1
|
Létocart AJ, Svensson RB, Mabesoone F, Charleux F, Marin F, Dermigny Q, Magnusson SP, Couppé C, Grosset JF. Structure and function of Achilles and patellar tendons following moderate slow resistance training in young and old men. Eur J Appl Physiol 2024; 124:2707-2723. [PMID: 38649478 DOI: 10.1007/s00421-024-05461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
The aim of this study was to investigate the effect of aging and resistance training with a moderate load on the size and mechanical properties of the patellar (PT) and Achilles tendon (AT) and their associated aponeuroses; medial gastrocnemius (MG) and vastus lateralis (VL). Young (Y55; 24.8 ± 3.8 yrs, n = 11) and old men (O55; 70.0 ± 4.6 yrs, n = 13) were assigned to undergo a training program (12 weeks; 3 times/week) of moderate slow resistance training [55% of one repetition maximum (RM)] of the triceps surae and quadriceps muscles. Tendon dimensions were assessed using 1.5 T magnetic resonance imaging before and after 12 weeks. AT and PT cross sectional area (CSA) were determined every 10% of tendon length. Mechanical properties of the free AT, MG aponeurosis, PT, and VL aponeurosis were assessed using ultrasonography (deformation) and tendon force measurements. CSA of the AT but not PT was greater in O55 compared with Y55. At baseline, mechanical properties were generally lower in O55 than Y55 for AT, MG aponeurosis and VL aponeurosis (Young's modulus) but not for PT. CSA of the AT and PT increased equally in both groups following training. Further, for a given force, stiffness and Young's modulus also increased equally for VL aponeurosis and AT, for boths groups. The present study highlights that except for the PT, older men have lower tendon (AT, MG aponeurosis, and VL aponeurosis) mechanical properties than young men and 12-weeks of moderate slow resistance training appears sufficient to improve tendon size and mechanical adaptations in both young and older men. New and Noteworthy: These novel findings suggest that short-term moderate slow resistance training induces equal improvements in tendon size and mechanics regardless of age.
Collapse
Affiliation(s)
- Adrien J Létocart
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France.
| | - René B Svensson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Frédéric Marin
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France
| | - Quentin Dermigny
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France
| | - S Peter Magnusson
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Couppé
- Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospitals, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jean-François Grosset
- UMR CNRS 7338 Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologie de Compiègne, 60205, Compiègne Cedex, France.
| |
Collapse
|
2
|
Carpenter RS, Samaan MA, Clasey JL, Butterfield TA, Gao F, Hardy PA, Bollinger LM. Association of vastus lateralis diffusion properties with in vivo quadriceps contractile function in premenopausal women. Scand J Med Sci Sports 2023; 33:213-223. [PMID: 36337008 PMCID: PMC9928607 DOI: 10.1111/sms.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/10/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) parameters correlate with muscle fiber composition, but it is unclear how these relate to in vivo contractile function. PURPOSE To determine the relationship between DTI parameters of the vastus lateralis (VL) and in vivo knee extensor contractile. METHODS Thirteen healthy, premenopausal women underwent magnetic resonance imaging of the mid-thigh to determine patellar tendon moment arm length and quadriceps cross-sectional area. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the VL were determined using diffusion tensor imaging (DTI). Participants underwent an interpolated twitch (ITT) experiment before and after a fatiguing concentric-eccentric isokinetic knee extension (60°·s-1 ). During the ITT, supramaximal electrical stimuli were delivered to elicit twitch responses from the knee extensors before, during, and after a maximal voluntary isometric contraction (MVIC). Knee extensor-specific tension during twitch and MVIC were calculated from isometric torque data. Pearson's correlations were used to determine the relationship between muscle contractile properties and DTI parameters. RESULTS MD and RD were moderately correlated with peak twitch force and rate of force development. FA and AD were moderately inversely related to percent change in MVIC following exercise. CONCLUSION MD and RD are associated with in vivo quadriceps twitch properties but not voluntary strength, which may reflect the mechanical properties of constituent fiber types. FA and AD appear to relate to MVIC strength following fatiguing exercise.
Collapse
Affiliation(s)
- Rebekah S Carpenter
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Michael A Samaan
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Jody L Clasey
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Body Composition Core Laboratory, University of Kentucky, Lexington, Kentucky, USA
| | - Tim A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training, University of Kentucky, Lexington, Kentucky, USA
| | - Fan Gao
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - Peter A Hardy
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lance M Bollinger
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Tottori N, Suga T, Isaka T, Fujita S. Knee Extensor Morphology and Sprint Performance in Preadolescent Sprinters. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022; 93:781-787. [PMID: 34723757 DOI: 10.1080/02701367.2021.1919593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
Purpose: We previously reported that the cross-sectional area of the quadriceps femoris is correlated with the sprint performance of preadolescent sprinters. This finding suggests a close relationship between knee extensor torque-enhancing morphology and sprint performance in this young population. To further clarify this issue, in this study, we examined the relationships of the quadriceps femoris muscle volume (MV) and knee extensor moment arm (MA) with sprint performance in preadolescent sprinters. Methods: The quadriceps femoris MV and knee extensor MA in 15 sprint-trained preadolescent boys were measured using magnetic resonance imaging. Sprint performance was evaluated using a personal best 100-m sprint time and the higher 50-m sprint velocity of two 50-m sprint tests. Results: The quadriceps femoris MV and knee extensor MA were significantly correlated with personal best 100-m sprint time (r = -0.810 and -0.752, P ≤ 0.001 for both) and 50-m sprint velocity (r = 0.814 and 0.702, P < .01 for both). Furthermore, the relative quadriceps femoris MV normalized to body mass was significantly correlated with both the personal best 100-m sprint time (r = -0.620, P = .014) and 50-m sprint velocity (r = 0.686, P = .005). In contrast, no significant correlations were observed between the relative knee extensor MA normalized to body height and both sprint performance parameters. Conclusions: These findings suggest that the quadriceps femoris size, rather than the knee extensor MA dimension, is a more important morphological factor for achieving superior sprint performance in preadolescent sprinters.
Collapse
|
4
|
Kellis E, Blazevich AJ. Hamstrings force-length relationships and their implications for angle-specific joint torques: a narrative review. BMC Sports Sci Med Rehabil 2022; 14:166. [PMID: 36064431 PMCID: PMC9446565 DOI: 10.1186/s13102-022-00555-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Temporal biomechanical and physiological responses to physical activity vary between individual hamstrings components as well as between exercises, suggesting that hamstring muscles operate differently, and over different lengths, between tasks. Nevertheless, the force-length properties of these muscles have not been thoroughly investigated. The present review examines the factors influencing the hamstrings’ force-length properties and relates them to in vivo function. A search in four databases was performed for studies that examined relations between muscle length and force, torque, activation, or moment arm of hamstring muscles. Evidence was collated in relation to force-length relationships at a sarcomere/fiber level and then moment arm-length, activation-length, and torque-joint angle relations. Five forward simulation models were also used to predict force-length and torque-length relations of hamstring muscles. The results show that, due to architectural differences alone, semitendinosus (ST) produces less peak force and has a flatter active (contractile) fiber force-length relation than both biceps femoris long head (BFlh) and semimembranosus (SM), however BFlh and SM contribute greater forces through much of the hip and knee joint ranges of motion. The hamstrings’ maximum moment arms are greater at the hip than knee, so the muscles tend to act more as force producers at the hip but generate greater joint rotation and angular velocity at the knee for a given muscle shortening length and speed. However, SM moment arm is longer than SM and BFlh, partially alleviating its reduced force capacity but also reducing its otherwise substantial excursion potential. The current evidence, bound by the limitations of electromyography techniques, suggests that joint angle-dependent activation variations have minimal impact on force-length or torque-angle relations. During daily activities such as walking or sitting down, the hamstrings appear to operate on the ascending limbs of their force-length relations while knee flexion exercises performed with hip angles 45–90° promote more optimal force generation. Exercises requiring hip flexion at 45–120° and knee extension 45–0° (e.g. sprint running) may therefore evoke greater muscle forces and, speculatively, provide a more optimum adaptive stimulus. Finally, increases in resistance to stretch during hip flexion beyond 45° result mainly from SM and BFlh muscles.
Collapse
Affiliation(s)
- Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, TEFAA Serres, 62100, Serres, Greece.
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Australia
| |
Collapse
|
5
|
Escriche-Escuder A, Cuesta-Vargas AI, Casaña J. Modelling and in vivo evaluation of tendon forces and strain in dynamic rehabilitation exercises: a scoping review. BMJ Open 2022; 12:e057605. [PMID: 35879000 PMCID: PMC9328104 DOI: 10.1136/bmjopen-2021-057605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Although exercise is considered the preferred approach for tendinopathies, the actual load that acts on the tendon in loading programmes is usually unknown. The objective of this study was to review the techniques that have been applied in vivo to estimate the forces and strain that act on the human tendon in dynamic exercises used during rehabilitation. DESIGN Scoping review. DATA SOURCES Embase, PubMed, Web of Science and Google Scholar were searched from database inception to February 2021. ELIGIBILITY CRITERIA Cross-sectional studies available in English or Spanish language were included if they focused on evaluating the forces or strain of human tendons in vivo during dynamic exercises. Studies were excluded if they did not evaluate tendon forces or strain; if they evaluated running, walking, jumping, landing or no dynamic exercise at all; and if they were conference proceedings or book chapters. DATA EXTRACTION AND SYNTHESIS Data extracted included year of publication, study setting, study population characteristics, technique used and exercises evaluated. The studies were grouped by the types of techniques and the tendon location. RESULTS Twenty-one studies were included. Fourteen studies used an indirect methodology based on inverse dynamics, nine of them in the Achilles and five in the patellar tendon. Six studies implemented force transducers for measuring tendon forces in open carpal tunnel release surgery patients. One study applied an optic fibre technique to detect forces in the patellar tendon. Four studies measured strain using ultrasound-based techniques. CONCLUSIONS There is a predominant use of inverse dynamics, but force transducers, optic fibre and estimations from strain data are also used. Although these tools may be used to make general estimates of tendon forces and strains, the invasiveness of some methods and the loss of immediacy of others make it difficult to provide immediate feedback to the individuals.
Collapse
Affiliation(s)
- Adrian Escriche-Escuder
- Department of Physiotherapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Antonio I Cuesta-Vargas
- Department of Physiotherapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
- Department of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jose Casaña
- Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Dandridge O, Garner A, Amis AA, Cobb JP, van Arkel RJ. Variation in the patellar tendon moment arm identified with an improved measurement framework. J Orthop Res 2022; 40:799-807. [PMID: 34191354 DOI: 10.1002/jor.25124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/08/2021] [Accepted: 06/09/2021] [Indexed: 02/04/2023]
Abstract
The mechanical advantage of the knee extensor mechanism depends heavily on the patellar tendon moment arm (PTMA). Understanding which factors contribute to its variation may help improve functional outcomes following arthroplasty. This study optimized PTMA measurement, allowing us to quantify the contribution of different variables. The PTMA was calculated about the instantaneous helical axis of tibiofemoral rotation from optical tracked kinematics. A fabricated knee model facilitated calculation optimization, comparing four data smoothing techniques (raw, Butterworth filtering, generalized cross-validated cubic spline-interpolation and combined filtering/interpolation). The PTMA was then measured for 24 fresh-frozen cadaveric knees, under physiologically based loading and extension rates. Combined filtering/interpolation enabled sub-mm PTMA calculation accuracy throughout the range of motion (root-mean-squared error 0.2 mm, max error 0.4 mm), whereas large errors were measured for raw, filtered-only and interpolated-only techniques at terminal flexion/extension. Before scaling, the mean PTMA was 46 mm; PTMA magnitude was consistently larger in males (mean differences: 5 to 10 mm, p < .05) and was strongly related to knee size: larger knees have a larger PTMA. However, while scaling eliminated sex differences in PTMA magnitude, the peak PTMA occurred closer to terminal extension in females (female 15°, male 29°, p = .01). Knee size accounted for two-thirds of the variation in PTMA magnitude, but not the flexion angle where peak PTMA occurred. This substantial variation in angle of peak PTMA has implications for the design of musculoskeletal models and morphotype-specific arthroplasty. The developed calculation framework is applicable both in vivo and vitro for accurate PTMA measurement.
Collapse
Affiliation(s)
- Oliver Dandridge
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, UK
| | - Amy Garner
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, UK.,MSk Lab, Department of Surgery and Cancer, Imperial College London, London, UK.,Royal College of Surgeons of England and Dunhill Medical Trust Clinical Research Fellowship. Royal College of Surgeons of England, London, UK.,Health Education Kent, Surrey and Sussex, Stewart House, London, UK
| | - Andrew A Amis
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, UK
| | - Justin P Cobb
- MSk Lab, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Richard J van Arkel
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Repair of Acute Patellar Tendon Rupture Using an Internal Brace Technique. Case Rep Orthop 2021; 2021:1086625. [PMID: 34840838 PMCID: PMC8616684 DOI: 10.1155/2021/1086625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Acute patellar tendon rupture is a serious injury, resulting in the disruption of the knee extensor mechanism. Many authors recommend augmented repairs of patellar tendon ruptures to allow early active rehabilitation. An internal brace technique, which is a ligament augmentation using high-strength suture tape and knotless anchors, has been used as augmentation for the primary tendon or ligament injury. A case of acute patellar tendon rupture in a Judo player, who was successfully treated with primary repair and augmentation using an internal brace technique, is presented. In this case, the patient regained full function of the knee and returned to full sports activities postoperatively. An internal brace technique provides biomechanical stability of the repaired tendon without donor site morbidity and could be an effective procedure for the treatment of acute patellar tendon rupture.
Collapse
|
8
|
Effects of Voluntary Quadriceps-Hamstring Cocontraction on Tibiofemoral Force During Isometric Knee Extension and Knee Flexion Exercises With Constant External Resistance. J Appl Biomech 2021; 37:565-572. [PMID: 34689126 DOI: 10.1123/jab.2020-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
A biomechanical model has been developed to assess the effects of a voluntary effort of quadriceps-hamstring cocontraction on tibiofemoral force during isometric knee flexion and knee extension exercises with constant external resistance. The model establishes the analytic condition in the moment arms and traction angles of the quadriceps and hamstring muscles that determines the direction (anterior/posterior) of the tibiofemoral shear force developed by the cocontraction. This model also establishes the mechanical effect (loading/unloading) on the anterior cruciate ligament (ACL). At about 15° of knee flexion (where the ACL experiences its maximum quadriceps-induced strain) a voluntary quadriceps-hamstring cocontraction effort yields: (1) nearly the same enhancement in hamstring and quadriceps activation, (2) an increase in hamstring force about 1.5 times higher than that of the quadriceps, and (3) posterior (ACL unloading) tibial pull and compressive tibiofemoral force that increase linearly with the level of quadriceps and hamstring activation. The sensitivity of the results to intersubject variability in the posterior slope of the tibial plateau and muscle moment arms has been estimated with the use of anatomic data available in the literature. An anterior (ACL loading) tibial pull is actually developed at 15° of knee flexion by a voluntary effort of quadriceps-hamstring cocontraction as the posterior tibial slope exceeds 14°.
Collapse
|
9
|
Firminger CR, Haider IT, Bruce OL, Wannop JW, Stefanyshyn DJ, Edwards WB. Are subject-specific models necessary to predict patellar tendon fatigue life? A finite element modelling study. Comput Methods Biomech Biomed Engin 2021; 25:729-739. [PMID: 34514910 DOI: 10.1080/10255842.2021.1975683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Patellar tendinopathy is an overuse injury that occurs from repetitive loading of the patellar tendon in a scenario resembling that of mechanical fatigue. As such, fatigue-life estimates provide a quantifiable approach to assess tendinopathy risk and may be tabulated using nominal strain (NS) or finite element (FE) models with varied subject-specificity. We compared patellar tendon fatigue-life estimates from NS and FE models of twenty-nine athletes performing countermovement jumps with subject-specific versus generic geometry and material properties. Subject-specific patellar tendon material properties and geometry were obtained using a data collection protocol of dynamometry, ultrasound, and magnetic resonance imaging. Three FE models were created for each subject, with: subject-specific (hyperelastic) material properties and geometry, subject-specific material properties and generic geometry, and generic material properties and subject-specific geometry. Four NS models were created for each subject, with: subject-specific (linear elastic) material properties and moment arm, generic material properties and subject-specific moment arm, subject-specific material properties and generic moment arm, and generic material properties and moment arm. NS- and FE-modelled fatigue-life estimates with generic material properties were poorly correlated with their subject-specific counterparts (r2≤0.073), while all NS models overestimated fatigue life compared to the subject-specific FE model (r2≤0.223). Furthermore, FE models with generic tendon geometry were unable to accurately represent the heterogeneous strain distributions found in the subject-specific FE models or those with generic material properties. These findings illustrate the importance of incorporating subject-specific material properties and FE-modelled strain distributions into fatigue-life estimations.
Collapse
Affiliation(s)
- Colin R Firminger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Olivia L Bruce
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - John W Wannop
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Darren J Stefanyshyn
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Monte A, Bertucco M, Magris R, Zamparo P. Muscle Belly Gearing Positively Affects the Force-Velocity and Power-Velocity Relationships During Explosive Dynamic Contractions. Front Physiol 2021; 12:683931. [PMID: 34456744 PMCID: PMC8387943 DOI: 10.3389/fphys.2021.683931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Changes in muscle shape could play an important role during contraction allowing to circumvent some limits imposed by the fascicle force–velocity (F–V) and power–velocity (P–V) relationships. Indeed, during low-force high-velocity contractions, muscle belly shortening velocity could exceed muscle fascicles shortening velocity, allowing the muscles to operate at higher F–V and P–V potentials (i.e., at a higher fraction of maximal force/power in accordance to the F–V and P–V relationships). By using an ultrafast ultrasound, we investigated the role of muscle shape changes (vastus lateralis) in determining belly gearing (muscle belly velocity/fascicle velocity) and the explosive torque during explosive dynamic contractions (EDC) at angular accelerations ranging from 1000 to 4000°.s–2. By means of ultrasound and dynamometric data, the F–V and P–V relationships both for fascicles and for the muscle belly were assessed. During EDC, fascicle velocity, belly velocity, belly gearing, and knee extensors torque data were analysed from 0 to 150 ms after torque onset; the fascicles and belly F–V and P–V potentials were thus calculated for each EDC. Absolute torque decreased as a function of angular acceleration (from 80 to 71 Nm, for EDC at 1000 and 4000°.s–1, respectively), whereas fascicle velocity and belly velocity increased with angular acceleration (P < 0.001). Belly gearing increased from 1.11 to 1.23 (or EDC at 1000 and 4000°.s–1, respectively) and was positively corelated with the changes in muscle thickness and pennation angle (the changes in latter two equally contributing to belly gearing changes). For the same amount of muscle’s mechanical output (force or power), the fascicles operated at higher F–V and P–V potential than the muscle belly (e.g., P–V potential from 0.70 to 0.56 for fascicles and from 0.65 to 0.41 for the muscle belly, respectively). The present results experimentally demonstrate that belly gearing could play an important role during explosive contractions, accommodating the largest part of changes in contraction velocity and allowing the fascicle to operate at higher F–V and P–V potentials.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Riccardo Magris
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Wheatley MGA, Thelen DG, Deluzio KJ, Rainbow MJ. Knee extension moment arm variations relate to mechanical function in walking and running. J R Soc Interface 2021; 18:20210326. [PMID: 34404228 PMCID: PMC8371375 DOI: 10.1098/rsif.2021.0326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
The patellofemoral joint plays a crucial mechanical role during walking and running. It increases the knee extensor mechanism's moment arm and reduces the knee extension muscle forces required to generate the extension moment that supports body weight, prevents knee buckling and propels the centre of mass. However, the mechanical implications of moment arm variation caused by patellofemoral and tibiofemoral motion remain unclear. We used a data-driven musculoskeletal model with a 12-degree-of-freedom knee to simulate the knee extension moment arm during walking and running. Using a geometric method to calculate the moment arm, we found smaller moment arms during running than during walking in the swing phase. Overall, knee flexion causes differences between running and walking moment arms as increased flexion causes a posterior shift in the tibiofemoral rotation axis and patella articulation with the distal femur. Moment arms were also affected by knee motion direction and best predicted by separating by direction instead of across the entire gait cycle. Furthermore, we found high inter-subject variation in the moment arm that was largely explained by out-of-plane motion. Our results are consistent with the concept that shorter moment arms increase the effective mechanical advantage of the knee and may contribute to increased running velocity.
Collapse
Affiliation(s)
- Mitchell G. A. Wheatley
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Darryl G. Thelen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin J. Deluzio
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Michael J. Rainbow
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
12
|
Tottori N, Suga T, Hori M, Isaka T, Fujita S. Impact of moment arm on torque production of the knee extensors in children. Physiol Rep 2021; 8:e14521. [PMID: 32875748 PMCID: PMC7484879 DOI: 10.14814/phy2.14521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
The joint moment arm (MA) dimension is related to joint torque in adults. However, this relationship remains unexplored in children. In this study, we aimed to determine the relationship between MA and joint torque of the knee extensors in this young population. The quadriceps femoris muscle volume (MV) and knee extensor MA in 20 preadolescent boys (age: 10.7 ± 0.9 years) were measured using magnetic resonance imaging. The knee extensor isometric and isokinetic torques were measured using a dynamometer. The isokinetic torque measurements were performed using slow and fast angular velocities at 60°/s and 180°/s respectively. The knee extensor torque‐producing capacities were assessed as the knee extensor isometric or isokinetic torque per the quadriceps femoris MV. The quadriceps femoris MV correlated significantly with all three knee extensor isometric and isokinetic torques (r = 0.513–0.804, p < .05 for all). The knee extensor MA also correlated significantly with the three knee extensor isometric and isokinetic torques (r = 0.701–0.806, p ≤ .001 for all). Furthermore, the knee extensor MA correlated significantly with all three knee extensor torque‐producing capacities (r = 0.488–0.701, p < .05 for all). These findings suggest that in addition to adults, greater MA plays an important role in achieving higher joint torque production of the knee extensors in preadolescent boys. This study is the first to determine the impact of MA dimension on joint torque production in children.
Collapse
Affiliation(s)
- Nobuaki Tottori
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Miyuki Hori
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
13
|
Balshaw TG, Maden-Wilkinson TM, Massey GJ, Folland JP. The Human Muscle Size and Strength Relationship: Effects of Architecture, Muscle Force, and Measurement Location. Med Sci Sports Exerc 2021; 53:2140-2151. [PMID: 33935234 DOI: 10.1249/mss.0000000000002691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the best muscle size index of muscle strength by establishing if incorporating muscle architecture measurements improved the human muscle size-strength relationship. The influence of calculating muscle force, and the location of anatomical cross-sectional area (ACSA) measurements on this relationship were also examined. METHODS Fifty-two recreationally active males completed unilateral isometric knee extension strength assessments and MRI scans of the dominant thigh and knee to determine quadriceps femoris (QF) size variables (ACSA along the length of the femur, maximum ACSA [ACSAMAX] and volume [VOL]) and patellar tendon moment arm. Ultrasound images (2 sites per constituent muscle) were analyzed to quantify muscle architecture (fascicle length, pennation angle), and when combined with VOL (from MRI), facilitated calculation of QF effective PCSA (EFFPCSA) as potentially the best muscle size determinant of strength. Muscle force was calculated by dividing maximum voluntary torque (MVT) by the moment arm and addition of antagonist torque (derived from hamstring EMG). RESULTS The associations of EFFPCSA (r=0.685), ACSAMAX (r=0.697), or VOL (r=0.773) with strength did not differ, although qualitatively VOL explained 59.8% of the variance in strength, ~11-13% greater than EFFPCSA or ACSAMAX. All muscle size variables had weaker associations with muscle force than MVT. The association of strength-ACSA at 65% of femur length (r=0.719) was greater than for ACSA measured between 10-55% and 75-90% (r=-0.042-0.633) of femur length. CONCLUSIONS In conclusion, using contemporary methods to assess muscle architecture and calculate EFFPCSA did not enhance the muscle strength-size association. For understanding/monitoring muscle size, the major determinant of strength, these findings support the assessment of muscle volume, that is independent of architecture measurements, and was most highly correlated to strength.
Collapse
Affiliation(s)
- Thomas G Balshaw
- Versus Arthritis, Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Leicestershire, United Kingdom School of Sport, Exercise, and Health Sciences, Loughborough University, Leicestershire, United Kingdom Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Collegiate Campus, Sheffield Hallam University, Sheffield, United Kingdom School of Sport and Health Sciences, University of Exeter, United Kingdom
| | | | | | | |
Collapse
|
14
|
Krikelis G, Pain MTG, Furlong LAM. Measurement of instantaneous Achilles tendon moment arm and force during the stance phase of running. Comput Methods Biomech Biomed Engin 2021; 24:1344-1354. [PMID: 33616455 DOI: 10.1080/10255842.2021.1888938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Accurate estimates of the Achilles tendon (AT) moment arm (ATMA) are necessary for investigating triceps surae muscle-tendon unit loading and function. There are limited reported values of ATMA during running. By combining ultrasound and motion capture, ATMA was estimated during the stance phase of running. Group mean ATMA was estimated at 49.2 ± 3.8 mm and 37.5 ± 5.3 mm, relative to the centre of rotation (malleoli markers midpoint) and the ankle finite helical axis respectively. Differences in the corresponding estimated AT forces reached up to 3100 N approximately. Such discrepancies can lead to misinterpretation of the whole muscle-tendon unit function.
Collapse
Affiliation(s)
- Giorgos Krikelis
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Matthew T G Pain
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Laura-Anne M Furlong
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
15
|
Monte A, Nardello F, Zamparo P. Mechanical advantage and joint function of the lower limb during hopping at different frequencies. J Biomech 2021; 118:110294. [PMID: 33581440 DOI: 10.1016/j.jbiomech.2021.110294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
Mechanical output at a joint level could be influenced by its leverage characteristics and by its functional behaviour and both could change to accommodate the demands of a given locomotor task. In this study, the mechanical power generated at the knee and ankle joints and their functional indexes (i.e. damper, strut, spring and motor like-function) were calculated by using 3D kinematic and kinetic data during hopping at 2, 2.5, 3 and 3.5 Hz. The effective mechanical advantage (i.e. the ratio between internal and external moment arm) of the knee (EMAK) and ankle (EMAA) and joint stiffness were calculated as well. Joint stiffness increased with frequency whereas positive and negative joint power decreased with it, the ankle power values being always larger (20-50%) than those at the knee. EMAA reached its highest value (0.4) during the propulsive phase at 3 Hz whereas no significant changes in EMAK were observed as a function of frequency in both the absorption and propulsive phases. Knee joint-functional index shifted from a spring to a strut-like function with increasing frequency (from 56 to 8% and from 4 to 51%, respectively) while the ankle operated mainly as a spring (from 90 to 53%), its damper and motor-like indexes being negligible at all frequencies (<5%). Therefore, in hopping, the knee works to dissipate mechanical energy (the combination of its damper and strut indexes increase from 23 to 72% at these frequencies) and the primary source of mechanical power is attributable to the elastic function of the ankle.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131 Verona, Italy
| | - Francesca Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131 Verona, Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati, 43, 37131 Verona, Italy.
| |
Collapse
|
16
|
Hosseinzadeh S, Barzegari A, Taghipour M, Mehr Aein R, Gholinia H. Changes of the Patellar Tendon Moment rm Length in Different Knee Angles: A Biomechanical in Vivo Study. THE ARCHIVES OF BONE AND JOINT SURGERY 2020; 8:641-645. [PMID: 33088867 DOI: 10.22038/abjs.2020.42551.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patellar tendon moment arm length (PTma) changes at different knee flexion angles have not been determined in in vivo studies. We aimed to determine PTma in four different knee angles using Magnetic Resonance Imaging (MRI) to predict in vivo changes in the moment arm length from different knee angles during running. PTma was measured as the perpendicular distance from muscle-tendon line of action to the knee joint axis of rotation at 0° (full extension), 20°, 40°, and 60° flexion of knee by using MRI method. Repeated measure ANOVA method was applied to compare the moment arm length among four degrees of knee flexion (P<0.05). A regression analysis was used to predict the PTma during different knee joint angles. The PTma in the four angles at 0°, 20°, 40°, and 60° of knee flexion were 42.55±4.20, 39.91±2.98, 37.73±2.87, and 36.18±2.90 mm, respectively (P<0.05). The regression analysis provided an equation to predict the PTma from different knee joint angles during running. PTma values decreased from knee extension to flexion in a linear manner. These findings have important implications for estimating PTma using a regression equation model from different knee joint angles.
Collapse
Affiliation(s)
- Somayeh Hosseinzadeh
- Faculty of Sports sciences, University of Mazandaran, Babolsar, Iran.,Mobility Impairment Research Center, Babol University of Medical Sciences, Iran
| | - Ali Barzegari
- Department of Physical Education, Payame Noor University, Tehran, Iran
| | - Mohammad Taghipour
- Mobility Impairment Research Center, Babol University of Medical Sciences, Iran
| | - Raheleh Mehr Aein
- Mobility Impairment Research Center, Babol University of Medical Sciences, Iran
| | - Hemmat Gholinia
- Clinical Research Department, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
17
|
Hori M, Suga T, Terada M, Miyake Y, Nagano A, Isaka T. Torque-producing capacity is affected by moment arm in the human knee extensors. BMC Res Notes 2020; 13:343. [PMID: 32690112 PMCID: PMC7372756 DOI: 10.1186/s13104-020-05182-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 01/02/2023] Open
Abstract
Objective The torque-producing capacity can be assessed as maximal isometric torque per muscle size. Nevertheless, the factors contributing to this capacity remain poorly understood. In general, the magnitude of joint torque production is determined not only by muscle size but also by joint moment arm (MA). Based on this background, we hypothesized that longer MA would be related to higher torque-producing capacity despite a given muscle size. To test this hypothesis, we examined the relationship between MA and toque-producing capacity in the knee extensors. The quadriceps femoris muscle volume (MV) and knee extensor MA in 30 healthy young men were measured using magnetic resonance imaging. The knee extensor isometric torque was measured using a dynamometer. The knee extensor torque-producing capacity was calculated as the knee extensor isometric torque per quadriceps femoris MV. Results The quadriceps femoris MV and knee extensor MA correlated significantly with the knee extensor isometric torque (r = 0.785 and 0.790, respectively, both Ps < 0.001). Furthermore, the knee extensor MA correlated significantly with the knee extensor torque-producing capacity (r = 0.635, P < 0.001). These findings suggest that longer MA is an important factor for achieving higher torque-producing capacity in the human knee extensors.
Collapse
Affiliation(s)
- Miyuki Hori
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Masafumi Terada
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Miyake
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
18
|
Monte A, Baltzopoulos V, Maganaris CN, Zamparo P. Gastrocnemius Medialis and Vastus Lateralis in vivo muscle‐tendon behavior during running at increasing speeds. Scand J Med Sci Sports 2020; 30:1163-1176. [DOI: 10.1111/sms.13662] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
- Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Constantinos N. Maganaris
- Research Institute for Sport and Exercise Sciences (RISES) Liverpool John Moores University Liverpool UK
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| |
Collapse
|
19
|
Trezise J, Blazevich AJ. Anatomical and Neuromuscular Determinants of Strength Change in Previously Untrained Men Following Heavy Strength Training. Front Physiol 2019; 10:1001. [PMID: 31447693 PMCID: PMC6691166 DOI: 10.3389/fphys.2019.01001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
This study examined whether changes in strength following a moderate-duration strength training program were associated with changes in specific combinations of anatomical and neuromuscular variables. 36 men (18-40 y) completed 10 weeks of lower-limb heavy resistance (6-RM) strength training. Measurements included cross-sectional area (CSA), fascicle length (lf) and fascicle angle (θf) from proximal, middle and distal regions of the four quadriceps components; agonist (EMG:M), antagonist (EMG) muscle activities and percent voluntary quadriceps activation (%VA; interpolated twitch technique); patellar tendon moment arm distance; and maximal isometric, concentric and eccentric (60° s-1) torque. Multiple regression models were developed to quantify the relationship between the change in maximum torque and the changes in combinations of anatomical and neuromuscular variables. The best model for each contraction mode was determined using Akaike's Information Criterion (AICc), an information-theoretic approach for model selection. Strength increased significantly following training (mean range = 12.5-17.2%), and moderate relationships were observed between modeled data (using best-fit prediction models) and the change in torque for each contraction mode. The change in isometric torque was best (although weakly) predicted by the linear combination of the change in proximal-region vastus lateralis (VL) CSA and fascicle angle (R 2 = 0.27, p < 0.05; AICc wi = 0.52, i.e., the probability the model would be selected as the "best model"). The models best predicting the change in concentric and eccentric torque both included the combination of the change in quadriceps (i.e., mean of all muscles) EMG:M and the change in vastus intermedius fascicle angle combined with either a change in proximal-region VL (R 2 = 0.40, p < 0.001; AICc wi = 0.15) or whole quadriceps (R 2 = 0.41, p < 0.001; AICc wi = 0.30) CSA (concentric and eccentric, respectively). Models incorporating the change in proximal CSA typically received substantial support (AICC < 2) for concentric torque prediction models, and the change in % VA and pre-training moment arm distance had substantial support for use in eccentric torque prediction models. In conclusion, adaptations varied between individuals, however strength training programs targeted to improve a group of variables that particularly includes agonist muscle activation might yield the greatest improvements in concentric and eccentric knee extension strength, whereas proximal muscle size and fascicle angle appear most important for isometric torque improvements.
Collapse
Affiliation(s)
- J Trezise
- School of Medical and Health Sciences, Centre for Exercise and Sports Science Research (CESSR), Edith Cowan University, Joondalup, WA, Australia
| | - A J Blazevich
- School of Medical and Health Sciences, Centre for Exercise and Sports Science Research (CESSR), Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
20
|
Colombo N, Vignaga F, Solari E, Merlo M, Manelli A, Negrini D, Moriondo A. Gait screening of a population of young, healthy athletes by means of a portable, low-cost device unveils hidden left-right asymmetries in both quadriceps and anterior cruciate ligament forces. BMC Res Notes 2019; 12:366. [PMID: 31253181 PMCID: PMC6599243 DOI: 10.1186/s13104-019-4406-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
Objective The present study reports the on-field screening of a population of young soccer players in the pursuit of alterations in gait using a portable and low-cost gait analysis system composed of a Wii Balance Board and a webcam. Results Recordings of motion of the lower extremities along with vertical ground reaction force (GRF) were used to quantify coefficients of symmetry for the overall GRF and the forces exerted by the quadriceps femori and acting on the anterior cruciate ligament (ACL). Data show that, in face of a quite homogeneous symmetry of GRF during left and right stance phases of gait, quadriceps and ACL exert and are subjected to left–right asymmetrical forces that might prelude, especially in young athletes, later alterations of gait.
Collapse
Affiliation(s)
- Nicolò Colombo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Monte Generoso, 71, 21100, Varese, Italy.,School of Medicine, University of Insubria, Varese, Italy
| | | | - Eleonora Solari
- Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Monte Generoso, 71, 21100, Varese, Italy
| | | | | | - Daniela Negrini
- Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Monte Generoso, 71, 21100, Varese, Italy
| | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Monte Generoso, 71, 21100, Varese, Italy.
| |
Collapse
|
21
|
FIRMINGER COLINR, BRUCE OLIVIAL, WANNOP JOHNW, STEFANYSHYN DARRENJ, EDWARDS WBRENT. Effect of Shoe and Surface Stiffness on Lower Limb Tendon Strain in Jumping. Med Sci Sports Exerc 2019; 51:1895-1903. [DOI: 10.1249/mss.0000000000002004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Bakenecker P, Raiteri B, Hahn D. Patella tendon moment arm function considerations for human vastus lateralis force estimates. J Biomech 2019; 86:225-231. [DOI: 10.1016/j.jbiomech.2019.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 11/25/2022]
|
23
|
Barker-Davies RM, Roberts A, Watson J, Baker P, Bennett AN, Fong DTP, Wheeler P, Lewis MP. Kinematic and kinetic differences between military patients with patellar tendinopathy and asymptomatic controls during single leg squats. Clin Biomech (Bristol, Avon) 2019; 62:127-135. [PMID: 30759406 DOI: 10.1016/j.clinbiomech.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/26/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Knee valgus alignment has been associated with lower-limb musculoskeletal injury. This case-control study aims to: assess biomechanical differences between patients with patellar tendinopathy and healthy controls. METHODS 43 military participants (21 cases, 22 controls) were recorded using 3D-motion capture performing progressively demanding, small knee bend, single leg and single leg decline squats. Planned a priori analysis of peak: hip adduction, knee flexion, pelvic tilt, pelvic obliquity and trunk flexion was conducted using MANOVA. Kinematic and kinetic data were graphed with bootstrapped t-tests and 95% CI's normalised to the squat cycle. ANOVA and correlations in SPSS were used for exploratory analysis. FINDINGS On their symptomatic side cases squatted to less depth (-6.62°, p < 0.05) than controls with exploratory curve analysis revealing a pattern of increased knee valgus collapse throughout the squatting movement (p < 0.05). Greater patella tendon force was generated by: the eccentric than concentric phase of squatting (+30-43%, ES 0.52-1.32, p < 0.01), declined (plantarflexed) compared to horizontal surface (+36-51%, ES 1.19-1.68, p < 0.01) and deeper knee flexion angles (F ≥ 658.3, p < 0.01) with no difference between groups (F ≤ 1.380, p > 0.05). Cases experienced more pain on testing on decline board (ES = 0.69, p < 0.01). For symptomatic limbs pain (rs = 0.458-0.641, p ≤ 0.05), but not VISA-P (Victoria Institute of Sport Assessment) (rs = 0.053-0.090, p > 0.05), correlated with extensor knee moment. INTERPRETATION Knee valgus alignment is a plausible risk factor for patellar tendinopathy. Conclusions relating to causation are limited by the cross-sectional study design. Increasing squat depth, use of a declined surface and isolating the eccentric phase enable progression of loading prescription guided by pain.
Collapse
Affiliation(s)
- Robert M Barker-Davies
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre Headley Court, London, UK; National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, UK.
| | - Andrew Roberts
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre Headley Court, London, UK; Army Personnel Research Capability, Army Headquarters, Andover, UK
| | - James Watson
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre Headley Court, London, UK
| | - Polly Baker
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre Headley Court, London, UK
| | - Alexander N Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre Headley Court, London, UK; National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, UK
| | - Patrick Wheeler
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, UK
| |
Collapse
|
24
|
Sims DT, Onambélé-Pearson GL, Burden A, Payton C, Morse CI. Morphological and Mechanical Properties of the Human Patella Tendon in Adult Males With Achondroplasia. Front Physiol 2018; 9:867. [PMID: 30079026 PMCID: PMC6063341 DOI: 10.3389/fphys.2018.00867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Achondroplasia is a genetic mutation of fibroblast growth factor receptor resulting in impaired growth plate development in long bones due to lower collagen turnover. Despite the characteristic shorter stature and lower strength in Achondroplasic groups, little is known of the tendon mechanical properties under loading. The aim of this study was therefore to conduct a between measure design of patella tendon (PT) mechanical properties (stress, strain, stiffness and Young's Modulus) in 10 men with Achondroplasia (22 ± 3 years) and 17 male controls (22 ± 2 years). PT mechanical properties were measured during isometric maximal voluntary contraction (iMVC) of the knee extensors using ultrasonography. The Achondroplasic group produced 54% less stress at iMVC than controls (29.4 ± 8.0 v 64.5 ± 14.0 MPa, P < 0.001, d = 3.12). Maximal excursion of the Achondroplasic PT was 22% less than controls at iMVC (7.4 ± 2.1 v 5.5 ± 1.7 mm, P < 0.001, d = 0.99), but there was no difference in strain between groups (13 ± 4 v 13 ± 3%, P > 0.05). Achondroplasic PT were 47% less stiff (748 ± 93 v 1418 ± 101 N·mm−1, P < 0.001, d = 6.89) and had a 51% lower Young's modulus (0.39 ± 0.09 v 0.77 ± 0.14 GPa, P < 0.001, d = 3.46) than controls at iMVC. Achondroplasic PT are indeed more compliant than controls which may contribute to lower relative force production. The causes of higher Achondroplasic PT compliance are unclear but are likely due to the collagen related genetic mutation which causes Achondroplasia.
Collapse
Affiliation(s)
- David T Sims
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Gladys L Onambélé-Pearson
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Adrian Burden
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Carl Payton
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| | - Christopher I Morse
- Health, Exercise and Active Living Research, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
25
|
Tomita D, Suga T, Ueno H, Miyake Y, Otsuka M, Terada M, Nagano A, Isaka T. Relationship between knee extensor moment arm and long-sprint performance in male 400-m sprinters. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daichi Tomita
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Hiromasa Ueno
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Yuto Miyake
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Mitsuo Otsuka
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Masafumi Terada
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Akinori Nagano
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science; Ritsumeikan University; Kusatsu Shiga Japan
| |
Collapse
|
26
|
Influence of full range of motion vs. equalized partial range of motion training on muscle architecture and mechanical properties. Eur J Appl Physiol 2018; 118:1969-1983. [PMID: 29982844 DOI: 10.1007/s00421-018-3932-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/29/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE The purpose of this study was to determine the effect of a 15-week partial range of motion (ROM) resistance training program on the vastus lateralis (VL) architecture and mechanical properties, when the time under tension (TUT) was equalized. METHODS Nineteen untrained male subjects were randomly assigned to a control (Control; n = 8) or training (TG; n = 11) group. In the TG, the dominant and nondominant legs were randomly selected to be trained with a full ROM (FULL) or a partial ROM (PART) in an isokinetic dynamometer. Training volume was equalized based on the TUT by manipulating sets and repetitions. The VL muscle architecture was assessed by B-mode ultrasonography at rest and during maximal isometric knee extension contractions (MVCs) at ten knee angles. The VL fascicle force and specific tension were calculated from the MVCs with superimposed stimuli, accounting for the moment arm length, muscle architecture, and antagonist coactivation. RESULTS The FULL training induced changes in fascicle length (FL) (4.9 ± 2.0%, P < 0.001) and specific tension (25.8 ± 18.7%, P < 0.001). There was a moderate effect of PART training on the physiological cross-sectional area (PCSA) (7.8 ± 4.0%, P < 0.001, dav = 0.6) and torque-angle adaptations (average increase 17.7 ± 3.9%, P < 0.05). CONCLUSIONS These results provide evidence that crucial architectural and mechanical muscle adaptations are dependent on the ROM used in strength training. It seems that muscle FL and specific tension can be increased by pure concentric training if greater ROM is used. Conversely, restricting the ROM to shorter muscle lengths promotes a greater PCSA and angle-specific strength adaptations.
Collapse
|
27
|
Sims DT, Onambélé-Pearson GL, Burden A, Payton C, Morse CI. Specific force of the vastus lateralis in adults with achondroplasia. J Appl Physiol (1985) 2017; 124:696-703. [PMID: 29146686 DOI: 10.1152/japplphysiol.00638.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Achondroplasia is a clinical condition defined by shorter stature and disproportionate limb length. Force production in able-bodied individuals (controls) is proportional to muscle size, but given the disproportionate nature of achondroplasia, normalizing to anatomical cross-sectional area (ACSA) is inappropriate. The aim of this study was to assess specific force of the vastus lateralis (VL) in 10 adults with achondroplasia (22 ± 3 yr) and 18 sex-matched controls (22 ± 2 yr). Isometric torque (iMVCτ) of the dominant knee extensors (KE) and in vivo measures of VL muscle architecture, volume, activation, and patella tendon moment arm were used to calculate VL physiological CSA (PCSA), fascicle force, and specific force in both groups. Achondroplasic muscle volume was 53% smaller than controls (284 ± 36 vs. 604 ± 102 cm3, P < 0.001). KE iMVCτ was 63% lower in achondroplasia compared with controls (95 ± 24 vs. 256 ± 47 N⋅m, P < 0.001). Activation and moment arm length were similar between groups ( P > 0.05), but coactivation of bicep femoris of achondroplasic subjects was 70% more than controls (43 ± 20 vs. 13 ± 5%, P < 0.001). Achondroplasic subjects had 58% less PCSA (43 ± 10 vs. 74.7 ± 14 cm2, P < 0.001), 29% lower fascicle force (702 ± 235 vs. 1704 ± 303 N, P < 0.001), and 29% lower specific force than control subjects (17 ± 6 vs. 24 ± 6 N⋅cm-2, P = 0.012). The smaller VL specific force in achondroplasia may be attributed to infiltration of fat and connective tissue, rather than to any difference in myofilament function. NEW & NOTEWORTHY The novel observation of this study was the measurement of normalized force production in a group of individuals with disproportionate limb length-to-torso ratios.
Collapse
Affiliation(s)
- David T Sims
- Health, Exercise and Active Living Research, Manchester Metropolitan University , Cheshire , United Kingdom
| | - Gladys L Onambélé-Pearson
- Health, Exercise and Active Living Research, Manchester Metropolitan University , Cheshire , United Kingdom
| | - Adrian Burden
- Health, Exercise and Active Living Research, Manchester Metropolitan University , Cheshire , United Kingdom
| | - Carl Payton
- Health, Exercise and Active Living Research, Manchester Metropolitan University , Cheshire , United Kingdom
| | - Christopher I Morse
- Health, Exercise and Active Living Research, Manchester Metropolitan University , Cheshire , United Kingdom
| |
Collapse
|
28
|
Pearson SJ, Mohammed AS, Hussain SR. Patellar tendon in vivo regional strain with varying knee angle. J Biomech 2017; 61:45-50. [DOI: 10.1016/j.jbiomech.2017.06.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 01/12/2023]
|
29
|
Ruiz-Muñoz M, González-Sánchez M, Martín-Martín J, Cuesta-Vargas AI. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study. Foot (Edinb) 2017; 31:16-22. [PMID: 28324821 DOI: 10.1016/j.foot.2016.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/19/2016] [Accepted: 11/28/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. METHODS In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. RESULTS The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. CONCLUSION The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases.
Collapse
Affiliation(s)
- Maria Ruiz-Muñoz
- Universidad de Málaga, Departamento de Enfermería y Podología, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain.
| | | | - Jaime Martín-Martín
- Universidad de Málaga, Departamento de Fisioterapia. Instituto de Investigación Biomédica de Málaga (IBIMA); Escuela de Terapia Ocupacional, Facultad de Salud, Deporte y Recreación, Universidad Bernardo ÓHiggins, Santiago de Chile, Chile.
| | - Antonio I Cuesta-Vargas
- Universidad de Málaga, Departamento de Fisioterapia. Instituto de Investigación Biomédica de Málaga (IBIMA); School of Clinical Sciences at Queensland University, Brisbane, Australia.
| |
Collapse
|
30
|
Carter JC, Sturnick DR, Vacek PM, DeSarno MJ, Argentieri EC, Slauterbeck JR, Johnson RJ, Beynnon BD. Relationship between geometry of the extensor mechanism of the knee and risk of anterior cruciate ligament injury. J Orthop Res 2017; 35:965-973. [PMID: 27882612 DOI: 10.1002/jor.23366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
The complex inter-segmental forces that are developed across an extended knee by body weight and contraction of the quadriceps muscle group transmits an anteriorly directed force on the tibia that strain the anterior cruciate ligament (ACL). We hypothesized that a relationship exists between geometry of the knees extensor mechanism and the risk of sustaining a non-contact ACL injury. Geometry of the extensor mechanism was characterized using MRI scans of the knees of 88 subjects that suffered their first non-contact ACL injury and 88 matched control subjects with normal knees that were on the same team. The orientation of the patellar tendon axis was measured relative to the femoral flexion-extension axis to determine the extensor moment arm (EMA), and relative to tibial long axis to measure coronal patellar tendon angle (CPTA) and sagittal patellar tendon angle (SPTA). Associations between these parameters and ACL injury risk were tested with and without adjustment for flexion and internal rotation position of the tibia relative to the femur during MRI data acquisition. After adjustment for internal rotation position of the tibia relative to the femur there were no associations between EMA, CPTA, and SPTA and risk of suffering an ACL injury. However, increased internal rotation position of the tibia relative to the femur was significantly associated with increased risk of ACL injury in female athletes both in univariate analysis (Odds Ratio = 1.16 per degree of internal rotation of the tibia, p = 0.002), as well as after adjustment for EMA, CPTA, and SPTA.: © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:965-973, 2017.
Collapse
Affiliation(s)
- Josh C Carter
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Daniel R Sturnick
- Hospital for Special Surgery, Department of Biomechanics, New York, New York
| | - Pamela M Vacek
- Department of Medical Biostatistics, University of Vermont, Burlington, Vermont
| | - Michael J DeSarno
- Department of Medical Biostatistics, University of Vermont, Burlington, Vermont
| | - Erin C Argentieri
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - James R Slauterbeck
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Robert J Johnson
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bruce D Beynnon
- McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
31
|
Stebbings GK, Williams AG, Morse CI, Day SH. Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study. Eur J Appl Physiol 2017; 117:713-720. [PMID: 28251396 DOI: 10.1007/s00421-017-3567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. METHODS Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. RESULTS Genotype frequencies for both SNPs were in Hardy-Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed. CONCLUSIONS These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.
Collapse
Affiliation(s)
- Georgina K Stebbings
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK.
| | - A G Williams
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK.,Institute of Sport, Exercise and Health, University College London, London, UK
| | - C I Morse
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK
| | - S H Day
- MMU Sports Genomics Laboratory, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, UK
| |
Collapse
|
32
|
Miyake Y, Suga T, Otsuka M, Tanaka T, Misaki J, Kudo S, Nagano A, Isaka T. The knee extensor moment arm is associated with performance in male sprinters. Eur J Appl Physiol 2017; 117:533-539. [PMID: 28188370 DOI: 10.1007/s00421-017-3557-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/21/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE Although large knee extensor torque contributes to superior sprint performance, previous findings have indicated that the quadriceps cross-sectional area (CSA), a pivotal morphological regulator of knee extensor torque, is not correlated with performance in sprinters. We hypothesized that the knee extensor moment arm (MA), another main morphological regulator of knee extensor torque, may affect sprint performance. To test this hypothesis, we examined the relationship between knee extensor MA and sprint performance. METHODS The quadriceps CSA and knee extensor MA in 32 well-trained male sprinters and 32 male non-sprinters were measured using magnetic resonance imaging. RESULTS Knee extensor MA, but not quadriceps CSA, was greater in sprinters than in non-sprinters (P = 0.013). Moreover, knee extensor MA, but not the quadriceps CSA, was correlated with the personal best time in a 100-m race in sprinters (r = -0.614, P < 0.001). Furthermore, among 24 sprinters who participated in the 60-m sprint test, knee extensor MA was correlated with sprinting velocities in the acceleration (r = 0.717, P < 0.001) and maximum speed (r = 0.697, P < 0.001) phases. CONCLUSION The present study demonstrates that the knee extensor MA is greater in sprinters than in non-sprinters, and this morphological structure in sprinters is associated with sprint performance. Therefore, for the first time, we provided evidence that a greater knee extensor MA in sprinters may be an advantageous for achieving superior sprint performance.
Collapse
Affiliation(s)
- Yuto Miyake
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Mitsuo Otsuka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takahiro Tanaka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Jun Misaki
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shoma Kudo
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
33
|
Rota V, Benedetti MG, Okita Y, Manfrini M, Tesio L. Knee rotationplasty: motion of the body centre of mass during walking. Int J Rehabil Res 2016; 39:346-353. [PMID: 27685013 PMCID: PMC5094202 DOI: 10.1097/mrr.0000000000000195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/11/2016] [Indexed: 11/25/2022]
Abstract
Knee rotationplasty (KRP) is a type of surgery in which the rotated ankle serves as a new knee after being removed for bone tumor. Although this limb salvage surgery is rarely indicated in properly selected patients, it may offer functional advantages over transfemoral amputation, and more durable results compared with a prosthesis. The walking mechanics of adult patients after KRP is believed to be close to that of below-knee amputees. In this study, we evaluated steady-state walking of KRP patients from the viewpoint of the overall muscle power needed to keep the body centre of mass in motion. Three adult patients after KRP, all athletes, were evaluated. Ground reactions during walking were recorded during six subsequent strides on a force treadmill. The positive mechanical work and power sustaining the motion of the centre of mass and the recovery of muscle energy due to the pendulum-like mechanism of walking were computed and compared with those obtained in previous studies from above-knee, below-knee amputees and healthy individuals. In KRP patients, walking was sustained by a muscle power output which was 1.4-3.6 times lower during the step performed on the rotated limb than on the subsequent step. The recovery of muscle energy was slightly lower (0.9) or higher (1.3-1.4 times) on the affected side. In two out of the three KRP patients, our findings were more similar to those from above-knee amputees than to those from below-knee amputees. After KRP, the rotated limb does not necessarily provide the same power provided by below-knee amputation. This may have a relevance for the paralympic classification of KRP athletes.
Collapse
Affiliation(s)
- Viviana Rota
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS
| | | | | | - Marco Manfrini
- Muskuloskeletal Oncology Unit, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Luigi Tesio
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS
- Department of Biomedical Sciences for Health, Chair of Physical and Rehabilitation Medicine, Università degli Studi, Milano
| |
Collapse
|
34
|
Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol 2016; 116:1159-77. [PMID: 27076217 DOI: 10.1007/s00421-016-3352-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE This study examined the relative influence of anatomical and neuromuscular variables on maximal isometric and concentric knee extensor torque and provided a comparative dataset for healthy young males. METHODS Quadriceps cross-sectional area (CSA) and fascicle length (l f) and angle (θ f) from the four quadriceps components; agonist (EMG:M) and antagonist muscle activity, and percent voluntary activation (%VA); patellar tendon moment arm distance (MA) and maximal voluntary isometric and concentric (60° s(-1)) torques, were measured in 56 men. Linear regression models predicting maximum torque were ranked using Akaike's Information Criterion (AICc), and Pearson's correlation coefficients assessed relationships between variables. RESULTS The best-fit models explained up to 72 % of the variance in maximal voluntary knee extension torque. The combination of 'CSA + θ f + EMG:M + %VA' best predicted maximum isometric torque (R (2) = 72 %, AICc weight = 0.38) and 'CSA + θ f + MA' (R (2) = 65 %, AICc weight = 0.21) best predicted maximum concentric torque. CONCLUSION Proximal quadriceps CSA was included in all models rather than the traditionally used mid-muscle CSA. Fascicle angle appeared consistently in all models despite its weak correlation with maximum torque in isolation, emphasising the importance of examining interactions among variables. While muscle activity was important for torque prediction in both contraction modes, MA only strongly influenced maximal concentric torque. These models identify the main sources of inter-individual differences strongly influencing maximal knee extension torque production in healthy men. The comparative dataset allows the identification of potential variables to target (i.e. weaknesses) in individuals.
Collapse
Affiliation(s)
- J Trezise
- Centre of Exercise and Health Science, Edith Cowan University, Joondalup, Australia.
| | - N Collier
- Faculty of Sustainability, Leuphana University, Lüneburg, Germany
| | - A J Blazevich
- Centre of Exercise and Health Science, Edith Cowan University, Joondalup, Australia.,School of Exercise and Health Sciences, Centre for Exercise and Sport Science Research (CESSR), Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
35
|
Lee DW, Kim MJ, Kim WJ, Ha JK, Kim JG. Correlation between Magnetic Resonance Imaging Characteristics of the Patellar Tendon and Clinical Scores in Osgood-Schlatter Disease. Knee Surg Relat Res 2016; 28:62-7. [PMID: 26955614 PMCID: PMC4779807 DOI: 10.5792/ksrr.2016.28.1.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/13/2015] [Accepted: 09/18/2015] [Indexed: 11/04/2022] Open
Abstract
Purpose This study aims to evaluate magnetic resonance imaging (MRI) findings in young adults with symptomatic Osgood-Schlatter disease (OSD) and compare those in young adults without OSD. Materials and Methods We compared MRI findings between young adults with OSD (OS group, n=30) and the equivalent number of young adults without OSD (control group). Visual analog scale scores and Kujala scores were evaluated and correlation analysis was performed in the OS group. Results In the OS group, MRI revealed that the patellar tendon was attached to the tibia more widely, resulting in a reduced free tendon portion, and more proximally to the articular surface (p<0.001). The correlation analysis between MRI findings and clinical scores showed statistically significant correlations (p<0.01). In the OS group, 43% presented with patellar tendinopathy or bone marrow edema at the distal attachments. Conclusions Compared to the control group, the relatively small free portion and relatively proximal attachment of the patellar tendon were observed with MRI in the OS group. The free portion of the patellar tendon was positively correlated with the clinical scores. Patellar tendinopathy was also frequently encountered in the OS group.
Collapse
Affiliation(s)
- Dhong Won Lee
- Department of Orthopedic Surgery, Daejeon Military Hospital, Daejeon, Korea
| | - Min Jeong Kim
- Department of Raiology, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Woo Jong Kim
- Department of Orthopedic Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jeong Ku Ha
- Department of Orthopedic Surgery, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Jin Goo Kim
- Department of Orthopedic Surgery, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
36
|
Im HS, Goltzer O, Sheehan FT. The effective quadriceps and patellar tendon moment arms relative to the tibiofemoral finite helical axis. J Biomech 2015; 48:3737-42. [PMID: 26520912 DOI: 10.1016/j.jbiomech.2015.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/05/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
The moment arm is a crucial parameter for understanding musculoskeletal dynamics as it defines how linear muscle force is transformed into a moment. Yet, for the quadriceps tendon this parameter cannot be directly calculated, as the patella creates a dynamic fulcrum. Thus, the effective quadriceps moment arm (EQma) was developed to define the quadriceps force to tibial moment relationship. In vivo data in regards to the EQma are lacking and the critical question of how patellofemoral kinematics may influence the EQma remains unresolved. Therefore, the purpose of this study was to quantify the in vivo EQma during a knee extension exercise in asymptomatic controls and to correlate the EQma with sagittal plane patellofemoral kinematics. While subjects (30F/10M, 26.5±5.6 years, 167.5±10.2 cm, 62.6±10.7 kg) cyclically flexed-extended their knees within the MR scanner, dynamic cine-phase contrast and cine MR images were acquired. From these data, patellofemoral kinematics, the ratio of the patellar tendon to quadriceps force, the patellar tendon moment arm, and the EQma were quantified. The EQma trended upwards (32.9-45.5 mm (females) and 31.5-47.1 mm (males)) as the knee angle decreased (50-10°). The quadriceps had a mechanical advantage (ratio of patellar to quadriceps tendon forces >1.0) for knee angles ≤20°. The EQma did not correlate with sagittal plane patellofemoral kinematics. As this is the first study to characterize the EQma in vivo during dynamic volitional activity, in a large group of asymptomatic controls, it can serve as a foundation for future knee joint models and to explore how pathological conditions affect the EQma.
Collapse
Affiliation(s)
- Hyun Soo Im
- Functional and Applied Biomechanics, Department of Rehabilitation Medicine, NIH, Bethesda, MD, USA
| | - Oren Goltzer
- Functional and Applied Biomechanics, Department of Rehabilitation Medicine, NIH, Bethesda, MD, USA
| | - Frances T Sheehan
- Functional and Applied Biomechanics, Department of Rehabilitation Medicine, NIH, Bethesda, MD, USA.
| |
Collapse
|
37
|
Noorkõiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc 2015; 46:1525-37. [PMID: 24504427 DOI: 10.1249/mss.0000000000000269] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. METHODS Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. RESULTS Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. CONCLUSION The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.
Collapse
Affiliation(s)
- Marika Noorkõiv
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, AUSTRALIA
| | | | | |
Collapse
|
38
|
Seynnes OR, Bojsen-Møller J, Albracht K, Arndt A, Cronin NJ, Finni T, Magnusson SP. Ultrasound-based testing of tendon mechanical properties: a critical evaluation. J Appl Physiol (1985) 2015; 118:133-41. [DOI: 10.1152/japplphysiol.00849.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique of obtaining and relating tendon deformation to tensile force in vivo has been applied differently, depending on practical constraints or scientific points of view. Divergence can be seen in 1) methodological considerations, such as the choice of anatomical features to scan and to track, force measurements, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties. In doing so, our aim is to provide the reader with a qualitative analysis of ultrasound-based techniques. Finally, a list of recommendations is proposed for a number of selected issues.
Collapse
Affiliation(s)
| | | | - K. Albracht
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - A Arndt
- GIH, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - N. J. Cronin
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - T. Finni
- Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and
| | - S. P. Magnusson
- Institute of Sports Medicine, Copenhagen & Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
On the role of the patella, ACL and joint contact forces in the extension of the knee. PLoS One 2014; 9:e115670. [PMID: 25536067 PMCID: PMC4275277 DOI: 10.1371/journal.pone.0115670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
Traditional descriptions of the knee suggest that the function of the patella is to facilitate knee extension by increasing the moment arm of the quadriceps muscles. Through modelling and evidence from the literature it is shown in this paper that the presence of the patella makes the ability of the quadriceps to rotate the thigh greater than their ability to rotate the tibia. Furthermore, this difference increases as the knee is flexed, thus demonstrating a pattern that is consistent with many human movements. This paper also shows that the anterior cruciate ligament plays a previously unheralded role in extending the shank and that translation at the tibiofemoral and patellofemoral joints is important in improving the capacity for thigh rotation when the knee is flexed. This study provides new insights as to how the structure of the knee is adapted to its purpose and illustrates how the functional anatomy of the knee contributes to its extension function.
Collapse
|
40
|
Variants within the MMP3 gene and patellar tendon properties in vivo in an asymptomatic population. Eur J Appl Physiol 2014; 114:2625-34. [PMID: 25168209 DOI: 10.1007/s00421-014-2986-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND/AIM Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between three polymorphisms of the MMP3 gene, (rs679620, rs591058 and rs650108) and patellar tendon dimensional and mechanical properties in vivo. METHODS One hundred and sixty, healthy, recreationally-active, Caucasian men and women, aged 18-39 were recruited. MMP3 genotype determined using real-time PCR was used to select 84 participants showing greatest genetic differences to complete phenotype measurements. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. RESULTS No significant associations were evident between the completely linked MMP3 rs591058 and rs679620 gene variants, and closely linked rs650108 gene variant, and either patellar tendon volume (rs679620, P = 0.845; rs650108, P = 0.984) or elastic modulus (rs679620, P = 0.226; rs650108, P = 0.088). Similarly, there were no associations with the Z-score that combined those dimension and functional properties into a composite value (rs679620, P = 0.654; rs650108, P = 0.390). Similarly, no association was evident when comparing individuals with/without the rarer alleles (P > 0.01 in all cases). CONCLUSIONS Patellar tendon properties do not seem to be influenced by the MMP3 gene variants measured. Although these MMP3 gene variants have previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties.
Collapse
|
41
|
Cuesta-Vargas A, González-Sánchez M. Correlation between architectural variables and torque in the erector spinae muscle during maximal isometric contraction. J Sports Sci 2014; 32:1797-804. [PMID: 24903060 DOI: 10.1080/02640414.2014.924054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study analysed whether a significant relationship exists between the torque and muscle thickness and pennation angle of the erector spinae muscle during a maximal isometric lumbar extension with the lumbar spine in neutral position. This was a cross-sectional study in which 46 healthy adults performed three repetitions for 5 s of maximal isometric lumbar extension with rests of 90 s. During the lumbar extensions, bilateral ultrasound images of the erector spinae muscle (to measure pennation angle and muscle thickness) and torque were acquired. Reliability test analysis calculating the internal consistency (Cronbach's alpha) of the measure, correlation between pennation angle, muscle thickness and torque extensions were examined. Through a linear regression the contribution of each independent variable (muscle thickness and pennation angle) to the variation of the dependent variable (torque) was calculated. The results of the reliability test were: 0.976-0.979 (pennation angle), 0.980-0.980 (muscle thickness) and 0.994 (torque). The results show that pennation angle and muscle thickness were significantly related to each other with a range between 0.295 and 0.762. In addition, multiple regression analysis showed that the two variables considered in this study explained 68% of the variance in the torque. Pennation angle and muscle thickness have a moderate impact on the variance exerted on the torque during a maximal isometric lumbar extension with the lumbar spine in neutral position.
Collapse
Affiliation(s)
- Antonio Cuesta-Vargas
- a Departamento de psiquiatria y fisioterapia , Instituto de Investigación Biomédica de Málaga (IBIMA) , Universidad de Málaga, Málaga 29071 , Spain
| | | |
Collapse
|
42
|
Human COL5A1 rs12722 gene polymorphism and tendon properties in vivo in an asymptomatic population. Eur J Appl Physiol 2014; 114:1393-402. [DOI: 10.1007/s00421-014-2868-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/03/2014] [Indexed: 11/28/2022]
|
43
|
Kellis E, Karagiannidis E, Patsika G. Patellar tendon and hamstring moment-arms and cross-sectional area in patients with anterior cruciate ligament reconstruction and controls. Comput Methods Biomech Biomed Engin 2014; 18:1083-1089. [DOI: 10.1080/10255842.2013.869323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Stebbings GK, Morse CI, Williams AG, Day SH. Variability and distribution of muscle strength and its determinants in humans. Muscle Nerve 2013; 49:879-86. [PMID: 24037782 DOI: 10.1002/mus.24075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/19/2013] [Accepted: 08/28/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Inter-individual variability in measurements of muscle strength and its determinants was identified to: (1) produce a normative data set describing the normal range and (2) determine whether some measurements are more informative than others when evaluating inter-individual differences. METHODS Functional and morphological characteristics of the vastus lateralis were measured in 73 healthy, untrained adult men. RESULTS Inter-individual variability (coefficient of variation) was greater for isometric maximal voluntary contraction (MVC) torque (18.9%) compared with fascicle force (14.6%; P=0.025) and physiological cross-sectional area (PCSA; 17.2%) compared with anatomical cross-sectional area (ACSA, 13.0%; P<0.0005). The relationship between ACSA and isometric MVC torque (r(2) =0.56) was weaker than that between PCSA and fascicle force (r(2) =0.68). CONCLUSIONS These results provide a normative data set on inter-individual variability in a variety of muscle strength-related measurements and illustrate the benefit of using more stringent measures of muscle properties. Muscle Nerve 49: 879-886, 2014.
Collapse
Affiliation(s)
- Georgina K Stebbings
- Centre for Genomic Research into Exercise, Performance and Health, Institute for Performance Research, Manchester Metropolitan University, Crewe Green Road, Crewe, Cheshire, CW1 5DU
| | | | | | | |
Collapse
|
45
|
Bloomquist K, Langberg H, Karlsen S, Madsgaard S, Boesen M, Raastad T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur J Appl Physiol 2013; 113:2133-42. [PMID: 23604798 DOI: 10.1007/s00421-013-2642-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/05/2013] [Indexed: 11/28/2022]
Abstract
Manipulating joint range of motion during squat training may have differential effects on adaptations to strength training with implications for sports and rehabilitation. Consequently, the purpose of this study was to compare the effects of squat training with a short vs. a long range of motion. Male students (n = 17) were randomly assigned to 12 weeks of progressive squat training (repetition matched, repetition maximum sets) performed as either a) deep squat (0-120° of knee flexion); n = 8 (DS) or (b) shallow squat (0-60 of knee flexion); n = 9 (SS). Strength (1 RM and isometric strength), jump performance, muscle architecture and cross-sectional area (CSA) of the thigh muscles, as well as CSA and collagen synthesis in the patellar tendon, were assessed before and after the intervention. The DS group increased 1 RM in both the SS and DS with ~20 ± 3 %, while the SS group achieved a 36 ± 4 % increase in the SS, and 9 ± 2 % in the DS (P < 0.05). However, the main finding was that DS training resulted in superior increases in front thigh muscle CSA (4-7 %) compared to SS training, whereas no differences were observed in patellar tendon CSA. In parallel with the larger increase in front thigh muscle CSA, a superior increase in isometric knee extension strength at 75° (6 ± 2 %) and 105° (8 ± 1 %) knee flexion, and squat-jump performance (15 ± 3 %) were observed in the DS group compared to the SS group. Training deep squats elicited favourable adaptations on knee extensor muscle size and function compared to training shallow squats.
Collapse
Affiliation(s)
- K Bloomquist
- The University Hospitals Centre for Health Research, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
46
|
Ward TR, Pandit H, Hollinghurst D, Moolgavkar P, Zavatsky AB, Gill HS, Thomas NP, Murray DW. Improved quadriceps' mechanical advantage in single radius TKRs is not due to an increased patellar tendon moment arm. Knee 2012; 19:564-70. [PMID: 22001289 DOI: 10.1016/j.knee.2011.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 06/10/2011] [Accepted: 07/17/2011] [Indexed: 02/02/2023]
Abstract
Single femoral radius TKRs have been reported to improve quadriceps' mechanical advantage, leading to enhanced patient function. An increased patellar tendon moment arm (PTMA) has been cited as the main feature leading to improved quadriceps' mechanical advantage. However, these designs often incorporate a recessed trochlea which alters the patellar mechanism and may contribute to improved quadriceps' mechanical advantage. This study simultaneously measured the PTMA using two and three dimensional methods, as well as quadriceps forces (QF), patellofemoral kinematics and tibiofemoral kinematics in a motion analysis laboratory during an open chain leg extension activity. Six cadaveric knees were tested in the normal state and after implantation of three different single femoral radius TKR designs: cruciate retaining, posterior stabilised and rotating platform posterior stabilised (Stryker, Newbury, UK). QFs in the TKRs were between 15% and 20% lower than normal between 60° and 70° flexion. The increase in PTMA was insufficient to explain the reduced QF in the TKRs. The patellar flexion angle (PFA) of the TKRs was lower than normal at knee flexion angles greater than 50°, probably as a result of the recessed trochlea. A simple patellar model demonstrated that the reduced PFA may explain a large proportion of the reduction in QF after single radius TKR.
Collapse
Affiliation(s)
- T R Ward
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Powers CM, Bolgla LA, Callaghan MJ, Collins N, Sheehan FT. Patellofemoral pain: proximal, distal, and local factors, 2nd International Research Retreat. J Orthop Sports Phys Ther 2012; 42:A1-54. [PMID: 22660660 PMCID: PMC9909566 DOI: 10.2519/jospt.2012.0301] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patellofemoral pain (PFP) is one of the most common lower extremity conditions seen in orthopaedic practice. The mission of the second International Patellofemoral Pain Research Retreat was to bring together scientists and clinicians from around the world who are conducting research aimed at understanding the factors that contribute to the development and, consequently, the treatment of PFP. The format of the 2.5-day retreat included 2 keynote presentations, interspersed with 6 podium and 4 poster sessions. An important element of the retreat was the development of consensus statements that summarized the state of the research in each of the 4 presentation categories. In this supplement, you will find the consensus documents from the meeting, as well as the keynote addresses, schedule, and platform and poster presentation abstracts.
Collapse
|
48
|
Roos PE, Barton N, van Deursen RWM. Patellofemoral joint compression forces in backward and forward running. J Biomech 2012; 45:1656-60. [PMID: 22503882 PMCID: PMC3391667 DOI: 10.1016/j.jbiomech.2012.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022]
Abstract
Patellofemoral pain (PFP) is a common injury and increased patellofemoral joint compression forces (PFJCF) may aggravate symptoms. Backward running (BR) has been suggested for exercise with reduced PFJCF. The aims of this study were to (1) investigate if BR had reduced peak PFJCF compared to forward running (FR) at the same speed, and (2) if PFJCF was reduced in BR, to investigate which biomechanical parameters explained this. It was hypothesized that (1) PFJCF would be lower in BR, and (2) that this would coincide with a reduced peak knee moment caused by altered ground reaction forces (GRFs). Twenty healthy subjects ran in forward and backward directions at consistent speed. Kinematic and ground reaction force data were collected; inverse dynamic and PFJCF analyses were performed. PFJCF were higher in FR than BR (4.5±1.5; 3.4±1.4BW; p<0.01). The majority of this difference (93.1%) was predicted by increased knee moments in FR compared to BR (157±54; 124±51 Nm; p<0.01). 54.8% of differences in knee moments could be predicted by the magnitude of the GRF (2.3±0.3; 2.4±0.2BW), knee flexion angle (44±6; 41±7) and center of pressure location on the foot (25±11; 12±6%) at time of peak knee moment. Results were not consistent in all subjects. It was concluded that BR had reduced PFJCF compared to FR. This was caused by an increased knee moment, due to differences in magnitude and location of the GRF vector relative to the knee. BR can therefore be used to exercise with decreased PFJCF.
Collapse
Affiliation(s)
- Paulien E Roos
- Department of Physiotherapy, School of Healthcare Studies, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | |
Collapse
|
49
|
Onambele-Pearson GL, Pearson SJ. The magnitude and character of resistance-training-induced increase in tendon stiffness at old age is gender specific. AGE (DORDRECHT, NETHERLANDS) 2012; 34:427-438. [PMID: 21505764 PMCID: PMC3312624 DOI: 10.1007/s11357-011-9248-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 04/02/2011] [Indexed: 05/30/2023]
Abstract
Human tendon mechanical properties are modified with loading. Moreover, there are indications that the training response in the tendon is gender specific. The aim of the current study was to examine whether in vivo patella tendon stiffness (K) differentially alters with training in older males compared with females. We also aimed to identify which endocrine pathway underlies the responses. Maximal knee extensor forces were also monitored to determine the training effect on muscle function. Fourteen healthy, habitually active older persons (seven males aged 74.0 ± 1.2 years (mean±SEM) and seven females aged 76.7 ± 1.2 years) were tested at baseline and after 12 weeks of weekly, progressive resistance training. With training, percentage increase in quadriceps maximum voluntary isometric force (MVC) was similar in males (2,469.6 ± 168.0 to 3,097.3 ± 261.9 N; +25.3 ± 6.1% (p < 0.01)) and females (1,728.8 ± 136.3 to 2,166.5 ± 135.8 N; +30.4 ± 15.1% (p < 0.05)), respectively. K increased more in males (338.0 ± 26.6 to 616.9 ± 58.7 N/mm; 79.8 ± 4.2% (p < 0.001)) compared to females (338.9 ± 31.0 to 373.2 ± 25.8 N/mm; +13.0 ± 3.7% (p < 0.001)). Interestingly, a pattern was found whereby below ~40% MVC, the females showed their greatest degree of K changes, whereas the males showed their greatest degree of K change above this relative force level. This gender contrast was also true at a standardised force level (1,200 N), with 5.8 ± 0.4% vs. 82.5 ± 1.8% increments in the females (i.e. value change from 380.3 ± 14.1 to 402.4 ± 13.3 N/mm) and the males (i.e. value change from 317.8 ± 13.8 to 580.2 ± 30.9 N/mm), respectively (p < 0.001). While circulating levels of both IGF-I and IL-6 did not alter with training, IGFBP-3 showed a significant training effect (19.1 ± 4.8%, p < 0.001) and only in the male sub-group (p = 0.038). We show here that with training, in vivo older females' tendon is less dramatically modulated than that of males'. We also show that the relative forces, at which the greatest adaptations are exhibited, differ by gender, with a suggestion of endocrine adaptations in males only. We thus propose that both training and rehabilitation regimens should consider gender-specific tendon responsiveness, at least in older persons.
Collapse
|
50
|
Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. Do PTK2 gene polymorphisms contribute to the interindividual variability in muscle strength and the response to resistance training? A preliminary report. J Appl Physiol (1985) 2012; 112:1329-34. [PMID: 22323655 DOI: 10.1152/japplphysiol.01137.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The protein tyrosine kinase-2 (PTK2) gene encodes focal adhesion kinase, a structural protein involved in lateral transmission of muscle fiber force. We investigated whether single-nucleotide polymorphisms (SNPs) of the PTK2 gene were associated with various indexes of human skeletal muscle strength and the interindividual variability in the strength responses to resistance training. We determined unilateral knee extension single repetition maximum (1-RM), maximum isometric voluntary contraction (MVC) knee joint torque, and quadriceps femoris muscle specific force (maximum force per unit physiological cross-sectional area) before and after 9 wk of knee extension resistance training in 51 untrained young men. All participants were genotyped for the PTK2 intronic rs7843014 A/C and 3'-untranslated region (UTR) rs7460 A/T SNPs. There were no genotype associations with baseline measures or posttraining changes in 1-RM or MVC. Although the training-induced increase in specific force was similar for all PTK2 genotypes, baseline specific force was higher in PTK2 rs7843014 AA and rs7460 TT homozygotes than in the respective rs7843014 C- (P = 0.016) and rs7460 A-allele (P = 0.009) carriers. These associations between muscle specific force and PTK2 SNPs suggest that interindividual differences exist in the way force is transmitted from the muscle fibers to the tendon. Therefore, our results demonstrate for the first time the impact of genetic variation on the intrinsic strength of human skeletal muscle.
Collapse
Affiliation(s)
- Robert M Erskine
- Institute for Performance Research, Department of Exercise and Sport Science, Manchester Metropolitan University, Crewe, United Kingdom.
| | | | | | | | | |
Collapse
|