1
|
Onder H, Kertmen H, Kocer B, Ercan E, Comoglu S. Bilateral Posteroventral GPi-DBS in a Patient with Tourette's Syndrome - A Rapidly Effective But Under-utilized Therapy. Ann Indian Acad Neurol 2023; 26:574-577. [PMID: 37970248 PMCID: PMC10645202 DOI: 10.4103/aian.aian_489_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Halil Onder
- Department of Neurology, Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, Neurosurgery Clinic, Etlik City Hospital, Ankara, Turkey
| | - Bilge Kocer
- Department of Neurology, Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| | - Elif Ercan
- Department of Neurology, Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| | - Selcuk Comoglu
- Department of Neurology, Neurology Clinic, Etlik City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
De Salles A, Lucena L, Paranhos T, Ferragut MA, de Oliveira-Souza R, Gorgulho A. Modern neurosurgical techniques for psychiatric disorders. PROGRESS IN BRAIN RESEARCH 2022; 270:33-59. [PMID: 35396030 DOI: 10.1016/bs.pbr.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Psychosurgery refers to an ensemble of more or less invasive techniques designed to reduce the burden caused by psychiatric diseases in patients who have failed to respond to conventional therapy. While most surgeries are designed to correct apparent anatomical abnormalities, no discrete cerebral anatomical lesion is evident in most psychiatric diseases amenable to invasive interventions. Finding the optimal surgical targets in mental illness is troublesome. In general, contemporary psychosurgical procedures can be classified into one of two primary modalities: lesioning and stimulation procedures. The first group is divided into (a) thermocoagulation and (b) stereotactic radiosurgery or recently introduced transcranial magnetic resonance-guided focused ultrasound, whereas stimulation techniques mainly include deep brain stimulation (DBS), cortical stimulation, and the vagus nerve stimulation. The most studied psychiatric diseases amenable to psychosurgical interventions are severe treatment-resistant major depressive disorder, obsessive-compulsive disorder, Tourette syndrome, anorexia nervosa, schizophrenia, and substance use disorder. Furthermore, modern neuroimaging techniques spurred the interest of clinicians to identify cerebral regions amenable to be manipulated to control psychiatric symptoms. On this way, the concept of a multi-nodal network need to be embraced, enticing the collaboration of psychiatrists, psychologists, neurologists and neurosurgeons participating in multidisciplinary groups, conducting well-designed clinical trials.
Collapse
Affiliation(s)
- Antonio De Salles
- University of California Los Angeles (UCLA), Los Angeles, CA, United States; NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil.
| | - Luan Lucena
- NeuroSapiens®, Brazil; Hospital Rede D'Or, São Luiz, SP, Brazil
| | - Thiago Paranhos
- Hospital Rede D'Or, São Luiz, SP, Brazil; Federal University of Rio De Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Ricardo de Oliveira-Souza
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Federal University of the State of Rio De Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Szejko N, Worbe Y, Hartmann A, Visser-Vandewalle V, Ackermans L, Ganos C, Porta M, Leentjens AFG, Mehrkens JH, Huys D, Baldermann JC, Kuhn J, Karachi C, Delorme C, Foltynie T, Cavanna AE, Cath D, Müller-Vahl K. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part IV: deep brain stimulation. Eur Child Adolesc Psychiatry 2022; 31:443-461. [PMID: 34605960 PMCID: PMC8940783 DOI: 10.1007/s00787-021-01881-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022]
Abstract
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Bioethics, Medical University of Warsaw, Banacha 1a, 02-091, Warsaw, Poland.
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, USA.
| | - Yulia Worbe
- Department on Neurophysiology, Saint Antoine Hospital, Sorbonne Université, Paris, France
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
| | - Andreas Hartmann
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christos Ganos
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mauro Porta
- Department of Neurosurgery and Neurology, IRCCS Instituto Ortopedico Galeazzi, Milan, Italy
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan-Hinnerk Mehrkens
- Department of Neurosurgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | | | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| | - Carine Karachi
- National Reference Center for Tourette Disorder, Pitié Salpetiere Hospital, Paris, France
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
- Department of Neurology, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Cécile Delorme
- Department of Neurosurgery, Pitié-Salpetriere Hospital, Sorbonne Université, Paris, France
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Andrea E Cavanna
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Danielle Cath
- Department of Specialist Trainings, GGZ Drenthe Mental Health Institution, Assen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Rijks University Groningen, Groningen, The Netherlands
| | - Kirsten Müller-Vahl
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Wehmeyer L, Schüller T, Kiess J, Heiden P, Visser-Vandewalle V, Baldermann JC, Andrade P. Target-Specific Effects of Deep Brain Stimulation for Tourette Syndrome: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:769275. [PMID: 34744993 PMCID: PMC8563609 DOI: 10.3389/fneur.2021.769275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.
Collapse
Affiliation(s)
- Laura Wehmeyer
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany,*Correspondence: Laura Wehmeyer
| | - Thomas Schüller
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jana Kiess
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Pablo Andrade
- Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Deep Brain Stimulation In Iran: Where It Began and Where It Goes. Neuromodulation 2021. [DOI: 10.5812/ipmn.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Acevedo N, Bosanac P, Pikoos T, Rossell S, Castle D. Therapeutic Neurostimulation in Obsessive-Compulsive and Related Disorders: A Systematic Review. Brain Sci 2021; 11:brainsci11070948. [PMID: 34356182 PMCID: PMC8307974 DOI: 10.3390/brainsci11070948] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 01/16/2023] Open
Abstract
Invasive and noninvasive neurostimulation therapies for obsessive-compulsive and related disorders (OCRD) were systematically reviewed with the aim of assessing clinical characteristics, methodologies, neuroanatomical substrates, and varied stimulation parameters. Previous reviews have focused on a narrow scope, statistical rather than clinical significance, grouped together heterogenous protocols, and proposed inconclusive outcomes and directions. Herein, a comprehensive and transdiagnostic evaluation of all clinically relevant determinants is presented with translational clinical recommendations and novel response rates. Electroconvulsive therapy (ECT) studies were limited in number and quality but demonstrated greater efficacy than previously identified. Targeting the pre-SMA/SMA is recommended for transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS). TMS yielded superior outcomes, although polarity findings were conflicting, and refinement of frontal/cognitive control protocols may optimize outcomes. For both techniques, standardization of polarity, more treatment sessions (>20), and targeting multiple structures are encouraged. A deep brain stimulation (DBS) 'sweet spot' of the striatum for OCD was proposed, and CBT is strongly encouraged. Tourette's patients showed less variance and reliance on treatment optimization. Several DBS targets achieved consistent, rapid, and sustained clinical response. Analysis of fiber connectivity, as opposed to precise neural regions, should be implemented for target selection. Standardization of protocols is necessary to achieve translational outcomes.
Collapse
Affiliation(s)
- Nicola Acevedo
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- Correspondence:
| | - Peter Bosanac
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toni Pikoos
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
| | - Susan Rossell
- Centre for Mental Health, Swinburne University of Technology, John Street, Melbourne, VIC 3122, Australia; (T.P.); (S.R.)
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
| | - David Castle
- St. Vincent’s Hospital Melbourne, 41 Victoria Parade, Melbourne, VIC 3065, Australia; (P.B.); (D.C.)
- Department of Psychiatry, University of Melbourne, Melbourne, VIC 3010, Australia
- Centre for Addiction and Mental Health, 252 College Street, Toronto, ON M5T 1R7, Canada
| |
Collapse
|
7
|
Klarendic M, Kaski D. Deep brain stimulation and eye movements. Eur J Neurosci 2020; 53:2344-2361. [DOI: 10.1111/ejn.14898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Maja Klarendic
- Neurological Department University Clinical Center Ljubljana Ljubljana Slovenia
| | - Diego Kaski
- Department of Clinical and Motor Neurosciences Centre for Vestibular and Behavioural Neurosciences University College London London UK
| |
Collapse
|
8
|
Johnson KA, Fletcher PT, Servello D, Bona A, Porta M, Ostrem JL, Bardinet E, Welter ML, Lozano AM, Baldermann JC, Kuhn J, Huys D, Foltynie T, Hariz M, Joyce EM, Zrinzo L, Kefalopoulou Z, Zhang JG, Meng FG, Zhang C, Ling Z, Xu X, Yu X, Smeets AY, Ackermans L, Visser-Vandewalle V, Mogilner AY, Pourfar MH, Almeida L, Gunduz A, Hu W, Foote KD, Okun MS, Butson CR. Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study. J Neurol Neurosurg Psychiatry 2019; 90:1078-1090. [PMID: 31129620 PMCID: PMC6744301 DOI: 10.1136/jnnp-2019-320379] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.
Collapse
Affiliation(s)
- Kara A Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - P Thomas Fletcher
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA.,School of Computing, University of Utah, Salt Lake City, Utah, USA
| | - Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Alberto Bona
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Mauro Porta
- Tourette's Syndrome and Movement Disorders Center, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Jill L Ostrem
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Eric Bardinet
- Institut du Cerveau et de la Moelle Epiniere, Paris, Île-de-France, France
| | - Marie-Laure Welter
- Sorbonne Universités, University of Pierre and Marie Curie University of Paris, the French National Institute of Health and Medical Research U 1127, the National Center for Scientific Research 7225, Paris, France
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, University of Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Thomas Foltynie
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Marwan Hariz
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Eileen M Joyce
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Zinovia Kefalopoulou
- Queen Square, Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience, University College London Institute of Neurology, London, UK
| | - Jian-Guo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - ChenCheng Zhang
- Department of Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipei Ling
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xin Xu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, China
| | - Anouk Yjm Smeets
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Koln, Nordrhein-Westfalen, Germany
| | - Alon Y Mogilner
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Michael H Pourfar
- Center for Neuromodulation, Departments of Neurology and Neurosurgery, New York University Medical Center, New York, New York, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Aysegul Gunduz
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA.,J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Wei Hu
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, USA .,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Departments of Neurology, Neurosurgery, and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|