1
|
Guo Z, Yin M, Sun C, Xu G, Wang T, Jia Z, Zhang Z, Zhu C, Zheng D, Wang L, Huang S, Liu D, Zhang Y, Xie R, Gao N, Zhan L, He S, Zhu Y, Li Y, Nashan B, Andrea S, Xu J, Zhao Q, He X. Liver protects neuron viability and electrocortical activity in post-cardiac arrest brain injury. EMBO Mol Med 2024; 16:2322-2348. [PMID: 39300235 PMCID: PMC11479250 DOI: 10.1038/s44321-024-00140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Brain injury is the leading cause of mortality among patients who survive cardiac arrest (CA). Clinical studies have shown that the presence of post-CA hypoxic hepatitis or pre-CA liver disease is associated with increased mortality and inferior neurological recovery. In our in vivo global cerebral ischemia model, we observed a larger infarct area, elevated tissue injury scores, and increased intravascular CD45+ cell adhesion in reperfused brains with simultaneous hepatic ischemia than in those without it. In the ex vivo brain normothermic machine perfusion (NMP) model, we demonstrated that addition of a functioning liver to the brain NMP circuit significantly reduced post-CA brain injury, increased neuronal viability, and improved electrocortical activity. Furthermore, significant alterations were observed in both the transcriptome and metabolome in the presence or absence of hepatic ischemia. Our study highlights the crucial role of the liver in the pathogenesis of post-CA brain injury.
Collapse
Affiliation(s)
- Zhiyong Guo
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China.
| | - Meixian Yin
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chengjun Sun
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guixing Xu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tielong Wang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zehua Jia
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhiheng Zhang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Caihui Zhu
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Donghua Zheng
- Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linhe Wang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Shanzhou Huang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Di Liu
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yixi Zhang
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Rongxing Xie
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Ningxin Gao
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Liqiang Zhan
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Shujiao He
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yifan Zhu
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yuexin Li
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Björn Nashan
- Organ Transplant Center, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, China
| | - Schlegel Andrea
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Zhao
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China.
| | - Xiaoshun He
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Hannan F, Hamilton J, Patriquin CJ, Pavenski K, Jurkiewicz MT, Tristao L, Owen AM, Kosalka PK, Deoni SCL, Théberge J, Mandzia J, Huang SHS, Thiessen JD. Cognitive decline in thrombotic thrombocytopenic purpura survivors: The role of white matter health as assessed by MRI. Br J Haematol 2024; 204:1005-1016. [PMID: 38083818 DOI: 10.1111/bjh.19246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 03/14/2024]
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare condition caused by severe ADAMTS13 deficiency, leading to platelet aggregation and thrombosis. Despite treatment, patients are prone to cognitive impairment and depression. We investigated brain changes in iTTP patients during remission using advanced magnetic resonance imaging (MRI) techniques, correlating these changes with mood and neurocognitive tests. Twenty iTTP patients in remission (30 days post-haematological remission) were compared with six healthy controls. MRI scans, including standard and specialized sequences, were conducted to assess white matter health. Increased T1 relaxation times were found in the cingulate cortex (p < 0.05), and elevated T2 relaxation times were observed in the cingulate cortex, frontal, parietal and temporal lobes (p < 0.05). Pathological changes in these areas are correlated with impaired cognitive and depressive scores in concentration, short-term memory and verbal memory. This study highlights persistent white matter damage in iTTP patients, potentially contributing to depression and cognitive impairment. Key regions affected include the frontal lobe and cingulate cortex. These findings have significant implications for the acute and long-term management of iTTP, suggesting a need for re-evaluation of treatment approaches during both active phases and remission. Further research is warranted to enhance our understanding of these complexities.
Collapse
Affiliation(s)
- F Hannan
- Department of Medical Biophysics, Western University, London, Canada
| | - J Hamilton
- Department of Medical Biophysics, Western University, London, Canada
| | - C J Patriquin
- Department of Hematology, University Health Network, Toronto, Canada
| | - K Pavenski
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada
| | - M T Jurkiewicz
- Department of Medical Imaging, Western University, London, Canada
| | - L Tristao
- Department of Medical Imaging, Western University, London, Canada
| | - A M Owen
- Department of Clinical Neurological Sciences, Western University, London, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University, London, Canada
| | - P K Kosalka
- Department of Medicine, Division of Nephrology, Western University, London, Canada
| | - S C L Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, Providence, Rhode Island, USA
- Department of Diagnostic Radiology, Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Lawson Health Research Institute, London, Canada
| | - J Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| | - J Mandzia
- Department of Clinical Neurological Sciences, Western University, London, Canada
| | - S H S Huang
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medicine, Division of Nephrology, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| | - J D Thiessen
- Department of Medical Biophysics, Western University, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
| |
Collapse
|
3
|
Johansson L, Guo X, Sacuiu S, Fässberg MM, Kern S, Zettergren A, Skoog I. Longstanding smoking associated with frontal brain lobe atrophy: a 32-year follow-up study in women. BMJ Open 2023; 13:e072803. [PMID: 37802622 PMCID: PMC10565256 DOI: 10.1136/bmjopen-2023-072803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVE To examine the association between midlife tobacco smoking and late-life brain atrophy and white matter lesions. METHODS The study includes 369 women from the Prospective Population Study of Women in Gothenburg, Sweden. Cigarette smoking was reported at baseline 1968 (mean age=44 years) and at follow-up in 1974-1975 and 1980-1981. CT of the brain was conducted 32 years after baseline examination (mean age=76 years) to evaluate cortical atrophy and white matter lesions. Multiple logistic regressions estimated associations between midlife smoking and late-life brain lesions. The final analyses were adjusted for alcohol consumption and several other covariates. RESULTS Smoking in 1968-1969 (adjusted OR 1.85; 95% CI 1.12 to 3.04), in 1974-1975 (OR 2.37; 95% CI 1.39 to 4.04) and in 1980-1981 (OR 2.47; 95% CI 1.41 to 4.33) were associated with late-life frontal lobe atrophy (2000-2001). The strongest association was observed in women who reported smoking at all three midlife examinations (OR 2.63; 95% CI 1.44 to 4.78) and in those with more frequent alcohol consumption (OR 6.02; 95% CI 1.74 to 20.84). Smoking in 1980-1981 was also associated with late-life parietal lobe atrophy (OR 1.99; 95% CI 1.10 to 3.58). There were no associations between smoking and atrophy in the temporal or occipital lobe, or with white matter lesions. CONCLUSION Longstanding tobacco smoking was mainly associated with atrophy in the frontal lobe cortex. A long-term stimulation of nicotine receptors in the frontal neural pathway might be harmful for targeted brain cell.
Collapse
Affiliation(s)
- Lena Johansson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
- Department of Addiction and Dependency, Sahlgrenska University Hospital, Sahlgrenska universitetssjukhuset, Goteborg, Sweden
- Institute of Health and Care Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Guo
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Simona Sacuiu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Madeleine Mellqvist Fässberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|
4
|
Kennedy KG, Islam AH, Karthikeyan S, Metcalfe AWS, McCrindle BW, MacIntosh BJ, Black S, Goldstein BI. Differential association of endothelial function with brain structure in youth with versus without bipolar disorder. J Psychosom Res 2023; 167:111180. [PMID: 36764023 DOI: 10.1016/j.jpsychores.2023.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mood symptoms and disorders are associated with impaired endothelial function, a marker of early atherosclerosis. Given the increased vascular burden and neurostructural differences among individuals with mood disorders, we investigated the endothelial function and brain structure interface in relation to youth bipolar disorder (BD). METHODS This cross-sectional case-controlled study included 115 youth, ages 13-20 years (n = 66 BD; n = 49 controls [CG]). Cortical thickness and volume for regions of interest (ROI; insular cortex, ventrolateral prefrontal cortex [vlPFC], temporal lobe) were acquired from FreeSurfer processed T1-weighted MRI images. Endothelial function was assessed using pulse amplitude tonometry, yielding a reactive hyperemia index (RHI). ROI and vertex-wise analyses controlling for age, sex, obesity, and intracranial volume investigated for RHI-neurostructural associations, and RHI-by-diagnosis interactions. RESULTS In ROI analyses, higher RHI (i.e., better endothelial function) was associated with lower thickness in the insular cortex (β = -0.19, pFDR = 0.03), vlPFC (β = -0.30, pFDR = 0.003), and temporal lobe (β = -0.22, pFDR = 0.01); and lower temporal lobe volume (β = -0.16, pFDR = 0.01) in the overall sample. In vertex-wise analyses, higher RHI was associated with lower cortical thickness and volume in the insular cortex, prefrontal cortex (e.g., vlPFC), and temporal lobe. Additionally, higher RHI was associated with lower vlPFC and temporal lobe volume to a greater extent in youth with BD vs. CG. CONCLUSIONS Better endothelial function was associated with lower regional brain thickness and volume, contrasting the hypothesized associations. Additionally, we found evidence that this pattern was exaggerated in youth with BD. Future studies examining the direction of the observed associations and underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - Brian W McCrindle
- Faculty of Medicine, University of Toronto, Toronto, Canada; Hospital for Sick Children, Toronto, Canada; Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Computational Radiology & Artificial Intelligence (CRAI) Unit, Dept of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Sandra Black
- Faculty of Medicine, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada.
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Kennedy KG, Grigorian A, Mitchell RHB, McCrindle BW, MacIntosh BJ, Goldstein BI. Association of blood pressure with brain structure in youth with and without bipolar disorder. J Affect Disord 2022; 299:666-674. [PMID: 34920038 DOI: 10.1016/j.jad.2021.12.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/25/2021] [Accepted: 12/12/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND We previously found that blood pressure (BP) is elevated, and associated with poorer neurocognition, in youth with bipolar disorder (BD). While higher BP is associated with smaller brain structure in adults, studies have not examined this topic in BD or youth. METHODS Participants were 154 youth, ages 13-20 (n = 81 BD, n = 73 HC). Structural magnetic resonance imaging and diastolic (DBP), and systolic (SBP) pressure were obtained. Region of interest (ROI; anterior cingulate cortex [ACC], insular cortex, hippocampus) and vertex-wise analyses controlling for age, sex, body-mass-index, and intracranial volume investigated BP-neurostructural associations; a group-by-BP interaction was also assessed. RESULTS In ROI analyses, higher DBP in the overall sample was associated with smaller insular cortex area (β=-0.18 p = 0.007) and was associated with smaller ACC area to a significantly greater extent in HC vs. BD (β=-0.14 p = 0.015). In vertex-wise analyses, higher DBP and SBP were associated with smaller area and volume in the insular cortex, frontal, parietal, and temporal regions in the overall sample. Additionally, higher SBP was associated with greater thickness in temporal and parietal regions. Finally, higher SBP was associated with smaller area and volume in frontal, parietal, and temporal regions to a significantly greater extent in BD vs. HC. LIMITATIONS Cross-sectional design, single assessment of BP. CONCLUSION BP is associated with brain structure in youth, with variability related to structural phenotype (volume vs. thickness) and psychiatric diagnosis (BD vs. HC). Future studies evaluating temporality of these findings, and the association of BP changes on brain structure in youth, are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada
| | - Rachel H B Mitchell
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Brian W McCrindle
- Division of Pediatric Cardiology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Brain Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Rm 4326, 100 stokes street Way, Toronto, ON M6J 1H4, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
6
|
Wang Y, Yang Y, Wang T, Nie S, Yin H, Liu J. Correlation between White Matter Hyperintensities Related Gray Matter Volume and Cognition in Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2020; 29:105275. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
|
7
|
Wong WW, Fang Y, Chu WCW, Shi L, Tong KY. What Kind of Brain Structural Connectivity Remodeling Can Relate to Residual Motor Function After Stroke? Front Neurol 2019; 10:1111. [PMID: 31708857 PMCID: PMC6819511 DOI: 10.3389/fneur.2019.01111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/04/2019] [Indexed: 01/19/2023] Open
Abstract
Recent findings showed that brain networks far away from a lesion could be altered to adapt changes after stroke. This study examined 13 chronic stroke patients with moderate to severe motor impairment and 13 age-comparable healthy controls using diffusion tensor imaging to investigate the stroke impact on the reorganization of structural connectivity. Each subject's brain was segmented into 68 cortical and 12 subcortical regions of interest (ROIs), and connectivity measures including fractional anisotropy (FA), regional FA (rFA), connection weight (CW) and connection strength (CS) were adopted to compare two subject groups. Correlations between these measures and clinical scores of motor functions (Action Research Arm Test and Fugl-Meyer Assessment for upper extremity) were done. Network-based statistic (NBS) was conducted to identify the connectivity differences between patients and controls from the perspective of whole-brain network. The results showed that both rFAs and CSs demonstrated significant differences between patients and controls in the ipsilesional sensory-motor areas and subcortical network, and bilateral attention and default mode networks. Significant positive correlations were found between the paretic motor functions and the rFAs/CSs of the contralesional medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), and remained significant even after removing the effect of the ipsilesional corticospinal tract. Additionally, all the connections linked with the contralesional mOFC and rACC showed significantly higher FA/CW values in the stroke patients compared to the healthy controls from the NBS results. These findings indicated that these contralesional prefrontal areas exhibited stronger connections after stroke and strongly related to the residual motor function of the stroke patients.
Collapse
Affiliation(s)
- Wan-Wa Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yuqi Fang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
8
|
Wu P, Zhou YM, Zeng F, Li ZJ, Luo L, Li YX, Fan W, Qiu LH, Qin W, Chen L, Bai L, Nie J, Zhang S, Xiong Y, Bai Y, Yin CX, Liang FR. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study. Neural Regen Res 2016; 11:1424-1430. [PMID: 27857744 PMCID: PMC5090843 DOI: 10.4103/1673-5374.191215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 02/05/2023] Open
Abstract
Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010). Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.
Collapse
Affiliation(s)
- Ping Wu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yu-mei Zhou
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fang Zeng
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zheng-jie Li
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lu Luo
- China Academy of Chinese Medical Sciences, World Federation of Acupuncture-Moxibustion Societies, Beijing, China
| | - Yong-xin Li
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Fan
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Li-hua Qiu
- Radiology Department, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Qin
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi Province, China
| | - Lin Chen
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lin Bai
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Juan Nie
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - San Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yan Xiong
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yu Bai
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Can-xin Yin
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fan-rong Liang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
9
|
Ferreira D, Cavallin L, Larsson EM, Muehlboeck JS, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, Soininen H, Lovestone S, Simmons A, Wahlund LO, Westman E. Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer's disease and mild cognitive impairment. J Intern Med 2015; 278:277-90. [PMID: 25752192 DOI: 10.1111/joim.12358] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Atrophy in the medial temporal lobe, frontal lobe and posterior cortex can be measured with visual rating scales such as the medial temporal atrophy (MTA), global cortical atrophy - frontal subscale (GCA-F) and posterior atrophy (PA) scales, respectively. However, practical cut-offs are urgently needed, especially now that different presentations of Alzheimer's disease (AD) are included in the revised diagnostic criteria. AIMS The aim of this study was to generate a list of practical cut-offs for the MTA, GCA-F and PA scales, for both diagnosis of AD and determining prognosis in mild cognitive impairment (MCI), and to evaluate the influence of key demographic and clinical factors on these cut-offs. METHODS AddNeuroMed and ADNI cohorts were combined giving a total of 1147 participants (322 patients with AD, 480 patients with MCI and 345 control subjects). The MTA, GCA-F and PA scales were applied and a broad range of cut-offs was evaluated. RESULTS The MTA scale showed better diagnostic and predictive performances than the GCA-F and PA scales. Age, apolipoprotein E (ApoE) ε4 status and age at disease onset influenced all three scales. For the age ranges 45-64, 65-74, 75-84 and 85-94 years, the following cut-offs should be used. MTA: ≥1.5, ≥1.5, ≥2 and ≥2.5; GCA-F, ≥1, ≥1, ≥1 and ≥1; and PA, ≥1, ≥1, ≥1 and ≥1, respectively, with an adjustment for early-onset ApoE ε4 noncarrier AD patients (MTA: ≥2, ≥2, ≥3 and ≥3; and GCA-F: ≥1, ≥1, ≥2 and ≥2, respectively). CONCLUSIONS If successfully validated in clinical settings, the list of practical cut-offs proposed here might be useful in clinical practice. Their use might also (i) promote research on atrophy subtypes, (ii) increase the understanding of different presentations of AD, (iii) improve diagnosis and prognosis and (iv) aid population selection and enrichment for clinical trials.
Collapse
Affiliation(s)
- D Ferreira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden
| | - L Cavallin
- Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - E-M Larsson
- Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - J-S Muehlboeck
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden
| | - P Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - B Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - M Tsolaki
- 3rd Department of Neurology, Aristoteleion Panepistimeion Thessalonikis, Thessaloniki, Greece
| | | | - H Soininen
- University of Eastern Finland, University Hospital of Kuopio, Kuopio, Finland
| | - S Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - A Simmons
- Institute of Psychiatry, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health, London, UK.,NIHR Biomedical Research Unit for Dementia, London, UK
| | - L-O Wahlund
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden
| | - E Westman
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Stockholm, Sweden
| | | |
Collapse
|
10
|
Zi W, Duan D, Zheng J. Cognitive impairments associated with periventricular white matter hyperintensities are mediated by cortical atrophy. Acta Neurol Scand 2014; 130:178-87. [PMID: 24838230 DOI: 10.1111/ane.12262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies have shown that white matter lesions (WMLs) is an important risk factor for cognitive impairment, but the underlying mechanisms have not been clarified. OBJECTIVE We tested the hypothesis that the cognitive impairments associated with periventricular white matter hyperintensities (PWMHs) on magnetic resonance imaging (MRI) would be mediated by the cortical thinning of corresponding area. METHOD Sixteen stroke- and dementia-free subjects with PWMHs and 16 healthy control subjects were enrolled in this study. All participants underwent an examination of cognition, MRI-based cortical thickness measurement and a MRI-DTI scan. Then, the possible relationships among cognitive impairments, PWMHs and the topography of cortical thinning were analyzed. RESULTS Comparing with the controls, the cognitive tests of the subjects with PWMHs showed significant decline in the domains of verbal fluency and executive function. After accounting for age, gender, years of education, and treatable vascular risk factors related to cognitive performance, cortical thickness had an independent influence on the cognitive impairments, especially in the frontal pole, orbitofrontal cortex, superior and middle frontal gyrus, superior and middle temporal gyrus, insula, and cuneus. CONCLUSIONS Our results suggest that the association between PWMHs and cognitive impairments is mediated by cortical thinning.
Collapse
Affiliation(s)
- W. Zi
- Department of Neurology; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - D. Duan
- Department of Neurology; Xinqiao Hospital; Third Military Medical University; Chongqing China
| | - J. Zheng
- Department of Neurology; Xinqiao Hospital; Third Military Medical University; Chongqing China
| |
Collapse
|
11
|
Shi L, Wang D, Chu WCW, Liu S, Xiong Y, Wang Y, Wang Y, Wong LKS, Mok VCT. Abnormal organization of white matter network in patients with no dementia after ischemic stroke. PLoS One 2013; 8:e81388. [PMID: 24349063 PMCID: PMC3862493 DOI: 10.1371/journal.pone.0081388] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/12/2013] [Indexed: 01/07/2023] Open
Abstract
Structural changes after ischemic stroke could affect information communication extensively in the brain network. It is likely that the defects in the white matter (WM) network play a key role in information interchange. In this study, we used graph theoretical analysis to examine potential organization alteration in the WM network architecture derived from diffusion tensor images from subjects with no dementia and experienced stroke in the past 5.4-14.8 months (N = 47, Mini-Mental Screening Examination, MMSE range 18-30), compared with a normal control group with 44 age and gender-matched healthy volunteers (MMSE range 26-30). Region-wise connectivity was derived from fiber connection density of 90 different cortical and subcortical parcellations across the whole brain. Both normal controls and patients with chronic stroke exhibited efficient small-world properties in their WM structural networks. Compared with normal controls, topological efficiency was basically unaltered in the patients with chronic stroke, as reflected by unchanged local and global clustering coefficient, characteristic path length, and regional efficiency. No significant difference in hub distribution was found between normal control and patient groups. Patients with chronic stroke, however, were found to have reduced betweenness centrality and predominantly located in the orbitofrontal cortex, whereas increased betweenness centrality and vulnerability were observed in parietal-occipital cortex. The National Institutes of Health Stroke Scale (NIHSS) score of patient is correlated with the betweenness centrality of right pallidum and local clustering coefficient of left superior occipital gyrus. Our findings suggest that patients with chronic stroke still exhibit efficient small-world organization and unaltered topological efficiency, with altered topology at orbitofrontal cortex and parietal-occipital cortex in the overall structural network. Findings from this study could help in understanding the mechanism of cognitive impairment and functional compensation occurred in patients with chronic stroke.
Collapse
Affiliation(s)
- Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Defeng Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- * E-mail: (DW); (VCTM)
| | - Winnie C. W. Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shangping Liu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yunyun Xiong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lawrence K. S. Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Vincent C. T. Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail: (DW); (VCTM)
| |
Collapse
|
12
|
Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
13
|
Frontal lobe atrophy in depression after stroke. Stroke Res Treat 2013; 2013:424769. [PMID: 23533960 PMCID: PMC3596905 DOI: 10.1155/2013/424769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/21/2013] [Indexed: 11/26/2022] Open
Abstract
Background. Frontal lobe atrophy (FLA) is associated with late life depression. However, the role that FLA plays in the development of depression after stroke (DAS) remains unknown. This study thus examined the association between FLA and DAS. Methods. A convenience sample of 705 Chinese patients with acute ischemic stroke admitted to the acute stroke unit of a university-affiliated regional hospital in Hong Kong participated in the study. A psychiatrist administered the Structural Clinical Interview for DSM-IV to all patients and made a diagnosis of DAS three months after the index stroke. Results. Eighty-five (12.1%) patients were diagnosed with DAS. In univariate analysis, the DAS patients were more likely to have severe FLA (14.1% versus 5.6%). Severe FLA remained an independent predictor of DAS in multivariate analysis, with an odds ratio of 2.6 (95% confidence intervals = 1.2–5.9). Conclusions. The results suggest that FLA may play a role in the pathogenesis of DAS, which supports the hypothesis that cumulative vascular burden may be important in predicting DAS. Further investigations are needed to clarify the impact of FLA on the clinical presentation, treatment response, and outcome of DAS in stroke survivors.
Collapse
|
14
|
Chen YK, Xiao WM, Wang D, Shi L, Chu WC, Mok VC, Wong KS, Ungvari GS, Tang WK. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women. Neural Regen Res 2013; 8:346-56. [PMID: 25206675 PMCID: PMC4107535 DOI: 10.3969/j.issn.1673-5374.2013.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.
Collapse
Affiliation(s)
- Yang-Kun Chen
- Department of Neurology, Dongguan People's Hospital, Dongguan 523059, Guangdong Province, China
| | - Wei-Min Xiao
- Department of Neurology, Dongguan People's Hospital, Dongguan 523059, Guangdong Province, China
| | - Defeng Wang
- Department of Diagnostic Radiology and Organ Imaging, the Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Lin Shi
- Department of Diagnostic Radiology and Organ Imaging, the Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Winnie Cw Chu
- Department of Diagnostic Radiology and Organ Imaging, the Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Ka Sing Wong
- Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Gabor S Ungvari
- Graylands Hospital, School of Psychiatry & Clinical Neurosciences, University of Western Australia, Perth 6005, Australia
| | - Wai Kwong Tang
- Department of Psychiatry, the Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Hakky MM, Erbay KD, Brewer E, Midle JB, French R, Erbay SH. T2 hyperintensity of medial lemniscus: higher threshold application to ROI measurements is more accurate in predicting small vessel disease. J Neuroimaging 2013; 23:345-51. [PMID: 23343196 DOI: 10.1111/jon.12011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Medial lemniscus T2 hyperintensity (MLH) has been recently demonstrated as potential imaging marker for small vessel disease (SVD). Our purpose in this study is to improve accuracy of regions of interest (ROI) analysis for this imaging finding. METHODS AND METHODS Two neuroradiologists retrospectively reviewed 103 consecutive outpatient brain MRI. Medial lemniscus signal in dorsal pons was evaluated; visually on FLAIR and with ROI on T2. Original MRI interpretations were divided into three categories; SVD, multiple sclerosis (MS), and nonspecific WM changes (non). RESULTS Thirty-seven patients had SVD, 14 patients had MS, 52 had Non. Visual MLH was seen exclusively with SVD and was generally bilateral. Patients with visual MLH belonged to advanced SVD by imaging and clinical parameters. Compared to visual data, ROI analyses of MLH has been known to be compounded by false positives and negatives at low threshold (20% of adjacent to normal brainstem signal). With application of higher ROI threshold (25%), false positives were eliminated but false negatives increased. ROI analyses of MLH by experienced neuroradiologist were more reliable. CONCLUSION MLH seen on high threshold ROI analysis is a reliable radiologic marker in predicting SVD. ROI analysis of MLH should be performed by an experienced neuroradiologist.
Collapse
Affiliation(s)
- Michael M Hakky
- Department of Radiology, Lahey Clinic Medical Center, Burlington, MA 01805, USA
| | | | | | | | | | | |
Collapse
|
16
|
T2 hyperintensity of medial lemniscus is an indicator of small-vessel disease. AJR Am J Roentgenol 2012; 199:163-8. [PMID: 22733908 DOI: 10.2214/ajr.11.7444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Small-vessel disease is a common MRI finding that can be difficult to differentiate from other white matter (WM) diseases because of the lack of a specific pattern of brain involvement. The purpose of our study was to evaluate medial lemniscus hyperintensity seen on FLAIR images as an imaging marker for small-vessel disease. MATERIALS AND METHODS Two blinded neuroradiologists retrospectively reviewed 103 consecutive outpatient brain MRI studies. Medial lemniscus signal in the dorsal pons was evaluated visually on FLAIR images and after placing regions of interest (ROIs) on T2-weighted images. On the basis of the original interpretations, scans were divided into three categories: small-vessel disease, multiple sclerosis (MS), and normal or nonspecific WM changes. Cardiovascular risk factors were recorded. Analysis of variance and Fisher exact tests were used to determine group differences, and kappa statistics was used to determine interrater agreement. RESULTS Thirty-seven patients had small-vessel disease, 14 patients had MS, and 52 had nonspecific WM changes. Medial lemniscus hyperintensity was seen in about 20% of patients with small-vessel disease and was generally bilateral. Although ROI analyses identified a slightly higher number of patients with medial lemniscus signal > 20% of adjacent to normal-appearing brainstem, interrater reliability was moderate, and there were false-positive and false-negative cases in comparison with visual data. When small-vessel disease patients were further subdivided into mild or advanced subgroups, medial lemniscus hyperintensity was selectively seen in advanced small-vessel disease. Patients with medial lemniscus hyperintensity were older (p < 0.001) and had higher prevalence of diabetes (p = 0.03), hypertension (p = 0.009), and hypercholesterolemia (p = 0.03). CONCLUSION Medial lemniscus hyperintensity seen on FLAIR images is a reliable radiologic marker of advanced small-vessel disease.
Collapse
|