1
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188913. [PMID: 37182666 DOI: 10.1016/j.bbcan.2023.188913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer showing poor prognosis. Currently, treatment methods of GBM are limited with adverse outcomes and low survival rate. Thus, advancements in the treatment of GBM are of utmost importance, which can be achieved in recent decades. However, despite aggressive initial treatment, most patients develop recurrent diseases, and the overall survival rate of patients is impossible to achieve. Currently, researchers across the globe target signaling events along with tumor microenvironment (TME) through different drug molecules to inhibit the progression of GBM, but clinically they failed to demonstrate much success. Herein, we discuss the therapeutic targets and signaling cascades along with the role of the organoids model in GBM research. Moreover, we systematically review the traditional and emerging therapeutic strategies in GBM. In addition, we discuss the implications of nanotechnologies, AI, and combinatorial approach to enhance GBM therapeutics.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, India.
| |
Collapse
|
2
|
Ziu M, Kim BYS, Jiang W, Ryken T, Olson JJ. The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: a systematic review and evidence-based clinical practice guideline update. J Neurooncol 2020; 150:215-267. [PMID: 33215344 DOI: 10.1007/s11060-020-03612-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. QUESTION 1 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, is the addition of radiation therapy (RT) more beneficial than management without RT in improving survival? RECOMMENDATIONS Level I: Radiation therapy (RT) is recommended for the treatment of newly diagnosed malignant glioblastoma in adults. QUESTION 2 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, is the RT regimen of 60 Gy given in 2 Gy daily fractions more beneficial than alternative regimens in providing survival benefit while minimizing toxicity? RECOMMENDATIONS Level I: Treatment schemes should include dosage of up to 60 Gy given in 2 Gy daily fractions that includes the enhancing area. QUESTION 3 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, is a tailored target volume superior to regional RT for reduction of radiation-induced toxicity while maintaining efficacy? RECOMMENDATION Level II: It is recommended that radiation therapy planning include 1-2 cm margin around the radiographically T1 weighted contrast-enhancing tumor volume or the T2 weighted abnormality on MRI. Level III: Recalculation of the radiation volume during RT treatment may be necessary to reduce the radiated volume of normal brain since the volume of surgical defect will change during the long period of RT. QUESTION 4 : In adult patients (aged 65 and under) with newly diagnosed glioblastoma, does the addition of RT of the subventricular zone to standard tumor volume treatment improve tumor control and overall survival? RECOMMENDATION No recommendation can be formulated as there is contradictory evidence in favor of and against intentional radiation of the subventricular zone (SVZ) QUESTION 5 : In elderly (age > 65 years) and/or frail patients with newly diagnosed glioblastoma, does the addition of RT to surgical intervention improve disease control and overall survival? RECOMMENDATION Level I: Radiation therapy is recommended for treatment of elderly and frail patients with newly diagnosed glioblastoma to improve overall survival. QUESTION 6 : In elderly (age > 65 years) and/or frail patients with newly diagnosed glioblastoma, does modification of RT dose and fractionation scheme from standard regimens decrease toxicity and improve disease control and survival? RECOMMENDATION Level II: Short RT treatment schemes are recommended in frail and elderly patients as compared to conventional 60 Gy given in 2 daily fractions because overall survival is not different while RT risk profile is better for the short RT scheme. Level II: The 40.05 Gy dose given in 15 fractions or 25 Gy dose given in 5 fractions or 34 Gy dose given in 10 fractions should be considered as appropriate doses for Short RT treatments in elderly and/or frail patients. QUESTION 7 : In adult patients with newly diagnosed glioblastoma is there advantage to delaying the initiation of RT instead of starting it 2 weeks after surgical intervention in decreasing radiation-induced toxicity and improving disease control and survival? RECOMMENDATION Level III: It is suggested that RT for patients with newly diagnosed GBM starts within 6 weeks of surgical intervention as compared to later times. There is insufficient evidence to recommend the optimal specific post-operative day within the 6 weeks interval to start RT for adult patients with newly diagnosed glioblastoma that have undergone surgical resection. QUESTION 8 : In adult patients with newly diagnosed supratentorial glioblastoma is Image-Modulated RT (IMRT) or similar techniques as effective as standard regional RT in providing tumor control and improve survival? RECOMMENDATION Level III: There is no evidence that IMRT is a better RT delivering modality when compared to conventional RT in improving overall survival in adult patients with newly diagnosed glioblastoma. Hence, IMRT should not be preferred over the Conventional RT delivery modality. QUESTION 9 : In adult patients with newly diagnosed glioblastoma does the use of radiosensitizers with RT improve the efficacy of RT as determined by disease control and overall survival? RECOMMENDATION Level III: Iododeoxyuridine is not recommended to be used as radiosensitizer during RT treatment for patients with newly diagnosed GBM QUESTION 10 : In adult patients with newly diagnosed glioblastoma is the use of Ultrafractionated RT superior to standard fractionation regimens in improving disease control and survival? RECOMMENDATION There is insufficient evidence to formulate a recommendation regarding the use of ultrafractionated RT schemes and patient population that could benefit from it. QUESTION 11 : In patients with poor prognosis with newly diagnosed glioblastoma is hypofractionated RT indicated instead of a standard fractionation regimen as measured by extent of toxicity, disease control and survival? RECOMMENDATION Level I: Hypofractionated RT schemes may be used for patients with poor prognosis and limited survival without compromising response. There is insufficient evidence in the literature for us to be able to recommend the optimal hypofractionated RT scheme that will confer longest overall survival and/or confer the same overall survival with less toxicities and shorter treatment time. QUESTION 12 : In adult patients with newly diagnosed glioblastoma is the addition of brachytherapy to standard fractionated RT indicated to improve disease control and survival? RECOMMENDATION Level I: Brachytherapy as a boost to external beam RT has not been shown to be beneficial and is not recommended in the routine management of patients with newly diagnosed GBM. QUESTION 13 : In elderly patients (> 65 year old) with newly diagnosed glioblastoma under what circumstances is accelerated hyperfractionated RT indicated instead of a standard fractionation regimen as measured by extent of toxicity, disease control and survival? RECOMMENDATION Level III: Accelerated Hyperfractionated RT with a total RT dose of 45 Gy or 48 Gy has been shown to shorten the treatment time without detriment in survival when compared to conventional external beam RT and should be considered as an option for treatment of elderly patients with newly diagnosed GBM. QUESTION 14 : In adult patients with newly diagnosed glioblastoma is the addition of Stereotactic Radiosurgery (SRS) boost to conventional standard fractionated RT indicated to improve disease control and survival? RECOMMENDATION Level I: Stereotactic Radiosurgery boost to external beam RT has not been shown to be beneficial and is not recommended in patients undergoing routine management of newly diagnosed malignant glioma.
Collapse
Affiliation(s)
- Mateo Ziu
- Department of Neurosurgery, Inova Neuroscience and Spine Institute, 3300 Gallows Rd, NPT 2nd Floor, Suite 200, Falls Church, VA, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The UT at MD Anderson Cancer Center, Houston, TX, USA
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy Ryken
- Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Hirata T, Kinoshita M, Tamari K, Seo Y, Suzuki O, Wakai N, Achiha T, Umehara T, Arita H, Kagawa N, Kanemura Y, Shimosegawa E, Hashimoto N, Hatazawa J, Kishima H, Teshima T, Ogawa K. 11C-methionine-18F-FDG dual-PET-tracer-based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg 2019; 131:676-686. [PMID: 30239314 DOI: 10.3171/2018.4.jns1859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE It is important to correctly and precisely define the target volume for radiotherapy (RT) of malignant glioma. 11C-methionine (MET) positron emission tomography (PET) holds promise for detecting areas of glioma cell infiltration: the authors' previous research showed that the magnitude of disruption of MET and 18F-fluorodeoxyglucose (FDG) uptake correlation (decoupling score [DS]) precisely reflects glioma cell invasion. The purpose of the present study was to analyze volumetric and geometrical properties of RT target delineation based on DS and compare them with those based on MRI. METHODS Twenty-five patients with a diagnosis of malignant glioma were included in this study. Three target volumes were compared: 1) contrast-enhancing core lesions identified by contrast-enhanced T1-weighted images (T1Gd), 2) high-intensity lesions on T2-weighted images, and 3) lesions showing high DS (DS ≥ 3; hDS). The geometrical differences of these target volumes were assessed by calculating the probabilities of overlap and one encompassing the other. The correlation of geometrical features of RT planning and recurrence patterns was further analyzed. RESULTS The analysis revealed that T1Gd with a 2.0-cm margin was able to cover the entire high DS area only in 6 (24%) patients, which indicates that microscopic invasion of glioma cells often extended more than 2.0 cm beyond a Gd-enhanced core lesion. Insufficient coverage of high DS regions with RT target volumes was suggested to be a risk for out-of-field recurrence. Higher coverage of hDS by T1Gd with a 2-cm margin (i.e., higher values of "[T1Gd + 2 cm]/hDS") had a trend to positively impact overall and progression-free survival. Cox regression analysis demonstrated that low coverage of hDS by T1Gd with a 2-cm margin was predictive of disease recurrence outside the Gd-enhanced core lesion, indicative of out-of-field reoccurrence. CONCLUSIONS The findings of this study indicate that MRI is inadequate for target delineation for RT in malignant glioma treatment. Expanding the treated margins substantially beyond the MRI-based target volume may reduce the risk of undertreatment, but it may also result in unnecessary irradiation of uninvolved regions. As MET/FDG PET-DS seems to provide more accurate information for target delineation than MRI in malignant glioma treatment, this method should be further evaluated on a larger scale.
Collapse
Affiliation(s)
- Takero Hirata
- Departments of1Radiation Oncology
- Departments of2Radiation Oncology and
| | - Manabu Kinoshita
- 3Neurosurgery, and
- 4Neurosurgery, Osaka International Cancer Institute, Chuo-ku, Osaka
| | | | - Yuji Seo
- Departments of1Radiation Oncology
| | | | - Nobuhide Wakai
- 5Department of Radiation Oncology, Nara Medical University, Kashihara, Nara; and
| | - Takamune Achiha
- 3Neurosurgery, and
- 4Neurosurgery, Osaka International Cancer Institute, Chuo-ku, Osaka
| | | | | | | | - Yonehiro Kanemura
- 6Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, Japan
| | - Eku Shimosegawa
- 7Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka
| | | | - Jun Hatazawa
- 7Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka
| | | | | | | |
Collapse
|
4
|
Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10:4793-4806. [PMID: 31598150 PMCID: PMC6775524 DOI: 10.7150/jca.32475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is commonly known as the most aggressive primary CNS tumor in adults. The mean survival of it is 14 to 15 months, following the standard therapy from surgery, chemotherapy, to radiotherapy. Efforts in recent decades have brought many novel therapies to light, however, with limitations. In this paper, authors reviewed current treatments for GBM besides surgery. In the past decades, only radiotherapy, temozolomide (TMZ), and tumor treating field (TTF) were approved by FDA. Though promising in preclinical experiments, therapeutic effects of other novel treatments including BNCT, anti-angiogenic therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy, and gene therapy are still either uncertain or discouraging in clinical results. In this review, we went through current clinical trials, underlying causes, and future therapy designs to present neurosurgeons and researchers a sketch of this field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ruizhe Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuanqiang Yu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tianmeng Luo
- Department of Medical Affairs, Xiangya Hospital, Central South University, Chang Sha, Hunan Province, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.,Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University Changsha, China
| |
Collapse
|
5
|
Re-irradiation for recurrent glioblastoma (GBM): a systematic review and meta-analysis. J Neurooncol 2018; 142:79-90. [PMID: 30523605 DOI: 10.1007/s11060-018-03064-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine the efficacy and toxicity of re-irradiation for patients with recurrent GBM. MATERIALS AND METHODS We searched various biomedical databases from 1998 to 2018, for eligible studies where patients were treated with re-irradiation for recurrent GBM. Outcomes of interest were 6 and 12-month overall survival (OS-6, OS-12), 6 and 12-month progression free survival (PFS-6, PFS-12) and serious (Grade 3 +) adverse events (AE). We used the random effects model to pool outcomes across studies and compared pre-defined subgroups using interaction test. Methodological quality of each study was assessed using the Newcastle-Ottawa scoring system. RESULTS We found 50 eligible non-comparative studies including 2095 patients. Of these, 42% were of good or fair quality. The pooled results were as follows: OS-6 rate 73% (95% confidence interval (CI) 69-77%), OS-12 rate 36% (95% CI 32-40%), PFS-6 rate 43% (95% CI 35-50%), PFS-12 rate 17% (95% CI 13-20%), and Grade 3 + AE rate 7% (95% CI 4-10%). Subgroup analysis showed that prospective studies reported higher toxicity rates, and studies which utilized brachytherapy to have a longer OS-12. Within the external beam radiotherapy group, there was no dose-response [above or below 36 Gy in 2 Gy equivalent doses (EQD2)]. However, a short fractionation regimen (≤ 5 fractions) seemed to provide superior PFS-6. CONCLUSION The available evidence, albeit mostly level III, suggests that re-irradiation provides encouraging disease control and survival rates. Toxicity was not uniformly reported, but seemed to be low from the included studies. Randomized controlled trials (RCT) are needed to establish the optimal management strategy for recurrent GBM.
Collapse
|
6
|
Witthayanuwat S, Pesee M, Supaadirek C, Supakalin N, Thamronganantasakul K, Krusun S. Survival Analysis of Glioblastoma Multiforme. Asian Pac J Cancer Prev 2018; 19:2613-2617. [PMID: 30256068 PMCID: PMC6249474 DOI: 10.22034/apjcp.2018.19.9.2613] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Introduction: To evaluate the survival of Glioblastoma Multiforme (GBM). Material and Methods: Patients with a pathological diagnosis of Glioblastoma Multiforme (GBM) between 1 January 1994 and 30 November 2013, were retrospectively reviewed. Inclusion criteria: 1) GBM patients with confirmed pathology, 2) GBM patients were treated by multimodality therapy. Exclusion criteria: 1) GBM patients with unconfirmed pathology, 2) GBM patients with spinal involvement, 3) GBM patients with incomplete data records. Seventy-seven patients were treated by multimodality therapy such as surgery plus post-operative radiotherapy (PORT), post-operative Temozolomide (TMZ) concurrent with radiotherapy (CCRT), post-operative CCRT with adjuvant TMZ. The overall survival was calculated by the Kaplan-Meier method and the log-rank test was used to compare the survival curves. A p-value of ≤ 0.05 was considered to be statistically significant. Results: Seventy-seven patients with a median age of 53 years (range 4-76 years) showed a median survival time (MST) of 12 months. In subgroup analyses, the PORT patients revealed a MST of 11 months and 2 year overall survival (OS) rates were 17.2%, the patients with post-operative CCRT with or without adjuvant TMZ revealed a MST of 23 months and 2 year OS rates were 38.2%. The MST of patients by Recursive Partitioning Analysis (RPA), classifications III, IV, V, VI were 26.8 months, 14.2 months, 9.9 months, and 4.0 months, (p <0.001). Conclusions: The MST of the patients who had post-operative CCRT with or without adjuvant TMZ was better than the PORT group. The RPA classification can be used to predict survival. Multimodality therapy demonstrated the most effective treatment outcome. Temozolomide might be beneficial for GBM patients in order to increase survival time.
Collapse
Affiliation(s)
- Supapan Witthayanuwat
- Division of Radiotherapy, Department of Radiology, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand.
| | | | | | | | | | | |
Collapse
|
7
|
Mallick S, Kunhiparambath H, Gupta S, Benson R, Sharma S, Laviraj MA, Upadhyay AD, Julka PK, Sharma D, Rath GK. Hypofractionated accelerated radiotherapy (HART) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: a phase II randomized trial (HART-GBM trial). J Neurooncol 2018; 140:75-82. [PMID: 29936695 DOI: 10.1007/s11060-018-2932-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Maximal safe surgical resection followed by adjuvant chemoradiation has been standard for newly diagnosed glioblastoma multiforme (GBM). Hypofractionated accelerated radiotherapy (HART) has the potential to improve outcome as it reduces the overall treatment time and increases the biological effective dose. METHODS Between October 2011 and July 2017, a total of 89 newly diagnosed GBM patients were randomized to conventional fractionated radiotherapy (CRT) or HART. Radiotherapy was delivered in all patients with a three-dimensional conformal radiotherapy technique in CRT arm (60 Gy in 30 fractions over 6 weeks @ 2 Gy/per fraction) or simultaneous integrated boost intensity modulated radiotherapy in HART arm (60 Gy in 20 fractions over 4 weeks @ 3 Gy/per fraction to high-risk planning target volume (PTV) and 50 Gy in 20 fractions over 4 weeks @ 2.5 Gy/per fraction to low-risk PTV). The primary endpoint of the trial was overall survival (OS). RESULTS After a median follow-up of 11.4 months (Range: 2.9-42.5 months), 26 patients died and 39 patients had progression of the disease. Median OS for the entire cohort was 23.4 months. Median OS in the CRT and HART arms were 18.07 months (95% CI 14.52-NR) and 25.18 months (95% CI 12.89-NR) respectively, p = 0.3. Median progression free survival (PFS) for the entire cohort was 13.5 months (Range: 11.7-15.7 months). In multivariate analysis patients younger than 40 years of age, patients with a gross total resection of tumor and a mutated IDH-1 had significantly better OS. PFS was significantly better for patients with a gross total resection of tumor and a mutated IDH-1. All patients included in the trial completed the planned course of radiation. Only two patients required hospital admission for features of raised intracranial tension. One patient in the HART arm required treatment interruption. CONCLUSION HART is comparable to CRT in terms of survival outcome. HART arm had no excess treatment interruption and minimal toxicity. Dose escalation, reduction in overall treatment time, is the advantages with use of HART.
Collapse
Affiliation(s)
- Supriya Mallick
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India.
| | - Haresh Kunhiparambath
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rony Benson
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - M A Laviraj
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Datt Upadhyay
- Department of Bio-Statistics, All India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar Julka
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Dayanand Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Goura Kishor Rath
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults, with a median survival of less than 2 years despite the standard of care treatment of 6 weeks of chemoradiotherapy. We review the data investigating hypofractionated radiotherapy (HFRT) in the treatment of newly diagnosed GBM. RECENT FINDINGS Investigators have explored alternative radiotherapy strategies that shorten treatment duration with the goal of similar or improved survival while minimizing toxicity. HFRT over 1-3 weeks is already a standard of care for patients with advanced age or poor performance status. For young patients with good performance status, HFRT holds the promise of radiobiologically escalating the dose and potentially improving local control while maintaining quality of life. Through the use of shorter radiotherapy fractionation regimens coupled with novel systemic agents, improved outcomes for patients with GBM may be achieved.
Collapse
|
9
|
Azoulay M, Santos F, Souhami L, Panet-Raymond V, Petrecca K, Owen S, Guiot MC, Patyka M, Sabri S, Shenouda G, Abdulkarim B. Comparison of radiation regimens in the treatment of Glioblastoma multiforme: results from a single institution. Radiat Oncol 2015; 10:106. [PMID: 25927334 PMCID: PMC4422039 DOI: 10.1186/s13014-015-0396-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 02/25/2023] Open
Abstract
Background The optimal fractionation schedule of radiotherapy (RT) for Glioblastoma multiforme (GBM) is yet to be determined. We aim to compare different fractionation regimens and identify prognostic factors to better tailor RT for newly diagnosed GBM patients. Methods All data for patients who underwent surgery for GBM between January 2005 and December 2012 were compiled. Clinical information was collected using patient charts and government registry. Cox analysis was used to identify variables affecting survival and treatment outcome. Results The median follow-up time was 13.2 months. Two hundred and seventy-six patients met the inclusion criteria, including 147 patients in the 60 Gy in 30 fractions (ConvRT) group, 86 patients in the 60 Gy in 20 fractions (HF60) group, and 43 patients in the 40 Gy in 15 fractions (HF40) group. Median survival (MS) was 16.0 months with a median progression-free survival (PFS) of 9.23 months in the ConvRT group. This was comparable to outcome in the HF60 group with MS 15.0 months and a median PFS of 9.1 months. Patients in the HF40 group had MS of 8 months, with a median PFS 5.4 months. Cox analysis showed no significant difference in OS between the ConvRT and HF60 groups but worse outcome in the HF40 group (HR 2.22, P = 0.04). MGMT methylation, extent of resection, use of chemotherapy, and repeat surgery were found to be significant independent prognostic factors for survival. Conclusions HF60 constitutes a safe RT approach that shows survival comparable to standard RT while allowing for a shorter treatment time.
Collapse
Affiliation(s)
- Melissa Azoulay
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal General Hospital, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada.
| | - Fabiano Santos
- Department of Oncology, Division of Cancer Epidemiology, McGill University, 546 Pine Avenue West, H2W1S6, Montreal, QC, Canada.
| | - Luis Souhami
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal General Hospital, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada.
| | - Valerie Panet-Raymond
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal General Hospital, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada.
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital, McGill University, 3801 University Avenue, H2W1S6, Montreal, QC, Canada.
| | - Scott Owen
- Division of Medical oncology, Department of Oncology, Montreal General Hospital, McGill University, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada.
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Hospital, McGill University, 3801 University Avenue, H3A 2B4, Montreal, QC, Canada.
| | - Mariia Patyka
- Research Institute of the McGill University Health Center, Montreal General Hospital, 1625 Pine Avenue West, H3G 1A4, Montreal, QC, Canada.
| | - Siham Sabri
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal General Hospital, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada. .,Research Institute of the McGill University Health Center, Montreal General Hospital, 1625 Pine Avenue West, H3G 1A4, Montreal, QC, Canada.
| | - George Shenouda
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal General Hospital, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada.
| | - Bassam Abdulkarim
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal General Hospital, 1650 Avenue Cedar, H3G 1A4, Montréal, QC, Canada.
| |
Collapse
|
10
|
Hypofractionated radiotherapy with concurrent temozolomide chemotherapy in patients with newly diagnosed RPA class V glioblastoma multiforme: promising early results. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-014-0180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Clinical radiobiology of glioblastoma multiforme. Strahlenther Onkol 2014; 190:925-32. [DOI: 10.1007/s00066-014-0638-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/05/2014] [Indexed: 12/29/2022]
|