis in the stretched cultures (13.53 ± 5.63%), bringing it to the baseline level of the nonstretched cultures without the MEK inhibitor (10.21 ± 3.07%). Our results hence demonstrate that differentiation of adipocytes can be enhanced by sustained stretching, which activates the MEK signaling pathway.
Collapse
Affiliation(s)
- Naama Shoham
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
15
|
BECK BELINDAR. Muscle Forces or Gravity-What Predominates Mechanical Loading on Bone? Med Sci Sports Exerc 2009; 41:2033-6. [DOI: 10.1249/mss.0b013e3181a8c4b6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ma HT, Griffith JF, Yang Z, Kwok AWL, Leung PC, Lee RYW. Kinematics of the lumbar spine in elderly subjects with decreased bone mineral density. Med Biol Eng Comput 2009; 47:783-9. [DOI: 10.1007/s11517-009-0493-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
|
17
|
Gefen A, Portnoy S, Diamant I. Inhomogeneity of tissue-level strain distributions in individual trabeculae: Mathematical model studies of normal and osteoporosis cases. Med Eng Phys 2008; 30:624-30. [PMID: 17697794 DOI: 10.1016/j.medengphy.2007.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 11/25/2022]
Abstract
Little is known about the distributions of mechanical strains and stresses in individual trabeculae of cancellous bone, despite evidence that tissue-level strains affect the metabolism of bone. Recently, micro-finite element (micro-FE) studies have provided the first insights into the mechanical conditions in trabeculae, and suggested that osteoporotic cancellous bone experience higher and substantially less-uniform strains with respect to healthy cancellous bone. We may therefore ask whether the inhomogeneity of bone tissue strains is predominantly a consequence of micro-architectural differences between trabeculae, or is it mostly caused by the curvatures of each individual trabecula. Accordingly, the objectives of the present study were to determine the contribution of the shape of a trabecula to the intra-trabecula strain inhomogeneity, and to determine potential differences in intra-trabecula strain inhomogeneities between normal and thinner, osteoporotic-like trabeculae. We employed our previously reported generic single-trabecula model, which is a mathematical representation of the shape of a trabecula based on statistical analyses of mammalian trabecular dimensions. The single-trabecula model was loaded axially and in bending, and strain distributions were calculated for individual trabeculae as well as for "populations" of trabeculae, formed by assigning different trabecular thickness values in the trabecular model, in order to represent the distributions of trabecular shapes in normal and osteoporotic bones. We found that when subjected to equivalent loads, thinner, osteoporotic-like individual trabeculae and populations of thin trabeculae developed substantially greater strain inhomogeneities compared with normal trabeculae. We conclude that the intra-trabecula strain inhomogeneities are likely to be an important factor contributing to the overall increased strain inhomogeneity in osteoporotic cancellous bone, as previously observed in micro-FE studies.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
18
|
Ting Ma H, Griffith JF, Yang Z, Kwok AWL, Leung PC, Lee RYW. Effect of vertebral morphology on lumbar kinematics in elderly subjects with decreased bone mineral density. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:883-886. [PMID: 19162798 DOI: 10.1109/iembs.2008.4649295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Correlation between kinematics and morphological characteristics of lumbar spine was studied in subjects with varying bone mineral density. Effect of morphological characteristics and bone mineral density on the lumbar spine movement was investigated. Morphology parameters were measured from radiographs and a high-frequency motion tracking device were employed to detect surface movement of lumbar spine. Multiple regression analysis identified factors influencing lumbar kinematics while ANOVA examined differences in morphology with normal bone mineral density, osteopenia and osteoporosis. The results show that morphological characteristics, such as wedging deformity, are indeed influential to the kinematics. Related to our previous report, abnormal lumbar kinematic pattern in the subjects with osteoporosis, this study shows although morphological characteristics were found significantly different among normal, osteopenia, and osteoporosis subjects, the change in lumbar kinematic pattern could not be fully explained by the altered vertebral or disc morphology.
Collapse
Affiliation(s)
- Heather Ting Ma
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | | | | | | | | | | |
Collapse
|
19
|
Computational Determination of the Critical Microcrack Size That Causes a Remodeling Response in a Trabecula: A Feasibility Study. J Appl Biomech 2007; 23:230-7. [DOI: 10.1123/jab.23.3.230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone is a living tissue, which undergoes continuous renewal to repair local defects. Two separate processes, adaptation and remodeling, are involved when a defect appears. The defect produces stress concentrations that provoke regional adaptation, and is gradually repaired, first by resorption and then by deposition of new bone. Using a mathematical formulation of the adaptation mechanism in trabeculae of cancellous bone, we hypothesize that in some cases, where a microcrack is small enough relative to the dimensions of the trabecula, the adaptation response of the whole trabecula may be sufficient to regain homeostatic mechanical conditions (with no need for a remodeling process). The simulation results showed that for trabeculae with nominal length of 900 µm and nominal thickness of 80–800 µm, a microcrack with minimal length of 48 µm and minimal depth of 13% of the trabecula’s thickness was required to initiate a remodeling process. A longer (100 µm) but shallower (depth of 7% of the trabecula’s thickness) crack also triggered remodeling. These computational results support our hypothesis that when a microcrack small enough relative to the dimensions of the trabecula occurs, adaptation of the whole trabecula may be sufficient to regain homeostatic mechanical conditions with no need for a local remodeling process.
Collapse
|
20
|
Kitamura I, Ando F, Koda M, Okura T, Shimokata H. Effects of the interaction between lean tissue mass and estrogen receptor alpha gene polymorphism on bone mineral density in middle-aged and elderly Japanese. Bone 2007; 40:1623-9. [PMID: 17409042 DOI: 10.1016/j.bone.2007.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/29/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Because both genetic and environmental factors influence bone mass, it is important to examine the effect of gene-environment interactions on bone mineral density (BMD) for the prevention of osteoporosis at an individual level. Estrogen receptor alpha (ER alpha) plays an important role in increasing BMD via mechanical strain and muscle mass is a reflection of the forces the muscle applies to the bone. The aim of this study is to investigate the effect of the interaction between lean tissue mass (LTM) and the ER alpha polymorphisms T-->C (PvuII) [dbSNP: rs2234693] and A-->G (XbaI) [dbSNP: rs9340799] on BMD in middle-aged and elderly individuals. Subjects were 2209 community-dwelling Japanese men and women, ages 40 to 79 years. ER alpha polymorphisms in the first intron, T-->C and A-->G were identified and lumbar spine and femoral neck BMD and LTM were measured by dual-energy X-ray absorptiometry. Both T-->C and A-->G polymorphisms were divided into two genotype groups (TT vs. TC/CC; AA vs. AG/GG). In postmenopausal women, the effect of LTM on femoral neck BMD was significantly larger for those with the TC/CC genotype than for those with the TT genotype for the T-->C polymorphism, and larger for those with the AG/GG genotype than for those with the AA genotype for the A-->G polymorphism. This gene-LTM interaction was observed at the femoral neck, but not at the lumbar spine. For men and premenopausal women, no gene-LTM interaction was found. In conclusion, there was an interaction between LTM and the ER alpha T-->C and A-->G polymorphisms with respect to their effect on femoral neck BMD in postmenopausal women and those with the TC/CC and AG/GG genotypes had larger effects of LTM than those with TT and AA genotypes.
Collapse
Affiliation(s)
- Itsuko Kitamura
- Department of Epidemiology, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka-cho, Obu, Aichi, 474-8522, Japan.
| | | | | | | | | |
Collapse
|