1
|
Fougeron N, Trebbi A, Keenan B, Payan Y, Chagnon G. Current poisson's ratio values of finite element models are too low to consider soft tissues nearly-incompressible: illustration on the human heel region. Comput Methods Biomech Biomed Engin 2024; 27:1999-2008. [PMID: 37847198 DOI: 10.1080/10255842.2023.2269286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Tissues' nearly incompressibility was well reported in the literature but little effort has been made to compare volume variations computed by simulations with in vivo measurements. In this study, volume changes of the fat pad during controlled indentations of the human heel region were estimated from segmented medical images using digital volume correlation. The experiment was reproduced using finite element modelling with several values of Poisson's ratio for the fat pad, from 0.4500 to 0.4999. A single value of Poisson's ratio could not fit all the indentation cases. Estimated volume changes were between 0.9% - 11.7%.
Collapse
Affiliation(s)
- Nolwenn Fougeron
- Univ. Grenoble Alpes, CNRS, UMR 5525, Grenoble INP, TIMC, Grenoble, France
| | - Alessio Trebbi
- Univ. Grenoble Alpes, CNRS, UMR 5525, Grenoble INP, TIMC, Grenoble, France
| | - Bethany Keenan
- Cardiff School of Engineering, Cardiff University, Cardiff, UK
| | - Yohan Payan
- Univ. Grenoble Alpes, CNRS, UMR 5525, Grenoble INP, TIMC, Grenoble, France
| | - Gregory Chagnon
- Univ. Grenoble Alpes, CNRS, UMR 5525, Grenoble INP, TIMC, Grenoble, France
| |
Collapse
|
2
|
Assessing reliability and validity of different stiffness measurement tools on a multi-layered phantom tissue model. Sci Rep 2023; 13:815. [PMID: 36646734 PMCID: PMC9842673 DOI: 10.1038/s41598-023-27742-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Changes in the mechanical properties (i.e., stiffness) of soft tissues have been linked to musculoskeletal disorders, pain conditions, and cancer biology, leading to a rising demand for diagnostic methods. Despite the general availability of different stiffness measurement tools, it is unclear as to which are best suited for different tissue types and the related measurement depths. The study aimed to compare different stiffness measurement tools' (SMT) reliability on a multi-layered phantom tissue model (MPTM). A polyurethane MPTM simulated the four layers of the thoracolumbar region: cutis (CUT), subcutaneous connective tissue (SCT), fascia profunda (FPR), and erector spinae (ERS), with varying stiffness parameters. Evaluated stiffness measurement tools included Shore Durometer, Semi-Electronic Tissue Compliance Meter (STCM), IndentoPRO, MyotonPRO, and ultrasound imaging. Measurements were made by two independent, blinded examiners. Shore Durometer, STCM, IndentoPRO, and MyotonPRO reliably detected stiffness changes in three of the four MPTM layers, but not in the thin (1 mm thick) layer simulating FPR. With ultrasound imaging, only stiffness changes in layers thicker than 3 mm could be measured reliably. Significant correlations ranging from 0.70 to 0.98 (all p < 0.01) were found. The interrater reliability ranged from good to excellent (ICC(2,2) = 0.75-0.98). The results are encouraging for researchers and clinical practitioners as the investigated stiffness measurement tools are easy-to-use and comparatively affordable.
Collapse
|
3
|
Shore hardness is a more representative measurement of bulk tissue biomechanics than of skin biomechanics. Med Eng Phys 2022; 105:103816. [DOI: 10.1016/j.medengphy.2022.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
4
|
Gales DJ, Winter SL, Challis JH. The influence of heel pad confinement on heel pad mechanical properties. FOOTWEAR SCIENCE 2021. [DOI: 10.1080/19424280.2021.1950215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dan J. Gales
- Department of Health Sciences, Lock Haven University, PA, USA
| | - Samantha L. Winter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - John H. Challis
- Biomechanics Laboratory, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Analysis and Assessment through Mechanical Static Compression Tests of Damping Capacity in a Series of Orthosis Plantar Materials Used as Supports. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010115. [PMID: 33375277 PMCID: PMC7794760 DOI: 10.3390/ijerph18010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
High plantar pressure is the cause of multiple types of foot injuries and one of the main reasons for patient visits in podiatry and traumatology. Therefore, there is a need to acquire specific tools to address such injuries. The aim of this study was to determine the absorption capacity of selected materials applied as plantar supports and their response to pressure. The study had a cross-sectional design. A total of 21 materials were chosen and different material families were assessed, including ethylene-vinyl acetate, polyurethane foams, and polyethylene foams. Static compression tests were performed to analyze each material. The system is ideally suited for lower-force applications, small components, biomedical applications, and lower-strength materials. Damping was determined using mathematical calculations performed on the study data. It was found that materials with a low Shore A, or soft materials, exhibited worse absorption capacity than harder materials. Ethyl-vinyl acetates had good absorption capacity, polyurethane foams had a poor absorption capacity, and soft materials provided better adaption to impact. The results suggested that damping is not determined by the hardness of the material, and materials within the same family exhibit different damping capabilities.
Collapse
|
6
|
Ugbolue UC, Yates EL, Rowland KE, Wearing SC, Gu Y, Lam WK, Baker JS, Sculthorpe NF, Dutheil F. A novel simplified biomechanical assessment of the heel pad during foot plantarflexion. Proc Inst Mech Eng H 2020; 235:197-207. [PMID: 33148117 DOI: 10.1177/0954411920971069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heel pad (HP) which is located below the calcaneus comprises a composition of morphometrical and morphological arrangements of soft tissues that are influenced by factors such as gender, age and obesity. It is well known that HP pain and Achilles tendonitis consist of discomfort, pain and swelling symptoms that usually develop from excessive physical activities such as walking, jumping and running. The purpose of this study was to develop biomechanical techniques to evaluate the function and characteristics of the HP. Ten healthy participants (five males and five females) participated in this laboratory-based study, each performing a two-footed heel raise to mimic the toe-off phase during human locomotion. Twenty-six (3 mm) retroreflective markers were attached to the left and right heels (thirteen markers on each heel). Kinematic data was captured using three-dimensional motion analysis cameras synchronised with force plates. Descriptive and multivariate statistical tests were used in this study. In addition, a biomechanical technique that utilises only six markers from 26 markers to assess HP deformation and function has been developed and used in this study. Overall HP displacement was significantly higher in males on the most lateral part of the right heel (p < 0.05). No significant differences were evident when comparing the non-dominant and dominant heels during the baseline, unloading and loading phases (p > 0.05). Findings from this study suggested that biomechanical outputs expressed as derivatives from tracked HP marker movements can morphologically and morphometrically characterise HP soft tissue deformation changes. The outcome of this study highlights the importance of 3D motion analysis being used as a potential prospective intervention to quantify the function / characteristics of the heel pad soft tissues.
Collapse
Affiliation(s)
- Ukadike C Ugbolue
- Faculty of Sports Science, Ningbo University, China.,School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, UK.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Emma L Yates
- School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, UK
| | - Keir E Rowland
- School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, UK
| | - Scott C Wearing
- Faculty of Health, School - Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, China
| | - Wing-Kai Lam
- Li Ning Sports Science Research Center, Li Ning (China) Sports Goods Co. Ltd, Beijing, China.,Department of Kinesiology, Shenyang Sports University, Shenyang, China
| | - Julien S Baker
- Faculty of Sports Science, Ningbo University, China.,School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, UK.,Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Nicholas F Sculthorpe
- School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, UK
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, Université Clermont Auvergne, Clermont-Ferrand, France.,Faculty of Health, School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Bakshi A, DiZio P, Lackner JR. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model. J Neurophysiol 2019; 121:2042-2060. [PMID: 30943111 DOI: 10.1152/jn.00607.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the companion paper (Bakshi A, DiZio P, Lackner JR. J Neurophysiol. In press, 2019), we reported how voluntary forward-backward sway in a rotating room generated medial-lateral Coriolis forces that initially deviated intended body sway paths. Pure fore-aft sway was gradually restored over per-rotation trials, and a negative aftereffect occurred during postrotation sway. Force plate recordings showed that subjects learned to compensate for the Coriolis forces by executing a bimodal torque, the distribution of which was asymmetric across the two legs and of opposite sign for forward vs. backward sway. To explain these results, we have developed an asymmetric, nonparallel-leg, inverted pendulum model to characterize upright balance control in two dimensions. Fore-aft and medial-lateral sway amplitudes can be biomechanically coupled or independent. Biomechanical coupling occurs when Coriolis forces orthogonal to the direction of movement perturb sway about the ankles. The model includes a mechanism for alternating engagement/disengagement of each leg and for asymmetric drive to the ankles to achieve adaptation to Coriolis force-induced two-dimensional sway. The model predicts the adaptive control underlying the adaptation of voluntary postural sway to Coriolis forces. A stability analysis of the model generates parameter values that match those measured experimentally, and the parameterized model simulations reproduce the experimentally observed sway trajectories. NEW & NOTEWORTHY This paper presents a novel nonparallel leg model of postural control that correctly predicts the perturbations of voluntary sway that occur in a rotating environment and the adaptive changes that occur to restore faithful movement trajectories. This engaged leg model (ELM) predicts the asymmetries in force distribution and their patterns between the two legs to restore accurate movement trajectories. ELM has clinical relevance for pathologies that generate postural asymmetries and for altered gravitoinertial force conditions.
Collapse
Affiliation(s)
- Avijit Bakshi
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| | - Paul DiZio
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| | - James R Lackner
- Ashton Graybiel Spatial Orientation Laboratory, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
8
|
Chanda A, McClain S. Mechanical Modeling of Healthy and Diseased Calcaneal Fat Pad Surrogates. Biomimetics (Basel) 2019; 4:E1. [PMID: 31105187 PMCID: PMC6477669 DOI: 10.3390/biomimetics4010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
The calcaneal fat pad is a major load bearing component of the human foot due to daily gait activities such as standing, walking, and running. Heel and arch pain pathologies such as plantar fasciitis, which over one third of the world population suffers from, is a consequent effect of calcaneal fat pad damage. Also, fat pad stiffening and ulceration has been observed due to diabetes mellitus. To date, the biomechanics of fat pad damage is poorly understood due to the unavailability of live human models (because of ethical and biosafety issues) or biofidelic surrogates for testing. This also precludes the study of the effectiveness of preventive custom orthotics for foot pain pathologies caused due to fat pad damage. The current work addresses this key gap in the literature with the development of novel biofidelic surrogates, which simulate the in vivo and in vitro compressive mechanical properties of a healthy calcaneal fat pad. Also, surrogates were developed to simulate the in vivo mechanical behavior of the fat pad due to plantar fasciitis and diabetes. A four-part elastomeric material system was used to fabricate the surrogates, and their mechanical properties were characterized using dynamic and cyclic load testing. Different strain (or displacement) rates were tested to understand surrogate behavior due to high impact loads. These surrogates can be integrated with a prosthetic foot model and mechanically tested to characterize the shock absorption in different simulated gait activities, and due to varying fat pad material property in foot pain pathologies (i.e., plantar fasciitis, diabetes, and injury). Additionally, such a foot surrogate model, fitted with a custom orthotic and footwear, can be used for the experimental testing of shock absorption characteristics of preventive orthoses.
Collapse
Affiliation(s)
- Arnab Chanda
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA.
- Department of Aerospace Engineering and Mechanics, University of Alabama, AL 35401, USA.
| | - Stephen McClain
- Department of Aerospace Engineering and Mechanics, University of Alabama, AL 35401, USA.
- Department of Biomedical Engineering, Georgia Institute of Technology, GA 30332, USA.
| |
Collapse
|
9
|
Suzuki R, Ito K, Lee T, Ogihara N. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation. Med Eng Phys 2017; 50:83-88. [PMID: 29079047 DOI: 10.1016/j.medengphy.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Identifying the viscous properties of the plantar soft tissue is crucial not only for understanding the dynamic interaction of the foot with the ground during locomotion, but also for development of improved footwear products and therapeutic footwear interventions. In the present study, the viscous and hyperelastic material properties of the plantar soft tissue were experimentally identified using a spherical indentation test and an analytical contact model of the spherical indentation test. Force-relaxation curves of the heel pads were obtained from the indentation experiment. The curves were fit to the contact model incorporating a five-element Maxwell model to identify the viscous material parameters. The finite element method with the experimentally identified viscoelastic parameters could successfully reproduce the measured force-relaxation curves, indicating the material parameters were correctly estimated using the proposed method. Although there are some methodological limitations, the proposed framework to identify the viscous material properties may facilitate the development of subject-specific finite element modeling of the foot and other biological materials.
Collapse
Affiliation(s)
- Ryo Suzuki
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Kohta Ito
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Taeyong Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Keio University, Yokohama, Japan.
| |
Collapse
|
10
|
Investigation of the optimum heel pad stiffness: a modeling study. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:585-593. [DOI: 10.1007/s13246-017-0565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
|
11
|
Behforootan S, Chatzistergos PE, Chockalingam N, Naemi R. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma. J Mech Behav Biomed Mater 2017; 68:287-295. [DOI: 10.1016/j.jmbbm.2017.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
12
|
Ahanchian N, Nester CJ, Howard D, Ren L, Parker D. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis. Med Eng Phys 2017; 40:11-19. [DOI: 10.1016/j.medengphy.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
13
|
Finite element modelling of the foot for clinical application: A systematic review. Med Eng Phys 2017; 39:1-11. [DOI: 10.1016/j.medengphy.2016.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/13/2016] [Accepted: 10/23/2016] [Indexed: 11/20/2022]
|
14
|
Suzuki R, Ito K, Lee T, Ogihara N. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation. J Mech Behav Biomed Mater 2017; 65:753-760. [DOI: 10.1016/j.jmbbm.2016.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 09/04/2016] [Accepted: 09/21/2016] [Indexed: 11/26/2022]
|
15
|
Material properties of the heel fat pad across strain rates. J Mech Behav Biomed Mater 2016; 65:398-407. [PMID: 27643676 PMCID: PMC5161234 DOI: 10.1016/j.jmbbm.2016.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022]
Abstract
The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150 s−1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast.
Collapse
|
16
|
Kardeh M, Vogl TJ, Huebner F, Nelson K, Stief F, Silber G. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis. Med Eng Phys 2016; 38:940-5. [PMID: 27387903 DOI: 10.1016/j.medengphy.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/14/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
A numerical-experimental, proof-of-concept approach is described to characterize the mechanical material behavior of the human heel pad under impact conditions similar to a heel strike while running. A 3D finite-element model of the right foot of a healthy female subject was generated using magnetic resonance imaging. Based on quasi-static experimental testing of the subject's heel pad, force-displacement data was obtained. Using this experimental data as well as a numerical optimization algorithm, an inverse finite-element analysis and the 3D model, heel pad hyperelastic (long-term) material parameters were determined. Applying the same methodology, based on the dynamic experimental data from the impact test and obtained long-term parameters, linear viscoelastic parameters were established with a Prony series. Model validation was performed employing quasi-static and dynamic force-displacement data. Coefficients of determination when comparing model to experimental data during quasi-static and dynamic (initial velocity: 1480mm/s) procedure were R(2) = 0.999 and R(2) = 0.990, respectively. Knowledge of these heel pad material parameters enables realistic numerical analysis to evaluate internal stress and strain in the heel pad during different quasi-static or dynamic load conditions.
Collapse
Affiliation(s)
- M Kardeh
- Institute for Materials Science, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany; Department of Diagnostic and Interventional Radiology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - T J Vogl
- Department of Diagnostic and Interventional Radiology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - F Huebner
- Department of Diagnostic and Interventional Radiology, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - K Nelson
- Department of Vascular and Endovascular Surgery, Hospital of the Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - F Stief
- Orthopedic University Hospital Friedrichsheim GmbH, Frankfurt am Main, Germany
| | - G Silber
- Institute for Materials Science, Frankfurt University of Applied Sciences, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear. Med Eng Phys 2015; 37:531-8. [DOI: 10.1016/j.medengphy.2015.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 01/21/2023]
|
18
|
Chatzistergos PE, Naemi R, Sundar L, Ramachandran A, Chockalingam N. The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes. J Diabetes Complications 2014; 28:488-93. [PMID: 24795257 DOI: 10.1016/j.jdiacomp.2014.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 11/26/2022]
Abstract
AIM The present study aims at investigating the correlation between the mechanical properties of the heel-pad of people with type-2 diabetes and the clinical parameters used to monitor their health and ulceration risk. METHODS A new device for the in-vivo testing of plantar soft tissues was built and pilot-tested. This device consists of an ultrasound probe connected in series with a dynamometer. Loading is applied manually using a ball-screw actuator. A total of 35 volunteers with type-2 diabetes were recruited and the thickness, stiffness of their heel-pads as well as the energy absorbed during loading were assessed. The participants with diabetes also underwent blood tests and measurements of Ankle Brachial Index and Vibration Perception Threshold. RESULTS Pearson correlation analysis revealed strong correlations between triglycerides and heel-pad stiffness (r=0.675, N=27, p<0.001) and between triglycerides and energy (r=-0.598, N=27, p=0.002). A correlation of medium strength was found between Fasting Blood Sugar (FBS) and stiffness (r=0.408, N=29, p=0.043). CONCLUSIONS People with type-2 diabetes and high levels of triglycerides and FBS are more likely to have stiffer heel-pads. Increased stiffness could limit the tissues' ability to evenly distribute loads making them more vulnerable to trauma and ulceration.
Collapse
Affiliation(s)
| | - Roozbeh Naemi
- CSHER, Faculty of Health Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom
| | | | | | | |
Collapse
|
19
|
Molligan J, Schon L, Zhang Z. A stereologic study of the plantar fat pad in young and aged rats. J Anat 2013; 223:537-45. [PMID: 24033117 DOI: 10.1111/joa.12104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 01/16/2023] Open
Abstract
Plantar fat pad (PFP) is a tissue structure that absorbs the initial impact of walking and running and ultimately bears body weight at standing. This study was designed to quantify the histomorphological changes of the PFP in aged rats. The most medial PFP was dissected from the hind feet of young rats (4 months old, n = 6) and aged rats (24 months old, n = 6). Histological structure and cellular senescence of PFP were analyzed stereologically and histomorphometrically. Immunohistochemistry of matrix metalloproteinase 9 (MMP9) was also performed on PFP tissue sections. Compared with young rats, the thickness of epidermis, dermis and septa of the PFP were significantly reduced in the aged rats. The total volume of adipose tissue in the PFP of aged rats was only about 65% of that in the young rats. The microvascular density and the number of fat pad units (FPU), a cluster of adipocytes enclosed by elastin septa, in the PFP were unchanged in the aged rats. In the aged rats, the number of adipocytes per FPU was reduced but the number of simple adipocyte clusters, without surrounding septa, was increased. The shift of the types of adipocyte clusters in the aged PFP was accompanied by degradation of elastin fibers and increased expression of MMP9. In conclusion, the PFP, particularly the elastic septa, degenerates significantly in aged rats and this may contribute to the pathology of PFP-related diseases.
Collapse
Affiliation(s)
- Jeremy Molligan
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, MD, USA
| | | | | |
Collapse
|
20
|
Holst K, Liebgott H, Wilhjelm JE, Nikolov S, Torp-Pedersen ST, Delachartre P, Jensen JA. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study. ULTRASONICS 2013; 53:439-446. [PMID: 23079052 DOI: 10.1016/j.ultras.2012.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 08/07/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load cell. Load-compression data and ultrasound B-mode images were simultaneously acquired in 19 compression steps of 0.1mm each. The internal tissue displacement was for each step calculated by a phase-based cross-correlation technique and internal strain maps were derived from these displacement maps. Elastic moduli were found from the resulting stress-strain curves. The elastic moduli made it possible to distinguish eight of nine phantoms from each other according to the manufactured stiffness and showed very little dependence of the thickness. Mean elastic moduli for the three soft, the three medium, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation.
Collapse
Affiliation(s)
- Karen Holst
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 349, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
21
|
Matteoli S, Fontanella CG, Carniel EL, Wilhjelm JE, Virga A, Corbin N, Corvi A, Natali AN. Investigations on the viscoelastic behaviour of a human healthy heel pad: In vivo compression tests and numerical analysis. Proc Inst Mech Eng H 2012; 227:334-42. [DOI: 10.1177/0954411912465061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the viscoelastic behaviour of the human heel pad by comparing the stress–relaxation curves obtained from a compression device used on an in vivo heel pad with those obtained from a three-dimensional computer-based subject-specific heel pad model subjected to external compression. The three-dimensional model was based on the anatomy revealed by magnetic resonance imaging of a 31-year-old healthy female. The calcaneal fat pad tissue was described with a viscohyperelastic model, while a fibre-reinforced hyperelastic model was formulated for the skin. All numerical analyses were performed to interpret the mechanical response of heel tissues, with loading conditions and displacement rate in agreement with experimental tests. The heel tissues showed a non-linear, viscoelastic behaviour described by characteristic hysteretic curves, stress–relaxation and viscous recovery phenomena. The reliability of the investigations was validated by the interpretation of the mechanical response of heel tissues under the application of three pistons with diameter of 15, 20 and 40 mm, at the same displacement rate of about 1.7 mm/s. The maximum and minimum relative errors were found to be less than 0.95 and 0.064, respectively.
Collapse
Affiliation(s)
- Sara Matteoli
- Department of Mechanics and Industrial Technologies, University of Florence, Florence, Italy
- Biomedical Engineering Group, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Chiara G Fontanella
- Centre of Mechanics of Biological Materials, Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Emanuele L Carniel
- Centre of Mechanics of Biological Materials, Department of Industrial Engineering, University of Padua, Padua, Italy
| | - Jens E Wilhjelm
- Biomedical Engineering Group, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Antonio Virga
- Department of Mechanics and Industrial Technologies, University of Florence, Florence, Italy
| | - Nadège Corbin
- Biomedical Engineering Group, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Andrea Corvi
- Department of Mechanics and Industrial Technologies, University of Florence, Florence, Italy
- Fondation “In cammino…”, Fucecchio, Florence, Italy
| | - Arturo N Natali
- Centre of Mechanics of Biological Materials, Department of Industrial Engineering, University of Padua, Padua, Italy
| |
Collapse
|
22
|
KHANI MM, KATOOZIAN H, AZMA K, NASEH I, SALIMI AH. HYPER-ELASTIC PARAMETER ESTIMATION OF HUMAN HEEL-PAD: A FINITE ELEMENT AND EVOLUTIONARY BASED ALGORITHM. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519411004708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heel-pad as a biological shock absorber has an important role in the initial contact phase of gait cycle dissipating the impact forces resulted in locomotion. An axisymmetric finite element model of human heel-pad has been generated and the heel-pad experimental data deduced from a published force-deflection graph of the same specimen (Iain R. Spears, Janice E. Miller-Young), Iterative identification task has been used to extract nonlinear material properties describing hyper-elastic behavior of heel-pad. The genetic algorithm was incorporated into estimation process using an interface program. Two parameters of hyper-elastic materials potential energy function represented by Mooney–Rivlin were determined by using the genetic algorithm technique to minimize the displacement error between the experimental data and the corresponding finite element results after a considerable number of iterations. The result can be used for design and construction of synthetic heel-pad and therapeutic foot wear as well as insoles, especially for diabetic patients.
Collapse
Affiliation(s)
- M. M. KHANI
- Biomedical Faculty, Amirkabir University of Technology, Tehran, Iran
- AJA University of Medical Sciences, Tehran, Iran
| | - H. KATOOZIAN
- Biomedical Faculty, Amirkabir University of Technology, Tehran, Iran
| | - K. AZMA
- AJA University of Medical Sciences, Tehran, Iran
| | - I. NASEH
- AJA University of Medical Sciences, Tehran, Iran
| | - A. H. SALIMI
- Biomedical Faculty, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Sopher R, Nixon J, McGinnis E, Gefen A. The influence of foot posture, support stiffness, heel pad loading and tissue mechanical properties on biomechanical factors associated with a risk of heel ulceration. J Mech Behav Biomed Mater 2011; 4:572-82. [DOI: 10.1016/j.jmbbm.2011.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/08/2011] [Accepted: 01/19/2011] [Indexed: 11/30/2022]
|
24
|
Natali AN, Fontanella CG, Carniel EL, Young JM. Biomechanical behaviour of heel pad tissue experimental testing, constitutive formulation, and numerical modelling. Proc Inst Mech Eng H 2011; 225:449-59. [DOI: 10.1177/09544119jeim851] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper deals with the constitutive formulation of heel pad tissue and presents a procedure for identifying constitutive parameters using experimental data, with the aim of developing a computational approach for investigating the actual biomechanical response. The preliminary definition of constitutive parameters was developed using a visco-hyperelastic formulation, considering experimental data from in vitro compression tests on specimens of fat pad tissue and data from in vivo tests to identify the actual trend of tissue stiffness. The discrepancy between model results and experimental data was evaluated on the basis of a specific cost function, adopting a stochastic/deterministic procedure. The parameter evaluation was upgraded by considering experimental tests performed on the fat pad tissues of a cadaveric foot using in situ indentation tests at 0.01 and 350 mm/s strain rates. The constitutive formulation was implemented in a numerical model. The comparison of data from in situ tests and numerical results led to an optimal domain of parameters based on an admissible discrepancy criterion. Numerical results evaluated for different sets of parameters inside the domain are reported and compared with experimental data for a reliability evaluation of the proposed procedure.
Collapse
Affiliation(s)
- A N Natali
- Centre of Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - C G Fontanella
- Centre of Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - E L Carniel
- Centre of Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - J Miller Young
- Faculty of Science and Technology, Mount Royal University, Alta, Canada
| |
Collapse
|
25
|
Natali A, Fontanella C, Carniel E. Constitutive formulation and analysis of heel pad tissues mechanics. Med Eng Phys 2010; 32:516-22. [DOI: 10.1016/j.medengphy.2010.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 02/11/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
26
|
Hsu CC, Tsai WC, Hsiao TY, Tseng FY, Shau YW, Wang CL, Lin SC. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin Biomech (Bristol, Avon) 2009; 24:682-6. [PMID: 19619918 DOI: 10.1016/j.clinbiomech.2009.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 06/09/2009] [Accepted: 06/10/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND The study attempted to highlight the differences of mechanical properties in microchambers and macrochambers between patients with type 2 diabetes mellitus and age-matched healthy volunteers. METHODS A total of 29 heels in 18 diabetic patients and 28 heels in 16 age-matched healthy participants were examined by a loading device consisting of a 10-MHz compact linear-array ultrasound transducer, a Plexiglas cylinder, and a load cell. Subjects in both groups were on average about 55 years old with a body mass index of approximately 25 kg/m(2). A stepping motor was used to progressively load the transducer on the tested heels at a velocity of 6mm/s from zero to the maximum stress of 78 kPa. Unloaded thickness, strain, and elastic modulus in microchambers, macrochambers and heel pads were measured. FINDINGS Microchambers strain in diabetic patients was significantly greater than that in healthy subjects (0.291 (SD 0.14) vs. 0.104 (SD 0.057); P<0.001). Macrochambers strain in diabetic patients was significantly less than that in healthy subjects (0.355 (SD 0.098) vs. 0.450 (SD 0.092); P=0.001). Microchambers stiffness in diabetic patients was significantly less than that in healthy persons (393 (SD 371)kPa vs. 1140 (SD 931)kPa; P<0.001). Macrochambers stiffness in diabetic patients was significantly greater than that in healthy persons (239 (SD 77)kPa vs. 181 (SD 42)kPa; P=0.001). INTERPRETATION Heel pad tissue properties are altered heterogeneously in people with diabetes. Increased macrochambers but decreased microchambers stiffness may cause diminished cushioning capacities in diabetic heels.
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Atlas E, Yizhar Z, Gefen A. The Diabetic Foot Load Monitor: A Portable Device for Real-Time Subject-Specific Measurements of Deep Plantar Tissue Stresses During Gait. J Med Device 2008. [DOI: 10.1115/1.2891241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Elevated stresses in deep plantar tissue of diabetic neuropathic patients were associated with an increased risk for foot ulceration, but only interfacial foot pressures are currently measured to evaluate susceptibility to ulcers. The goals of this study were to develop a real-time patient-specific plantar tissue stress monitor based on the Hertz contact theory. The biomechanical model for stress calculations considers the heel and metatarsal head pads, where most ulcers occur. For calculating stress concentrations around the bone-pad interface, plantar tissue is idealized as elastic and incompressible semi-infinite bulk (with properties measured by indentation), which is penetrated by a rigid sphere with the bone’s radius of curvature (from X-ray). Hertz’s theory is used to solve the bone-pad mechanical interactions, after introducing correction coefficients to consider large deformations. Foot-shoe forces are measured to solve and display the principal compressive, tensile, and von Mises plantar tissue stresses in real time. Our system can be miniaturized in a handheld computer, allowing plantar stress monitoring in the patient’s natural environment. Small groups of healthy subjects (N=6) and diabetic patients (N=3) participated in an evaluation study in which the differences between free walking and treadmill walking were examined. We also compared gait on a flat surface to gait on an ascending/descending slope of 3.5deg and when ascending/descending stairs. Peak internal compression stress was about threefold greater than the interface pressure at the calcaneus region. Subjects who were inexperience in treadmill walking displayed high gait-cycle variability in the internal stresses as well as poor foot loading. There was no statistical difference between gait on a flat surface and gait when ascending/descending a slope. Internal stresses under the calcaneus during gait on a flat surface, however, were significantly higher than when ascending/descending stairs. We conclude that the present stress monitor is a promising tool for real-time patient-specific evaluation of deep tissue stresses, providing valuable information in the effort to protect diabetic patients from foot ulceration. Clinical studies are now underway to identify which stress parameters can distinguish between diabetic and normal subjects; these parameters may be used for establishing injury threshold criteria.
Collapse
Affiliation(s)
- Eran Atlas
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ziva Yizhar
- Department of Physical Therapy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Sun PC, Wei HW, Chen CH, Wu CH, Kao HC, Cheng CK. Effects of varying material properties on the load deformation characteristics of heel cushions. Med Eng Phys 2007; 30:687-92. [PMID: 17888713 DOI: 10.1016/j.medengphy.2007.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/11/2007] [Accepted: 07/15/2007] [Indexed: 11/20/2022]
Abstract
Various insole materials were used in attenuation of heel-strike impact. This study presented a compression test to investigate the deformation characteristics of common heel cushions. There were two materials (thermoplastic elastomer "TPE" and silicone) with three hardness and six thickness being analyzed. They underwent consecutive loading-unloading cycles with a load control mode. The displacement of material thickness was recorded during cyclic compression being applied and released from 0 to 1050 N. The energy input, return and dissipation were evaluated based on the load deformation curves when new and after repeated compression. The TPE recovered more deformed energy and thickness than the silicone after the first loading cycle. The silicone would preserve more strain energy with increasing its hardness for the elastic recovery in the unloading process. The deformed energy was decreased as the original thickness did not completely recover under cyclic tests. The reduction in hysteresis area was gradually converged within 20 cycles. The silicone attenuated more impact energy in the initial cycles, but its energy dissipation was reduced after repeated loading. To increase hardness or thickness should be considered to improve resilience or accommodate persistent compression without flattening. The careful selection of cushion materials is imperative to meet individual functional demands.
Collapse
Affiliation(s)
- Pi-Chang Sun
- Orthopedic Biomechanics Laboratory, Institute of Rehabilitation Science and Technology, National Yang Ming University, No. 155, Sec. 2, Li-Nung St, Taipei 11221, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Hsu CC, Tsai WC, Wang CL, Pao SH, Shau YW, Chuan YS. Microchambers and macrochambers in heel pads: are they functionally different? J Appl Physiol (1985) 2007; 102:2227-31. [PMID: 17272407 DOI: 10.1152/japplphysiol.01137.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heel pad consists of a superficial microchamber layer and a deep macrochamber layer. This study highlights the different biomechanical behaviors between the microchamber and macrochamber layers using ultrasonography. The heel pad in each left foot of six healthy volunteers aged ∼25 yr old was measured with a device consisting of a 10-MHz linear-array ultrasound transducer and a load cell. The testing heels were loaded on the ultrasound transducer with a loading velocity of ∼0.5 cm/s and were withdrawn when the specified maximum stress (158 kPa) was reached. Unloaded tissue thickness, end-loaded thickness, deformation proportion, average deformation, and rebound rates and elastic modulus of the microchamber and macrochamber layers were assessed. The unloaded thickness of the microchamber layer was ∼30% of the macrochamber layer. The microchamber layer also had significantly less unloaded thickness, end-loaded thickness, mean deformation rate, mean rebound rate, and deformation proportion than the macrochamber layer. A significant difference between the unloaded and end-loaded thickness in the macrochamber layer was observed. The average soft tissue deformation rate was significantly different from the rebound rate in the microchamber layer. A similar trend was detected in the macrochamber layer. The elastic modulus of the microchamber layer was 450 kPa (SD 240), which was nearly 10 times of that in the macrochamber layer. In conclusion, ultrasound can identify the heterogeneous tissue properties of the heel pad. The macrochamber layer responds to loading with large deformation, and the microchamber layer has a high degree of tissue stiffness.
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Institute of Applied Mechanics, National Taiwan University, Industrial Technology Research Institute, No. 1, Roosevelt Rd., Sec. 4, Taipei 106, and Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Spears IR, Miller-Young JE, Sharma J, Ker RF, Smith FW. The potential influence of the heel counter on internal stress during static standing: A combined finite element and positional MRI investigation. J Biomech 2007; 40:2774-80. [PMID: 17362970 DOI: 10.1016/j.jbiomech.2007.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 01/09/2007] [Indexed: 11/17/2022]
Abstract
Confinement of the heel due to the counter of the shoe is believed to influence heel pad biomechanics. Using a two-dimensional finite element model of the heel pad and shoe during a simulation of static standing, the aim of this study was to quantify the potential effect of confinement on internal heel pad stress. Non-weightbearing MRI and weightbearing MRI with plantar pressure and ground reaction force data were recorded for a single subject. The non-weightbearing MRI was used to create two FE models of the heel pad, using either homogeneous or composite material properties. The composite model included a distinction in material properties between fat pad and skin. Vertical and medial-lateral forces, as measured on the subject's heel, were applied to the models and vertical compressive strains for both models were comparable with those observed by weightbearing MRI. However, only for the composite model was the predicted plantar pressure distribution comparable with measured data. The composite model was therefore used in further analyses. In this composite model, the internal stresses were located mainly in the skin and were predominantly tensile in nature, whereas the stress state in the fat pad approached hydrostatic conditions. A representation of a running shoe, including an insole, midsole and heel counter was then added to the composite heel pad to form the shod model. In order to investigate the counter effect, the load was applied to the shod model with and without the heel counter. The effect of the counter on peak stress was to elevate compression (0-50%), reduce tension (22-34%) and reduce shear (22-28%) in the skin. In addition, the counter reduced both compressive (20-40%) and shear (58-80%) stress in the fat pad and tension in the fat pad remained negligible. Taken together the results indicate that a well-fitted counter works in sympathy with the internal structure of the heel pad and could be an effective reducer of heel pad stress. However, further research needs to be undertaken to assess the long-term effects on the soft-tissues, practicalities of achieving good fit and behavior under dynamic events.
Collapse
Affiliation(s)
- I R Spears
- Sport and Exercise Subject Group, University of Teesside, Middlesbrough TS1 3BA, UK.
| | | | | | | | | |
Collapse
|