1
|
Song D, Fan G, Chang M. Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI. Cancers (Basel) 2024; 17:74. [PMID: 39796702 PMCID: PMC11719598 DOI: 10.3390/cancers17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
Collapse
Affiliation(s)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| |
Collapse
|
2
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
3
|
Lee J, Chen MM, Liu HL, Ucisik FE, Wintermark M, Kumar VA. MR Perfusion Imaging for Gliomas. Magn Reson Imaging Clin N Am 2024; 32:73-83. [PMID: 38007284 DOI: 10.1016/j.mric.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Accurate diagnosis and treatment evaluation of patients with gliomas is imperative to make clinical decisions. Multiparametric MR perfusion imaging reveals physiologic features of gliomas that can help classify them according to their histologic and molecular features as well as distinguish them from other neoplastic and nonneoplastic entities. It is also helpful in distinguishing tumor recurrence or progression from radiation necrosis, pseudoprogression, and pseudoresponse, which is difficult with conventional MR imaging. This review provides an update on MR perfusion imaging for the diagnosis and treatment monitoring of patients with gliomas following standard-of-care chemoradiation therapy and other treatment regimens such as immunotherapy.
Collapse
Affiliation(s)
- Jina Lee
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Melissa M Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Hirschler L, Sollmann N, Schmitz‐Abecassis B, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda K, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Emblem KE, Smits M, Petr J, Hangel G. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J Magn Reson Imaging 2023; 57:1655-1675. [PMID: 36866773 PMCID: PMC10946498 DOI: 10.1002/jmri.28662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.
Collapse
Affiliation(s)
- Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Delta FoundationDelftThe Netherlands
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityKrems an der DonauAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nazmiye Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdamThe Netherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaaglanden Medical CenterThe HagueThe Netherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and PsychotherapyInternational Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Babes‐Bolyai UniversityCluj‐NapocaRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | - Kathleen Schmainda
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftThe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University Hospital, BrnoBrnoCzech Republic
- Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| | - Marion Smits
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamThe Netherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Jiang L, Zhou L, Ai Z, Xiao C, Liu W, Geng W, Chen H, Xiong Z, Yin X, Chen YC. Machine Learning Based on Diffusion Kurtosis Imaging Histogram Parameters for Glioma Grading. J Clin Med 2022; 11:jcm11092310. [PMID: 35566437 PMCID: PMC9105194 DOI: 10.3390/jcm11092310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Glioma grading plays an important role in surgical resection. We investigated the ability of different feature reduction methods in support vector machine (SVM)-based diffusion kurtosis imaging (DKI) histogram parameters to distinguish glioma grades. A total of 161 glioma patients who underwent magnetic resonance imaging (MRI) from January 2017 to January 2020 were included retrospectively. The patients were divided into low-grade (n = 61) and high-grade (n = 100) groups. Parametric DKI maps were derived, and 45 features from the DKI maps were extracted semi-automatically for analysis. Three feature selection methods [principal component analysis (PCA), recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO)] were used to establish the glioma grading model with an SVM classifier. To evaluate the performance of SVM models, the receiver operating characteristic (ROC) curves of SVM models for distinguishing glioma grades were compared with those of conventional statistical methods. The conventional ROC analysis showed that mean diffusivity (MD) variance, MD skewness and mean kurtosis (MK) C50 could effectively distinguish glioma grades, particularly MD variance. The highest classification distinguishing AUC was found using LASSO at 0.904 ± 0.069. In comparison, classification AUC by PCA was 0.866 ± 0.061, and 0.899 ± 0.079 by RFE. The SVM-PCA model with the lowest AUC among the SVM models was significantly better than the conventional ROC analysis (z = 1.947, p = 0.013). These findings demonstrate the superiority of DKI histogram parameters by LASSO analysis and SVM for distinguishing glioma grades.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Leilei Zhou
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Zhongping Ai
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Chaoyong Xiao
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; (C.X.); (W.L.)
| | - Wen Liu
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China; (C.X.); (W.L.)
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
| | - Zhenyu Xiong
- Department of Radiation Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
- Correspondence: (X.Y.); (Y.-C.C.); Tel.: +86-2552271452 (Y.-C.C.)
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China; (L.J.); (L.Z.); (Z.A.); (W.G.); (H.C.)
- Correspondence: (X.Y.); (Y.-C.C.); Tel.: +86-2552271452 (Y.-C.C.)
| |
Collapse
|
6
|
Soliman RK, Essa AA, Elhakeem AAS, Gamal SA, Zaitoun MMA. Texture analysis of apparent diffusion coefficient (ADC) map for glioma grading: Analysis of whole tumoral and peri-tumoral tissue. Diagn Interv Imaging 2021; 102:287-295. [PMID: 33419692 DOI: 10.1016/j.diii.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE To prospectively investigate the capabilities of texture analysis (TA) based on apparent diffusion coefficient (ADC) map of the entire tumor volume and the whole volume of peri-tumoral edema, in discriminating between high-grade glioma (HGG) and low-grade glioma (LGG). MATERIALS AND METHODS A total of 33 patients with histopathological proven glioma were prospectively included. There were 20 men and 13 women with a mean age of 54.5±14.7 (standard deviation [SD]) years (range: 34-75years). TA parameters of whole tumor and peri-tumoral edema were extracted from the ADC map obtained with diffusion-weighted spin-echo echo-planar magnetic resonance imaging at 1.5-T. TA variables of HGG were compared to those of LGG. The optimum cut-off values of TA variables and their corresponding sensitivity, specificity and accuracy for differentiating between LGG and HGG were calculated using receiver operating characteristic curve analysis. RESULTS Mean and median tumoral ADC of HGG were significantly lower than those of LGG, at 1.23×10-3 mm2/s and 1.21×10-3 mm2/s cut-off values, yielding 70% sensitivity each (95% CI: 59-82% and 61-80%, respectively), 80% (95% CI: 79-98%) and 90% (95% CI: 82-97%) specificity, and 73% (95% CI: 66-91%) and 76% (95% CI: 72-90%) accuracy, respectively. Significant differences in tumoral and peri-tumoral kurtosis were found between HGG and LGG at 1.60 and 0.314 cut-off values yielding sensitivities of 74% (95% CI: 58-83%) and 70% (95% CI: 59-84%), specificities of 90% (95% CI: 80-95%) and 70% (95% CI: 64-83%) and accuracies of 79% (95% CI: 69-89%) and 70% (95% CI: 64-77%), respectively. CONCLUSION Measurements of whole tumoral and peri-tumoral TA, based on ADC maps, provide useful information that helps distinguish between HGG and LGG.
Collapse
Affiliation(s)
- Radwa K Soliman
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Assiut University Hospitals, Asyut 71515, Egypt.
| | - Abdelhakeem A Essa
- Department of Neurosurgery, Assiut University Hospitals, Assiut 71515, Egypt
| | - Ahmed A S Elhakeem
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Assiut 71515, Egypt
| | - Sara A Gamal
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Assiut University Hospitals, Asyut 71515, Egypt
| | - Mohamed M A Zaitoun
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
7
|
Hasan AMS, Hasan AK, Megally HI, Khallaf M, Haseib A. The combined role of MR spectroscopy and perfusion imaging in preoperative differentiation between high- and low-grade gliomas. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0078-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Brain tumors are an important health problem. The preoperative classification of gliomas by non-invasive techniques is a significant problem. Relative cerebral blood volume and spectroscopy have the ability to sample the entire lesion non-invasively. The present study aims to evaluate the combined role of dynamic susceptibility perfusion and spectroscopy in the classification of primary brain tumors. The combination of both provides overall diagnostic accuracy (100%). Relative cerebral blood volume in peritumoral region plays an important additional role in this regard.
Results
On the basis of histopathology, among 50 patients with brain tumors, high-grade gliomas accounted for 58%, while low-grade gliomas accounted for 42%. The relative cerebral blood volume in the tumor had the best sensitivity, specificity, and accuracy of 96.8%, 95.3%, and 96, respectively. The use of relative cerebral blood volume and choline/N-acetyl Aspartate increased diagnostic accuracy by 100%.
Conclusion
The combination of magnetic resonance spectroscopy and perfusion can increase sensitivity and positive predictive value to define the degree of glioma.
Collapse
|
8
|
Reed LK, Huang JH. Variability of relative cerebral blood volume measurements of recurrent glioma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S260. [PMID: 32015979 PMCID: PMC6976513 DOI: 10.21037/atm.2019.12.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Laura K. Reed
- Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center, Temple, TX, USA
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center, Temple, TX, USA
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, USA
| |
Collapse
|
9
|
Xu D, Lu ST, Li YS, Baidya A, Mei H, He Y, Wu B. Evaluation of methotrexate-conjugated gadolinium(III) for cancer diagnosis and treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3301-3309. [PMID: 30323562 PMCID: PMC6181113 DOI: 10.2147/dddt.s178569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Gliomas are one of the most common types of primary brain tumors. It is usually evaluated by gadolinium(III)-based contrast agents by magnetic resonance imaging (MRI) in the clinic. Methotrexate (MTX), as a type of folate analog that inhibits the enzyme dihydrofolate reductase, is widely used as a chemotherapeutic agent to treat gliomas in the experiment. Purpose In this study, a novel theranostic agent MTX-DOTA-Gd (MTX-Gd) was synthesized, which integrates magnetic resonance imaging (MRI) with anticancer treatment. Methods MTX-Gd was synthesized by connecting MTX and Gd through 1,4,7,10-tetraazacy-clododecane-1,4,7,10-tetraacetic acid (DOTA). The characterization of MTX-Gd was detected by ultraviolet (UV) and infrared spectroscopy (IR). To confirm the antitumor effect of MTX-Gd, the cytotoxicity of MTX-Gd was examined by the MTT assay. The contrast enhancement of the MTX-Gd was measured through MRI in vitro. Then, nude mice bearing C6 tumor xenografts were used to study in vivo imaging capabilities. Results The ultraviolet-visible-near infrared radiation (UV-NIR) absorption curve indicated that MTX-Gd had a broad absorption in the region of 500-700 nm. The formation of MTX-Gd was confirmed from the characteristic bands of MTX-DOTA-Gd in the 1413 cm−1 (C-N), 1577 cm−1 (−NH2), and 3429 cm−1 (N-H), in the fourier-transform infrared (FTIR) spectra. MTX-Gd showed little difference in the cell viability compared with MTX, except for the highest concentration (270 μM). In vitro, the imaging of MTX-Gd was significantly brighter than Gd-DOTA at the same concentration, and the brightness and signal intensity of MRI were increased followed by the increased concentration of MTX-Gd. And it also showed that MTX was not visualized on MRI. The other images revealed that the concentration of 4 mM MTX-Gd had the same imaging effect with the concentration of 10 mM Gd-DOTA. Then, MTX-Gd was injected in nude mice bearing C6 tumor xenografts through the tail vein. Significant contrast enhancement was observed at the tumor site from 0.5 h to 3 h. The signal of tumor area was strongest at 3 h due to accumulation by size effect of macromolecules. Conclusion A novel stable and unique theranostic agent (MTX-Gd) was successfully synthe-sized, and it has good stability, strong anticancer ability and excellent magnetic capacity. The methotrexate component of MTX-Gd, as a chemotherapeutic agent, played an important role in targeted therapies of cancer. The DOTA-Gd component of MTX-Gd performed as the MRI contrast agent. The superior MRI imaging performance and synergetic chemical antineoplastic ability of MTX-Gd was revealed, and it has great potential in the diagnosis and treatment of glioma and potentially other cancers, with prospects of clinical application in the near future.
Collapse
Affiliation(s)
- Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| | - Shu-Ting Lu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| | - Yu-Shuang Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| | - Aju Baidya
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China,
| |
Collapse
|