1
|
van Niekerk AA, Maluck S, Mag P, Kővágó C, Kerek Á, Jerzsele Á, Steinmetzer T, Pászti-Gere E. Antiviral Drug Candidate Repositioning for Streptococcus suis Infection in Non-Tumorigenic Cell Models. Biomedicines 2024; 12:783. [PMID: 38672139 PMCID: PMC11048155 DOI: 10.3390/biomedicines12040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing prevalence of antimicrobial resistance against zoonotic bacteria, including Streptococcus (S.) suis, highlights the need for new therapeutical strategies, including the repositioning of drugs. In this study, susceptibilities of bacterial isolates were tested toward ten different 3-amidinophenyalanine (Phe(3-Am)) derivatives via determination of minimum inhibitory concentration (MIC) values. Some of these protease inhibitors, like compounds MI-432, MI-471, and MI-476, showed excellent antibacterial effects against S. suis. Their drug interaction potential was investigated using human liver microsomal cytochrome P450 (CYP450) measurements. In our work, non-tumorigenic IPEC-J2 cells and primary porcine hepatocytes were infected with S. suis, and the putative beneficial impact of these inhibitors was investigated on cell viability (Neutral red assay), on interleukin (IL)-6 levels (ELISA technique), and on redox balance (Amplex red method). The antibacterial inhibitors prevented S. suis-induced cell death (except MI-432) and decreased proinflammatory IL-6 levels. It was also found that MI-432 and MI-476 had antioxidant effects in an intestinal cell model upon S. suis infection. Concentration-dependent suppression of CYP3A4 function was found via application of all three inhibitors. In conclusion, our study suggests that the potential antiviral Phe(3-Am) derivatives with 2',4' dichloro-biphenyl moieties can be considered as effective drug candidates against S. suis infection due to their antibacterial effects.
Collapse
Affiliation(s)
- Ashley Anzet van Niekerk
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Sara Maluck
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Csaba Kővágó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| | - Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary (Á.J.)
| |
Collapse
|
2
|
Lee CY, Zakaria Z, Selvarajah GT, Mustaffa-Kamal F, Voon KGL, Fong MWC, Ooi PT. Screening of Streptococcus suis in swine workers of selected states in Peninsular Malaysia. Vet World 2024; 17:1-7. [PMID: 38406356 PMCID: PMC10884579 DOI: 10.14202/vetworld.2024.1-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/15/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Streptococcus suis is a zoonotic pathogen that is highly associated with contact between live pigs and raw pig material. In view of the recent reports of human infections in Malaysia, epidemiological data on the status of S. suis in the human population, especially among people working closely with pigs and/or raw pork, should be provided. The aim of this study was to detect S. suis among individuals working in the swine industry in several major pig production areas in Peninsular Malaysia. Materials and Methods Demographic information, exposure determinants, and oral swabs were collected from swine personnel, including farmers, butchers, and veterinarians. Oral swabs were subjected to bacterial isolation and conventional polymerase chain reaction (PCR) assays for S. suis detection. Results The study included 40 participants working in the swine industry, with a predominant representation of males (62.5%) and Malaysian Chinese individuals (60.0%) who consumed pork (92.5%). Notably, none of the participants reported consuming raw or partially cooked pork. In spite of their occupational exposure risk, none of the oral swabs showed positive results for S. suis infection. Conclusion To the best of our knowledge, this is the first report and detection study of S. suis using oral swabs obtained from swine personnel in Peninsular Malaysia.
Collapse
Affiliation(s)
- Chee Yien Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zunita Zakaria
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- UPM - MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farina Mustaffa-Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kenny Gah Leong Voon
- Division of Biomedical Science, School of Pharmacy, University of Nottingham, 43500 Semenyih, Selangor, Malaysia
| | - Michelle Wai Cheng Fong
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Sedano SA, Cantalejo MGCT, Lapitan CGAR, de Guzman AMES, Consignado JT, Tandang NA, Estacio MAC, Kerdsin A, Silva BBI. Epidemiology and genetic diversity of Streptococcus suis in smallhold swine farms in the Philippines. Sci Rep 2023; 13:21178. [PMID: 38040767 PMCID: PMC10692119 DOI: 10.1038/s41598-023-48406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
This study aimed to determine the presence and characteristics of locally circulating strains of Streptococcus suis, the most important streptococcal pathogen in swine. Oral swab samples were collected from pigs from 664 representative smallhold farms across nine provinces in the Philippines. Isolates were identified and characterized using PCR assays. The study revealed an isolation rate of 15.8% (105/664, 95% CI: 13.0-18.6) among the sampled farms. Two hundred sixty-nine (269) S. suis isolates were recovered from 119 unique samples. Serotype 31 was the most prevalent (50/269, 95% CI: 13.9-23.2) among the other serotypes identified: 5, 6, 8, 9, 10, 11, 15, 16, 17, 21, 27, 28, and 29. The detection of the three 'classical' S. suis virulence-associated genes showed that 90.7% (244/269, 95% CI: 87.2-94.2) were mrp-/epf-/sly-. Multilocus sequence typing (MLST) analysis further revealed 70 novel sequence types (STs). Notably, several local isolates belonging to these novel STs formed clonal complexes (CC) with S. suis strains recovered from Spain and USA, which are major pork-exporting countries to the Philippines. This study functionally marks the national baseline knowledge of S. suis in Philippines.
Collapse
Affiliation(s)
- Susan A Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines.
| | - Mary Grace Concepcion T Cantalejo
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Christine Grace Angela R Lapitan
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
- Ecosystem Services and Environmental Policy Laboratory, School of Environmental Science and Management, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Angelo Miguel Elijah S de Guzman
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
- Department of Agrarian Reform, Elliptical Road, Diliman, 1107, Quezon City, Philippines
| | - Jennielyn T Consignado
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Nancy A Tandang
- Institute of Statistics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Maria Amelita C Estacio
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Benji Brayan Ilagan Silva
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippines Los Baños, 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
4
|
Ágoston Z, Terhes G, Hannauer P, Gajdács M, Urbán E. Fatal case of bacteremia caused by Streptococcus suis in a splenectomized man and a review of the European literature. Acta Microbiol Immunol Hung 2020; 67:148-155. [PMID: 32223305 DOI: 10.1556/030.2020.01123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
Streptococcus suis is an emerging zoonotic human pathogen, which is a causative agent of invasive infections in people who are in close contact with infected pigs or contaminated pork products. It is associated with severe systemic infections, most commonly meningitis and sepsis, which may lead to high rates of morbidity and mortality. Serotype 2 is the most prevalent type in S. suis infections in humans. We have reported a case of a very rapidly proceeding fatal human S. suis infection in a splenectomized, but otherwise immunocompetent patient in Hungary. We would like to highlight the attention for this pathogen for the risk group patients, not only pig breeders, veterinarians, abattoir workers, meat processing and transport workers, butchers and cooks, that those persons who are immunocompromised including those with spleen removed, persons with diabetes mellitus, cancer and alcoholism, are also at greater risk of infection.
Collapse
Affiliation(s)
- Zsuzsanna Ágoston
- 1Department of Anaesthesiology and Intensive Therapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Gabriella Terhes
- 2Department of Clinical Microbiology, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter Hannauer
- 1Department of Anaesthesiology and Intensive Therapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Márió Gajdács
- 3Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720, Eötvös utca 6, Szeged, Hungary
| | - Edit Urbán
- 4Department of Public Health, Faculty of Medicine, University of Szeged, 6720, Dóm tér 10, Szeged, Hungary
- 5Institute of Translational Medicine, University of Pécs, Medical School, 7624, Szigeti utca 12, Pécs, Hungary
| |
Collapse
|
5
|
Comparative Study of Immunogenic Properties of Purified Capsular Polysaccharides from Streptococcus suis Serotypes 3, 7, 8, and 9: the Serotype 3 Polysaccharide Induces an Opsonizing IgG Response. Infect Immun 2020; 88:IAI.00377-20. [PMID: 32747605 PMCID: PMC7504959 DOI: 10.1128/iai.00377-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C–C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.
Collapse
|
6
|
Gajdács M, Németh A, Knausz M, Barrak I, Stájer A, Mestyán G, Melegh S, Nyul A, Tóth Á, Ágoston Z, Urbán E. Streptococcus suis: An Underestimated Emerging Pathogen in Hungary? Microorganisms 2020; 8:microorganisms8091292. [PMID: 32847011 PMCID: PMC7570012 DOI: 10.3390/microorganisms8091292] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis (S. suis) is an emerging zoonotic pathogen, demonstrated as an etiological agent in human infections in increasing frequency, including diseases like purulent meningitis, sepsis, uveitis-endophtalmitis and arthritis. Due to the increased availability and utility of novel diagnostic technologies in clinical microbiology, more studies have been published on the epidemiology of S. suis, both in veterinary and human medicine; however, there are no comprehensive data available regarding human S. suis infections from East-Central European countries. As a part of our study, data were collected from the National Bacteriological Surveillance (NBS) system on patients who had at least one positive microbiological result for S. suis, corresponding to an 18-year study period (2002-2019). n = 74 S. suis strains were isolated from invasive human infections, corresponding to 34 patients. The number of affected patients was 1.89 ± 1.53/year (range: 0-5). Most isolates originated from blood culture (63.5%) and cerebrospinal fluid (18.9%) samples. Additionally, we present detailed documentation of three instructive cases from three regions of the country and with three distinctly different outcomes. Hungary has traditional agriculture, the significant portion of which includes the production and consumption of pork meat, with characteristic preparation and consumption customs and unfavorable epidemiological characteristics (alcohol consumption, prevalence of malignant diseases or diabetes), which have all been described as important predisposing factors for the development of serious infections. Clinicians and microbiologist need to be vigilant even in nonendemic areas, especially if the patients have a history of occupational hazards or having close contact with infected pigs.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
- Correspondence: or ; Tel.: +36-62-341-330
| | - Anita Németh
- Microbiology Laboratory, Petz Aladár County Teaching Hospital, Vasvári Pál utca 2–4., 9023 Győr, Hungary; (A.N.); (M.K.)
| | - Márta Knausz
- Microbiology Laboratory, Petz Aladár County Teaching Hospital, Vasvári Pál utca 2–4., 9023 Győr, Hungary; (A.N.); (M.K.)
| | - Ibrahim Barrak
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62–64., 6720 Szeged, Hungary;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tiszta Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Gyula Mestyán
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (G.M.); (S.M.); (A.N.)
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (G.M.); (S.M.); (A.N.)
| | - Adrienn Nyul
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (G.M.); (S.M.); (A.N.)
| | - Ákos Tóth
- Department of Bacteriology, Mycology and Parasitology, National Public Health Center, Albert Flórián út 2–6., 1097 Budapest, Hungary;
| | - Zsuzsanna Ágoston
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary;
| | - Edit Urbán
- Institute of Translational Medicine, Faculty of Medicine, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary;
| |
Collapse
|
7
|
Goyette-Desjardins G, Vinogradov E, Okura M, Takamatsu D, Gottschalk M, Segura M. Structure determination of Streptococcus suis serotypes 7 and 8 capsular polysaccharides and assignment of functions of the cps locus genes involved in their biosynthesis. Carbohydr Res 2018; 473:36-45. [PMID: 30605786 DOI: 10.1016/j.carres.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Streptococcus suis serotypes 7 and 8 are counted among the top six S. suis serotypes causing clinical disease in pigs. Yet, limited information is available on these serotypes. Since S. suis serotyping system is based upon capsular polysaccharide (CPS) antigenicity and the CPS is considered a major virulence factor for encapsulated pathogens, here we determined for the first time the chemical compositions and structures of serotypes 7 and 8 CPSs. Chemical and spectroscopic data gave the following repeating unit sequences: [3)L-Rha(α1-P-2)D-Gal(α1-4)D-GlcA(β1-3)D-FucNAc4N(α1-]n for serotype 7 and [2)L-Rha(α1-P-4)D-ManNAc(β1-4)D-Glc(α1-]n for serotype 8. As serotype 8 CPS is identical to Streptococcus pneumoniae type 19F CPS, dot-blot analyses showed a strong reaction of the 19F polysaccharide with reference anti-S. suis serotype 8 rabbit serum. A correlation between S. suis serotypes 7 and 8 sequences and genes of those serotypes' loci encoding putative glycosyltransferases and polymerases responsible for the biosynthesis of the repeating units was tentatively established. Knowledge of CPS structure and composition will contribute to better dissect the role of this bacterial component in the pathogenesis of the disease caused by S. suis serotypes 7 and 8.
Collapse
Affiliation(s)
- Guillaume Goyette-Desjardins
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Evgeny Vinogradov
- Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada; National Research Council, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6, Canada
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
8
|
Ma F, Chang X, Wang G, Zhou H, Ma Z, Lin H, Fan H. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2. Front Immunol 2018; 9:2854. [PMID: 30581435 PMCID: PMC6292872 DOI: 10.3389/fimmu.2018.02854] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 is a major pathogen of swine streptococcicosis, which result in serious economic loss worldwide. SS2 is an important zoonosis causing meningitis and even death in humans. Neutrophil extracellular traps (NETs) constitute a significant bactericidal strategy of innate immune. The battle between SS2 and NETs may account for the pathogenicity of SS2. However, the molecular mechanism underlying release of SS2-induced NETs remains unclear. In this study, SS2 was found to induce NETs within 2–4 h, and was dependent on reactive oxygen species (ROS) from NADPH oxidase. Moreover, SS2 could activate neutrophil p38 MAPK and ERK1/2. Blockage of p38 MAPK or ERK1/2 activation decreased SS2-induced NETs formation by 65 and 85%, respectively. In addition, NADPH oxidase derived ROS inhibition negatively affected phosphorylation of p38 MAPK and ERK1/2 in SS2 induced neutrophils. Both TLR2 and TLR4 were significantly up-regulated by SS2 infection in blood cells in vivo and neutrophils in vitro, which indicates these two receptors are involved in SS2 recognition. Blocking TLR4 signaling could further inhibit the activation of ERK1/2, but not p38 MAPK; however, TLR4 signaling inhibition reduced NETs formation induced by SS2. In conclusion, SS2 could be recognized by TLR2 and/or TLR4, initiating NETs formation signaling pathways in a NADPH oxidase derived ROS dependent manner. ROS will activate p38 MAPK and ERK1/2, which ultimately induces NETs formation.
Collapse
Affiliation(s)
- Fang Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaojing Chang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Risk factors for Streptococcus suis infection: A systematic review and meta-analysis. Sci Rep 2018; 8:13358. [PMID: 30190575 PMCID: PMC6127304 DOI: 10.1038/s41598-018-31598-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022] Open
Abstract
Streptococcus suis (S. suis) is a gram-positive bacterial pathogen in pigs which can cause serious infections in human including meningitis, and septicaemia resulting in serious complications. There were discrepancies between different data and little is known concerning associated risk factors of S. suis. A systematic review and meta-analysis was conducted to investigate on S. suis infection risk factors in human. We searched eight relevant databases using the MeSH terms "Streptococcus suis" OR "Streptococcus suis AND infection" limited in human with no time nor language restriction. Out of 4,999 articles identified, 32 and 3 studies were included for systematic review and meta-analysis respectively with a total of 1,454 Streptococcus suis cases reported. S. suis patients were generally adult males and the elderly. The mean age ranged between 37 to 63 years. Meningitis was the most common clinical manifestation, and deafness was the most common sequelae found among survivors followed by vestibular dysfunction. Infective endocarditis was also noted as among the most common clinical presentations associated with high mortality rate in a few studies. Meta-analyses categorized by type of control groups (community control, and non-S. suis sepsis) were done among 850 participants in 3 studies. The combined odd ratios for studies using community control groups and non-S. Suis sepsis as controls respectively were 4.63 (95% CI 2.94-7.29) and 78.00 (95% CI 10.38-585.87) for raw pork consumption, 4.01 (95% CI 2.61-6.15) and 3.03 (95% CI 1.61-5.68) for exposure to pigs or pork, 11.47, (95% CI 5.68-23.14) and 3.07 (95% CI 1.81-5.18) for pig-related occupation and 3.56 (95% CI 2.18-5.80) and 5.84 (95% CI 2.76-12.36) for male sex. The results were found to be significantly associated with S. suis infection and there was non-significant heterogeneity. History of skin injury and underlying diseases were noted only a small percentage in most studies. Setting up an effective screening protocol and public health interventions would be effective to enhance understanding about the disease.
Collapse
|
10
|
Goyette-Desjardins G, Vinogradov E, Okura M, Takamatsu D, Gottschalk M, Segura M. Streptococcus suis serotype 3 and serotype 18 capsular polysaccharides contain di-N-acetyl-bacillosamine. Carbohydr Res 2018; 466:18-29. [PMID: 30014879 DOI: 10.1016/j.carres.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Streptococcus suis serotype 3 is counted among the S. suis serotypes causing clinical disease in pigs. Yet, limited information is available on this serotype. Here we determined for the first time the chemical composition and structure of serotype 3 capsular polysaccharide (CPS), a major bacterial virulence factor and the antigen at the origin of S. suis classification into serotypes. Chemical and spectroscopic data gave the repeating unit sequence for serotype 3: [4)D-GlcA (β1-3)d-QuiNAc4NAc(β1-]n. To the best of our knowledge, this is the first report of di-N-acetyl-d-bacillosamine (QuiNAc4NAc) containing polysaccharides in Streptococci and the second time this rare diamino sugar has been observed in a Gram-positive bacterial species since its initial report. This led to the identification of homologues of UDP-QuiNAc4NAc synthesis genes in S. suis serotype 18. Thus, the repeating unit sequence for serotype 18 is: [3)d-GalNAc(α1-3)[d-Glc (β1-2)]d-GalA4OAc(β1-3)d-GalNAc(α1-3)d-QuiNAc4NAc(α1-]n. A correlation between S. suis serotypes 3 and 18 CPS sequences and genes of these serotypes' cps loci encoding putative glycosyltransferases and polymerase responsible for the biosynthesis of the repeating unit was tentatively established. Knowledge of CPS structure and composition will contribute to better dissect the role of this bacterial component in the pathogenesis of S. suis serotypes 3 and 18.
Collapse
Affiliation(s)
- Guillaume Goyette-Desjardins
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Evgeny Vinogradov
- Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada; National Research Council, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6, Canada
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Daisuke Takamatsu
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St., St-Hyacinthe, Quebec, J2S 2M2, Canada; Canadian Glycomics Network (GlycoNet), University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
11
|
Han L, Fu L, Peng Y, Zhang A. Triggering Receptor Expressed on Myeloid Cells-1 Signaling: Protective and Pathogenic Roles on Streptococcal Toxic-Shock-Like Syndrome Caused by Streptococcus suis. Front Immunol 2018; 9:577. [PMID: 29619033 PMCID: PMC5871666 DOI: 10.3389/fimmu.2018.00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis infections can cause septic shock, which is referred to as streptococcal toxic-shock-like syndrome (STSLS). The disease is characterized by a severe inflammatory response, multiple organ failure, and high mortality. However, no superantigen that is responsible for toxic shock syndrome was detected in S. suis, indicating that the mechanism underlying STSLS is different and remains to be elucidated. Triggering receptor expressed on myeloid cells-1 (TREM-1), belonging to the Ig superfamily, is an activating receptor expressed on myeloid cells, and has been recognized as a critical immunomodulator in several inflammatory diseases of both infectious and non-infectious etiologies. In this review, we discuss the current understanding of the immunoregulatory functions of TREM-1 on acute infectious diseases and then highlight the crucial roles of TREM-1 on the development of STSLS.
Collapse
Affiliation(s)
- Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:86. [PMID: 28373968 PMCID: PMC5357632 DOI: 10.3389/fcimb.2017.00086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component.
Collapse
Affiliation(s)
- Fang Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; College of Life Science, Luoyang Normal UniversityLuoyang, China
| | - Ningwei Yu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Huixing Lin
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
13
|
Critical Streptococcus suis Virulence Factors: Are They All Really Critical? Trends Microbiol 2017; 25:585-599. [PMID: 28274524 DOI: 10.1016/j.tim.2017.02.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 01/15/2023]
Abstract
Streptococcus suis is an important swine pathogen that can be transmitted to humans by contact with diseased animals or contaminated raw pork products. This pathogen possesses a coat of capsular polysaccharide (CPS) that confers protection against the immune system. Yet, the CPS is not the only virulence factor enabling this bacterium to successfully colonize, invade, and disseminate in its host leading to severe systemic diseases such as meningitis and toxic shock-like syndrome. Indeed, recent research developments, cautiously inventoried in this review, have revealed over 100 'putative virulence factors or traits' (surface-associated or secreted components, regulatory genes or metabolic pathways), of which at least 37 have been claimed as being 'critical' for virulence. In this review we discuss the current contradictions and controversies raised by this explosion of virulence factors and the future directions that may be conceived to advance and enlighten research on S. suis pathogenesis.
Collapse
|
14
|
Thongkamkoon P, Kiatyingangsulee T, Gottschalk M. Serotypes of Streptococcus suis isolated from healthy pigs in Phayao Province, Thailand. BMC Res Notes 2017; 10:53. [PMID: 28100261 PMCID: PMC5244560 DOI: 10.1186/s13104-016-2354-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus suis (S. suis) is an important swine and human pathogen. There are 33 serotypes that have been described. Zoonotic cases are very common the Northern part of Thailand, especially in Phayao Province. However, the prevalence of S. suis and, more particularly the different serotypes, in pigs in this region is poorly known and needed to be addressed. The context and purpose of the study Distribution of S. suis serotypes varies depending on the geographical area. Knowledge of the serotype distribution is important for epidemiological studies. Consequently, 180 tonsil samples from slaughterhouse pigs in Phayao Province had been collected for surveillance, from which 196 S. suis isolates were recovered. Each isolate was subcultured and its serotype identified using multiplex PCR. Slide agglutination combined with precipitation tests were used following multiplex PCR to differentiate the isolates showing similar sizes of amplified products specific to either serotype 1 or 14 and 2 or 1/2. Non-typable isolates by multiplex PCR were serotyped by the coagglutination test. Results Of the 196 isolates, 123 (62.8%) were typable and 73 (37.2%) were non-typable. This study revealed the presence of serotypes 1, 1/2, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14, 21, 22, 23, 24, 25, 29, and 30. Serotype 23 was the most prevalent (20/196, 10.2%), followed by serotype 9 (16/196, 8.2%), serotype 7 (16/196, 8.2%), and serotype 2 (11/196, 5.6%). The latter is the serotype responsible for most human cases. Conclusion Almost all serotypes previously described are present in Northern Thailand. Therefore, this report provides useful data for future bacteriological studies.
Collapse
Affiliation(s)
- P Thongkamkoon
- Veterinary Research and Development Center (Upper Northern Region), 221 M.6, Wiengtarn, Hangchat, Lampang, 52190, Thailand.
| | - T Kiatyingangsulee
- Department of Livestock Development, National Institute of Animal Health, Chatuchak, Bangkok, 10900, Thailand
| | - M Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| |
Collapse
|
15
|
Callejo R, Zheng H, Du P, Prieto M, Xu J, Zielinski G, Auger JP, Gottschalk M. Streptococcus suis serotype 2 strains isolated in Argentina (South America) are different from those recovered in North America and present a higher risk for humans. JMM Case Rep 2016; 3:e005066. [PMID: 28348788 PMCID: PMC5343146 DOI: 10.1099/jmmcr.0.005066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023] Open
Abstract
Introduction: Streptococcus suis serotype 2 is an important swine pathogen and emerging zoonotic agent causing meningitis and septicemia/septic shock. Strains are usually virulent (Eurasia) or of intermediate/low virulence (North America). Very few data regarding human and swine isolates from South America are available. Case presentation: Seventeen new human S. suis cases in Argentina (16 serotype 2 strains and a serotype 5 strain) are reported. Alongside, 14 isolates from pigs are analyzed: 12 from systemic disease, one from lungs and one from tonsils of a healthy animal. All human serotype 2 strains and most swine isolates are sequence type (ST) 1, as determined by multilocus sequence typing and present a mrp+/epf+/sly+ genotype typical of virulent Eurasian ST1 strains. The remaining two strains (recovered from swine lungs and tonsils) are ST28 and possess a mrp+/epf−/sly− genotype typical of low virulence North American strains. Representative human ST1 strains as well as one swine ST28 strain were analyzed by whole-genome sequencing and compared with genomes from GenBank. ST1 strains clustered together with three strains from Vietnam and this cluster is close to another one composed of 11 strains from the United Kingdom. Conclusion: Close contact with pigs/pork products, a good surveillance system, and the presence of potentially virulent Eurasian-like serotype 2 strains in Argentina may be an important factor contributing to the higher number of human cases observed. In fact, Argentina is now fifth among Western countries regarding the number of reported human cases after the Netherlands, France, the UK and Poland.
Collapse
Affiliation(s)
- Raquel Callejo
- Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Han Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control, Changping, Beijing, PR China
| | - Pengcheng Du
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, PR China
| | - Monica Prieto
- Instituto Nacional de Enfermedades Infecciosas, Buenos Aires, Argentina
| | - Jianguo Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control, Changping, Beijing, PR China
| | - Gustavo Zielinski
- Instituto Nacional de Tecnologia Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina
| | - Jean-Philippe Auger
- Swine and Poultry Infectious Disease Center, (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Disease Center, (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
16
|
Baig A, Weinert LA, Peters SE, Howell KJ, Chaudhuri RR, Wang J, Holden MTG, Parkhill J, Langford PR, Rycroft AN, Wren BW, Tucker AW, Maskell DJ. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Front Microbiol 2015; 6:1191. [PMID: 26583006 PMCID: PMC4631834 DOI: 10.3389/fmicb.2015.01191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022] Open
Abstract
Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species.
Collapse
Affiliation(s)
- Abiyad Baig
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Kate J Howell
- Department of Paediatrics, University of Cambridge Cambridge, UK
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield Sheffield, UK
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | | | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Cambridge, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | | | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine London, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| |
Collapse
|
17
|
Huong VTL, Ha N, Huy NT, Horby P, Nghia HDT, Thiem VD, Zhu X, Hoa NT, Hien TT, Zamora J, Schultsz C, Wertheim HFL, Hirayama K. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect Dis 2014; 20:1105-14. [PMID: 24959701 PMCID: PMC4073838 DOI: 10.3201/eid2007.131594] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis, a bacterium that affects pigs, is a neglected pathogen that causes systemic disease in humans. We conducted a systematic review and meta-analysis to summarize global estimates of the epidemiology, clinical characteristics, and outcomes of this zoonosis. We searched main literature databases for all studies through December 2012 using the search term "streptococcus suis." The prevalence of S. suis infection is highest in Asia; the primary risk factors are occupational exposure and eating of contaminated food. The pooled proportions of case-patients with pig-related occupations and history of eating high-risk food were 38.1% and 37.3%, respectively. The main clinical syndrome was meningitis (pooled rate 68.0%), followed by sepsis, arthritis, endocarditis, and endophthalmitis. The pooled case-fatality rate was 12.8%. Sequelae included hearing loss (39.1%) and vestibular dysfunction (22.7%). Our analysis identified gaps in the literature, particularly in assessing risk factors and sequelae of this infection.
Collapse
|
18
|
Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3:e45. [PMID: 26038745 PMCID: PMC4078792 DOI: 10.1038/emi.2014.45] [Citation(s) in RCA: 456] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/18/2022]
Abstract
Streptococcus suis is an important pathogen causing economic problems in the pig
industry. Moreover, it is a zoonotic agent causing severe infections to people in close
contact with infected pigs or pork-derived products. Although considered sporadic in the
past, human S. suis infections have been reported during the last 45 years, with
two large outbreaks recorded in China. In fact, the number of reported human cases has
significantly increased in recent years. In this review, we present the worldwide
distribution of serotypes and sequence types (STs), as determined by multilocus sequence
typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods
employed for S. suis identification and typing, the current epidemiological
knowledge regarding serotypes and STs and the zoonotic potential of S. suis are
discussed. Increased awareness of S. suis in both human and veterinary diagnostic
laboratories and further establishment of typing methods will contribute to our knowledge
of this pathogen, especially in regions where complete and/or recent data is lacking. More
research is required to understand differences in virulence that occur among S.
suis strains and if these differences can be associated with specific serotypes or
STs.
Collapse
|
19
|
Genome sequence of the swine pathogen Streptococcus suis serotype 2 strain S735. J Bacteriol 2013; 194:6343-4. [PMID: 23105076 DOI: 10.1128/jb.01559-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for significant, worldwide economic losses in the swine industry, in addition to being an emerging zoonotic agent. Strains of serotype 2 are the most commonly associated with infections causing meningitis, endocarditis, and septicemia. Here we present the genome sequence of S. suis serotype 2 strain S735.
Collapse
|
20
|
Lecours MP, Segura M, Lachance C, Mussa T, Surprenant C, Montoya M, Gottschalk M. Characterization of porcine dendritic cell response to Streptococcus suis. Vet Res 2011; 42:72. [PMID: 21635729 PMCID: PMC3127767 DOI: 10.1186/1297-9716-42-72] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/02/2011] [Indexed: 01/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen and important zoonotic agent causing mainly septicemia and meningitis. However, the mechanisms involved in host innate and adaptive immune responses toward S. suis as well as the mechanisms used by S. suis to subvert these responses are unknown. Here, and for the first time, the ability of S. suis to interact with bone marrow-derived swine dendritic cells (DCs) was evaluated. In addition, the role of S. suis capsular polysaccharide in modulation of DC functions was also assessed. Well encapsulated S. suis was relatively resistant to phagocytosis, but it increased the relative expression of Toll-like receptors 2 and 6 and triggered the release of several cytokines by DCs, including IL-1β, IL-6, IL-8, IL-12p40 and TNF-α. The capsular polysaccharide was shown to interfere with DC phagocytosis; however, once internalized, S. suis was readily destroyed by DCs independently of the presence of the capsular polysaccharide. Cell wall components were mainly responsible for DC activation, since the capsular polysaccharide-negative mutant induced higher cytokine levels than the wild-type strain. The capsular polysaccharide also interfered with the expression of the co-stimulatory molecules CD80/86 and MHC-II on DCs. To conclude, our results show for the first time that S. suis interacts with swine origin DCs and suggest that these cells might play a role in the development of host innate and adaptive immunity during an infection with S. suis serotype 2.
Collapse
Affiliation(s)
- Marie-Pier Lecours
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam. PLoS One 2011; 6:e17943. [PMID: 21464930 PMCID: PMC3065462 DOI: 10.1371/journal.pone.0017943] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/16/2011] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis is a pathogen of major economic significance to the swine industry and is increasingly recognized as an emerging zoonotic agent in Asia. In Vietnam, S. suis is the leading cause of bacterial meningitis in adult humans. Zoonotic transmission is most frequently associated with serotype 2 strains and occupational exposure to pigs or consumption of infected pork. To gain insight into the role of pigs for human consumption as a reservoir for zoonotic infection in southern Vietnam, we determined the prevalence and diversity of S. suis carriage in healthy slaughterhouse pigs. Nasopharyngeal tonsils were sampled from pigs at slaughterhouses serving six provinces in southern Vietnam and Ho Chi Minh City area from September 2006 to November 2007. Samples were screened by bacterial culture. Isolates of S. suis were serotyped and characterized by multi locus sequence typing (MLST) and pulse field gel electrophoresis (PFGE). Antibiotic susceptibility profiles and associated genetic resistance determinants, and the presence of putative virulence factors were determined. 41% (222/542) of pigs carried S. suis of one or multiple serotypes. 8% (45/542) carried S. suis serotype 2 which was the most common serotype found (45/317 strains, 14%). 80% of serotype 2 strains belonged to the MLST clonal complex 1,which was previously associated with meningitis cases in Vietnam and outbreaks of severe disease in China in 1998 and 2005. These strains clustered with representative strains isolated from patients with meningitis in PFGE analysis, and showed similar antimicrobial resistance and virulence factor profiles. Slaughterhouse pigs are a major reservoir of S. suis serotype 2 capable of causing human infection in southern Vietnam. Strict hygiene at processing facilities, and health education programs addressing food safety and proper handling of pork should be encouraged.
Collapse
|