1
|
Latosinska A, Frantzi M, Siwy J. Peptides as "better biomarkers"? Value, challenges, and potential solutions to facilitate implementation. MASS SPECTROMETRY REVIEWS 2024; 43:1195-1236. [PMID: 37357849 DOI: 10.1002/mas.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/27/2023]
Abstract
Peptides carry important functions in normal physiological and pathophysiological processes and can serve as clinically useful biomarkers. Given the ability to diffuse passively across endothelial barriers, endogenous peptides can be examined in several body fluids, including among others urine, blood, and cerebrospinal fluid. This review article provides an update on the recently published literature that reports on investigating native peptides in body fluids using mass spectrometry-based platforms, specifically those studies that focus on the application of peptides as biomarkers to improve clinical management. We emphasize on the critical evaluation of their clinical value, how close they are to implementation, and the associated challenges and potential solutions to facilitate clinical implementation. During the last 5 years, numerous studies have been published, demonstrating the increased interest in mass spectrometry for the assessment of endogenous peptides as potential biomarkers. Importantly, the presence of few successful examples of implementation in patients' management and/or in the context of clinical trials indicates that the peptide biomarker field is evolving. Nevertheless, most studies still report evidence based on small sample size, while validation phases are frequently missing. Therefore, a gap between discovery and implementation still exists.
Collapse
Affiliation(s)
| | - Maria Frantzi
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Justyna Siwy
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
| |
Collapse
|
2
|
Therriault J, Woo MS, Salvadó G, Gobom J, Karikari TK, Janelidze S, Servaes S, Rahmouni N, Tissot C, Ashton NJ, Benedet AL, Montoliu-Gaya L, Macedo AC, Lussier FZ, Stevenson J, Vitali P, Friese MA, Massarweh G, Soucy JP, Pascoal TA, Stomrud E, Palmqvist S, Mattsson-Carlgren N, Gauthier S, Zetterberg H, Hansson O, Blennow K, Rosa-Neto P. Comparison of immunoassay- with mass spectrometry-derived p-tau quantification for the detection of Alzheimer's disease pathology. Mol Neurodegener 2024; 19:2. [PMID: 38185677 PMCID: PMC10773025 DOI: 10.1186/s13024-023-00689-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Marcel S Woo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology, Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Gemma Salvadó
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Shorena Janelidze
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, S-413 45, Sweden
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, SE5 8AF, UK
| | - Andréa Lessa Benedet
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Manuel A Friese
- Department of Neurology, Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Gassan Massarweh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, 15213, USA
| | - Erik Stomrud
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sebastian Palmqvist
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 6BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 6BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, S-431 80, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre Intégré Universitaire de Santé Et de Services Sociaux (CIUSSS) de l'Ouest-de-L'Île-de-Montréal, 6875 La Salle Blvd - FBC Room 3149, Montréal, Québec, H4H 1R3, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
3
|
Montoliu-Gaya L, Benedet AL, Tissot C, Vrillon A, Ashton NJ, Brum WS, Lantero-Rodriguez J, Stevenson J, Nilsson J, Sauer M, Rahmouni N, Brinkmalm G, Lussier FZ, Pascoal TA, Skoog I, Kern S, Zetterberg H, Paquet C, Gobom J, Rosa-Neto P, Blennow K. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies. NATURE AGING 2023; 3:661-669. [PMID: 37198279 PMCID: PMC10275761 DOI: 10.1038/s43587-023-00405-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 05/19/2023]
Abstract
Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer's disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.
Collapse
Grants
- R01 AG068398 NIA NIH HHS
- BrightFocus Foundation (BrightFocus)
- Alzheimerfonden
- Stiftelsen för Gamla Tjänarinnor (Foundation for Old Servants)
- AV is funded by Fondation Ophtalmologique Adolphe de Rothschild, Fondation Philipe Chatrier, Amicale des Anciens Internes des Hôpitaux de Paris, Fondation Vaincre Alzheimer, the Swedish Dementia Foundation (Demensfonden), Gun and Bertil Stohnes Foundation and Gamla Tjänarinnor Foundation.
- JN is supported by Demensfonden and the Foundation for Gamla Tjänarinnor (#2020-00959 and #2021-01153).
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
- KB is supported by the Swedish Research Council (#2017-00915 and #2022-00732), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s Association 2022-2025 Grant (SG-23-1038904 QC)
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHUNord APHP Hospital Lariboisière Fernand Widal, Paris, France
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHUNord APHP Hospital Lariboisière Fernand Widal, Paris, France
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
4
|
Gobom J, Benedet AL, Mattsson-Carlgren N, Montoliu-Gaya L, Schultz N, Ashton NJ, Janelidze S, Servaes S, Sauer M, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brinkmalm G, Zetterberg H, Hansson O, Rosa-Neto P, Blennow K. Antibody-free measurement of cerebrospinal fluid tau phosphorylation across the Alzheimer's disease continuum. Mol Neurodegener 2022; 17:81. [PMID: 36510321 PMCID: PMC9743664 DOI: 10.1186/s13024-022-00586-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement. METHODS We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n = 38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p < 0.001, AUC = 0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n = 165) and BioFINDER-2 cohorts (n = 563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (< 40 years), as well as patients with frontotemporal dementia and other neurodegenerative disorders. RESULTS Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aβ positron emission tomography-positive patients with mild cognitive impairment compared with Aβ-negative controls. For Alzheimer's disease dementia compared with Aβ-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC = 98.73%, fold change = 7.64; BioFINDER-2: AUC = 91.89%, fold change = 10.65), pT217 (TRIAD: AUC = 99.71%, fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold change = 8.83) and pT205 (TRIAD: AUC = 99.07%, fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold change = 3.92). These phospho-epitopes also discriminated between Aβ-positive and Aβ-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC = 83.26, fold change = 2.39; BioFINDER-2: AUC = 91.05%, fold change = 3.29), pT231 (TRIAD: AUC = 86.25, fold change = 3.80; BioFINDER-2: AUC = 78.69%, fold change = 3.65) and pT205 (TRIAD: AUC = 71.58, fold change = 1.51; BioFINDER-2: AUC = 71.11%, fold change = 1.70). CONCLUSIONS While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nina Schultz
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tharick A. Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund University, Lund, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
5
|
Han T, Cong H, Yu B, Shen Y. Application of peptide biomarkers in life analysis based on liquid chromatography-mass spectrometry technology. Biofactors 2022; 48:725-743. [PMID: 35816279 DOI: 10.1002/biof.1875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/18/2022] [Indexed: 12/11/2022]
Abstract
Biomedicine is developing rapidly in the 21st century. Among them, the qualitative and quantitative analysis of peptide biomarkers is of considerable importance for the diagnosis and therapy of diseases and the quality evaluation of drugs and food. The identification and quantitative analysis of peptides have been going on for decades. Traditionally, immunoassays or biological assays are generally used to quantify peptides in biological matrices. However, the selectivity and sensitivity of these methods cannot meet the requirements of the application. The separation and analysis technique of liquid chromatography-mass spectrometry (LC-MS) supplies a reliable alternative. In contrast to immunoassays, LC-MS methods are capable of providing the analytical prowess necessary to satisfy the demands of peptide biomarker research in the life sciences arena. This review article provides a historical account of the in-roads made by LC-MS technology for the detection of peptide biomarkers in the past 10 years, with the focus on the qualification/quantification developments and their applications.
Collapse
Affiliation(s)
- Tingting Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
McKetney J, Panyard DJ, Johnson SC, Carlsson CM, Engelman CD, Coon JJ. Pilot proteomic analysis of cerebrospinal fluid in Alzheimer's disease. Proteomics Clin Appl 2021; 15:e2000072. [PMID: 33682374 PMCID: PMC8197734 DOI: 10.1002/prca.202000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023]
Abstract
Proteomic analysis of cerebrospinal fluid (CSF) holds great promise in understanding the progression of neurodegenerative diseases, including Alzheimer's disease (AD). As one of the primary reservoirs of neuronal biomolecules, CSF provides a window into the biochemical and cellular aspects of the neurological environment. CSF can be drawn from living participants allowing the potential alignment of clinical changes with these biochemical markers. Using cutting-edge mass spectrometry technologies, we perform a streamlined proteomic analysis of CSF. We quantify greater than 700 proteins across 10 pairs of age- and sex-matched participants in approximately one hour of analysis time each. Using the paired participant study structure, we identify a small group of biologically relevant proteins that show substantial changes in abundance between cognitive normal and AD participants, which were then analyzed at the peptide level using parallel reaction monitoring experiments. Our findings suggest the utility of fractionating a single sample and using matching to increase proteomic depth in cerebrospinal fluid, as well as the potential power of an expanded study.
Collapse
Affiliation(s)
- Justin McKetney
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
- National Center for Quantitative Biology of Complex Systems, Madison, WI
| | - Daniel J. Panyard
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, Middleton Memorial Veterans Hospital, Madison, WI
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine, Madison, WI
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine, Madison, WI
| | - Cynthia M. Carlsson
- Geriatric Research Education and Clinical Center, Middleton Memorial Veterans Hospital, Madison, WI
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine, Madison, WI
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine, Madison, WI
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine, Madison, WI
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine, Madison, WI
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
- National Center for Quantitative Biology of Complex Systems, Madison, WI
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI
- Morgridge Institute for Research, Madison, WI
| |
Collapse
|
7
|
Bergquist J. Leveraging the power of mass spectrometry to unravel complex brain pathologies. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2019; 14 Pt B:63-65. [PMID: 34977358 PMCID: PMC8686759 DOI: 10.1016/j.clinms.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry - BMC, Uppsala University, Box 599, SE-75124 Uppsala, Sweden
| |
Collapse
|