1
|
Shirato R, Shimanuki R, Shoji T, Mugikura M. Inhibitory Effects of Prolonged Focal Muscle Vibration on Maximal Grip Strength and Muscle Activity of Wrist and Extrinsic Finger Flexor Muscles. J Chiropr Med 2023; 22:107-115. [PMID: 37346243 PMCID: PMC10280089 DOI: 10.1016/j.jcm.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/23/2023] Open
Abstract
Objective The objective of this study was to identify effective stimulus time by quantifying the inhibitory effects of focal muscle vibration (FMV) on maximal grip strength and muscle activities of the wrist and extrinsic finger flexors. Methods A randomized repeated-measures design was used in this study. A total of 22 healthy volunteers (mean age, 20.9 years) participated. An FMV of 86 Hz was applied to the anterior surface of the distal forearm under the following 3 conditions: no FMV (control), 5-minute FMV, and 10-minute FMV. Maximal grip strength was measured before and after FMV. The muscle activities of the flexor digitorum superficialis, flexor digitorum profundus (FDP), and flexor carpi ulnaris were simultaneously recorded using surface electromyography. Discomfort and complications following FMV were also assessed. Results Compared with the control group, a significant decrease in muscle activity was observed in both the flexor digitorum superficialis and flexor carpi ulnaris after 5 and 10 minutes of FMV. In contrast, there was no significant decrease in the maximal grip strength or FDP muscle activity after either FMV condition. The discomfort was significantly higher immediately after both FMV conditions than in the control group, but it decreased 15 minutes after FMV, indicating no significant difference among the 3 conditions. Redness and/or swelling were observed in 13.6% and 36.3% of the participants after 5 and 10 minutes of FMV, respectively. Conclusion Five-minute FMV to the distal forearm could be a useful therapeutic method with few complications. However, the FMV in this area alone was not sufficient to suppress the muscle activity of the FDP located in the deep layer.
Collapse
Affiliation(s)
- Rikiya Shirato
- Department of Rehabilitation, Faculty of Healthcare and Science, Hokkaido Bunkyo University, Eniwa, Japan
| | - Ren Shimanuki
- Department of Occupational Therapy, Tokeidai Memorial Hospital, Sapporo, Japan
| | - Towa Shoji
- Department of Rehabilitation, Hokkaido Saiseikai Midori-no-Sato, Otaru, Japan
| | - Masaki Mugikura
- Department of Rehabilitation, Hanakawa Hospital, Ishikari, Japan
| |
Collapse
|
2
|
Corticospinal modulation of vibration-induced H-reflex depression. Exp Brain Res 2022; 240:803-812. [PMID: 35044475 PMCID: PMC8920763 DOI: 10.1007/s00221-022-06306-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
The purpose of this study was to examine corticospinal modulation of spinal reflex excitability, by determining the effect of transcranial magnetic stimulation (TMS) on soleus H-reflexes while they were almost completely suppressed by lower extremity vibration. In 15 healthy adults, a novel method of single-limb vibration (0.6 g, 30 Hz, 0.33 mm displacement) was applied to the non-dominant leg. Soleus muscle responses were examined in six stimulation conditions: (1) H-reflex elicited by tibial nerve stimulation, (2) tibial nerve stimulation during vibration, (3) subthreshold TMS, (4) subthreshold TMS during vibration, (5) tibial nerve stimulation 10 ms after a subthreshold TMS pulse, and (6) tibial nerve stimulation 10 ms after a subthreshold TMS pulse, during vibration. With or without vibration, subthreshold TMS produced no motor evoked potentials and had no effect on soleus electromyography (p > 0.05). In the absence of vibration, H-reflex amplitudes were not affected by subthreshold TMS conditioning (median (md) 35, interquartile range (IQ) 18-56 vs. md 46, IQ 22-59% of the maximal M wave (Mmax), p > 0.05). During vibration, however, unconditioned H-reflexes were nearly abolished, and a TMS conditioning pulse increased the H-reflex more than fourfold (md 0.3, IQ 0.1-0.7 vs. md 2, IQ 0.9-5.0% of Mmax, p < 0.008). Limb vibration alone had no significant effect on corticospinal excitability. In the absence of vibration, a subthreshold TMS pulse did not influence the soleus H-reflex. During limb vibration, however, while the H-reflex was almost completely suppressed, a subthreshold TMS pulse partially restored the H-reflex. This disinhibition of the H-reflex by a corticospinal signal may represent a mechanism involved in the control of voluntary movement. Corticospinal signals that carry the descending motor command may also reduce presynaptic inhibition, temporarily increasing the impact of sensory inputs on motoneuron activation.
Collapse
|
3
|
Kumru H, Albu S, Oguz S, Murillo N, Lucente G, Valls-Sole J. Effects of different vibration frequencies on spinal cord reflex circuits and thermoalgesic perception. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:533-541. [PMID: 34854393 PMCID: PMC8672409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We studied the effect of different vibration frequencies on spinal cord excitability and heat pain perception. We hypothesized that the effects of vibration on spinal cord reflexes, and, also those on heat pain perception, depend on vibration frequency. METHODS In 9 healthy subjects, we applied vibration over the tibialis anterior muscle at three different frequencies (50, 150, or 250 Hz) on spinal cord reflex excitably, tested with the H reflex and the T wave in the soleus muscle, as well as on sensory and pain perception, tested by measuring warm perception (WT) and heat pain perception thresholds, (HPT) in sites rostral and caudal to vibration. Exams were carried out before, during, and after vibration. RESULTS The amplitude of the H reflex and T wave significantly decreased during vibration in comparison to baseline. Low frequencies (50 and 150Hz) induced greater reflex suppression than high frequency (250Hz). No significant changes were observed on WT and HPT. CONCLUSIONS The effects of vibratory stimulation can be summarized as frequency-related suppression of the spinal cord excitability without an effect on warm and heat pain perception. The present results may help to design vibration-related interventions intended to diminish spinal cord reflex excitability in spastic patients.
Collapse
Affiliation(s)
- Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain,Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain,Corresponding author: Hatice Kumru, MD, PhD, Hospital de Neurorehabilitació Institut Guttmann, Camí Can Ruti s/n. Barcelona, 08916 Barcelona, Spain E-mail:
| | - Sergiu Albu
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain,Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Semra Oguz
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain,Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Marmara University, Istanbul, Turkey
| | - Narda Murillo
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain,Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Giuseppe Lucente
- Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain,Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain,Neuromuscular and Neuropediatric group, Neuroscience department, Hospital Universitario Germans Trias I Pujol, Badalona, Spain
| | - Josep Valls-Sole
- IDIBAPS (Institut d’Investigació Biomèdica August Pi i Sunyer), Barcelona, Spain
| |
Collapse
|
4
|
Krause A, Gollhofer A, Lee K, Freyler K, Becker T, Kurz A, Ritzmann R. Acute whole-body vibration reduces post-activation depression in the triceps surae muscle. Hum Mov Sci 2020; 72:102655. [PMID: 32721374 DOI: 10.1016/j.humov.2020.102655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/09/2020] [Accepted: 06/20/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Acute whole-body vibration (WBV) is known to enhance neuromuscular activation. Especially mechanisms which act presynaptically are discussed to be involved in this modulation, but evidence is still limited. Therefore, this study aimed to investigate if 2 min of WBV might impact the premotoneuronal mechanism of post-activation depression (PAD). METHODS PAD in m. soleus was assessed by paired-pulse stimulation in 28 healthy participants prior, 2 min, 4 min and 10 min after 2 min of side-alternating WBV (10 Hz, 2 mm). Methodologies involved electromyography (m. soleus, m. tibialis anterior) and goniometric recordings (ankle, knee joint). H-reflexes were elicited with peripheral nerve stimulation and assessed by means of conditioned H-reflexes (ISI 1 s, Hcond) versus control H-reflexes (ISI10, H). RESULTS Hcond/H was significantly enhanced by +55% (2 min), +32% (4 min) and +35% (10 min) following WBV (P < 0.05). Baseline muscle activity and joint positions were shown to be reliable (Cronbach's α values >0.990) throughout the testing procedure. CONCLUSION Vibratory-induced spinal inhibition is accompanied by diminished PAD at the presynaptic terminals which interconnect the Ia afferents with the α-motoneuron. Functionally, the PAD reduction might explain enhanced motor performance following vibration therapy, but future studies will be needed to verify this assumption.
Collapse
Affiliation(s)
- Anne Krause
- Institute of Training and Computer Science in Sport, German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933 Köln; Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br
| | - Albert Gollhofer
- Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br
| | - Kyungsoo Lee
- Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br
| | - Kathrin Freyler
- Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br
| | - Tobias Becker
- Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br
| | - Alexander Kurz
- Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br.; Bernstein Center Freiburg, University of Freiburg, Germany, Hansastraße 9a, 79104 Freiburg i.Br
| | - Ramona Ritzmann
- Department for Sports and Sport Science, University of Freiburg, Germany, Schwarzwaldstraße 175, 79117 Freiburg i.Br.; Department of Biomechanics, Rennbahnklinik, Switzerland, Kriegackerstrasse 100, 4132, Muttenz, Switzerland.
| |
Collapse
|
5
|
Korupolu R, Stampas A, Singh M, Zhou P, Francisco G. Electrophysiological Outcome Measures in Spinal Cord Injury Clinical Trials: A Systematic Review. Top Spinal Cord Inj Rehabil 2020; 25:340-354. [PMID: 31844386 DOI: 10.1310/sci2504-340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Electrophysiological measures are being increasingly utilized due to their ability to provide objective measurements with minimal bias and to detect subtle changes with quantitative data on neural function. Heterogeneous reporting of trial outcomes limits effective interstudy comparison and optimization of treatment. Objective: The objective of this systematic review is to describe the reporting of electrophysiological outcome measures in spinal cord injury (SCI) clinical trials in order to inform a subsequent consensus study. Methods: A systematic search of PubMed and EMBASE databases was conducted according to PRISMA guidelines. Adult human SCI clinical trials published in English between January 1, 2008 and September 15, 2018 with at least one electrophysiological outcome measure were eligible. Findings were reviewed by all authors to create a synthesis narrative describing each outcome measure. Results: Sixty-four SCI clinical trials were included in this review. Identified electrophysiological outcomes included electromyography activity (44%), motor evoked potentials (33%), somatosensory evoked potentials (33%), H-reflex (20%), reflex electromyography activity (11%), nerve conduction studies (9%), silent period (3%), contact heat evoked potentials (2%), and sympathetic skin response (2%). Heterogeneity was present in regard to both methods of measurement and reporting of electrophysiological outcome measures. Conclusion: This review demonstrates need for the development of a standardized reporting set for electrophysiological outcome measures. Limitations of this review include exclusion of non-English publications, studies more than 10 years old, and an inability to assess methodological quality of primary studies due to a lack of guidelines on reporting of systematic reviews of outcome measures.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Mani Singh
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| |
Collapse
|
6
|
Tseng SC, Shields RK. Limb Segment Load Inhibits the Recovery of Soleus H-Reflex After Segmental Vibration in Humans. J Mot Behav 2017; 50:631-642. [PMID: 29140761 DOI: 10.1080/00222895.2017.1394259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effects of vertical vibration and compressive load on soleus H-reflex amplitude and postactivation depression. We hypothesized that, in the presence of a compressive load, limb vibration induces a longer suppression of soleus H-reflex. Eleven healthy adults received vibratory stimulation at a fixed frequency (30 Hz) over two loading conditions (0% and 50% of individual's body weight). H-reflex amplitude was depressed ∼88% in both conditions during vibration. Cyclic application of compression after cessation of the vibration caused a persistent reduction in H-reflex excitability and postactivation depression for > 2.5 min. A combination of limb segment vibration and compression may offer a nonpharmacologic method to modulate spinal reflex excitability in people after CNS injury.
Collapse
Affiliation(s)
- Shih-Chiao Tseng
- a School of Physical Therapy , Texas Woman's University , 6700 Fannin, Houston , Texas , USA
| | - Richard K Shields
- b Department of Physical Therapy & Rehabilitation Science , University of Iowa, Carver College of Medicine , Iowa City , Iowa , USA
| |
Collapse
|
7
|
Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans. Rehabil Res Pract 2017; 2017:5107097. [PMID: 29225972 PMCID: PMC5684600 DOI: 10.1155/2017/5107097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/09/2017] [Indexed: 11/27/2022] Open
Abstract
Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2–10 (Hmean). H2 was consistent at all frequencies on both days (r2 = 0.97, p < 0.05, and ICC(3,1) = 0.81). H2 did not differ from Hmean (p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.
Collapse
|
8
|
Vibration training after chronic spinal cord injury: Evidence for persistent segmental plasticity. Neurosci Lett 2017; 647:129-132. [PMID: 28315725 DOI: 10.1016/j.neulet.2017.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 01/10/2023]
Abstract
H-reflex paired-pulse depression is gradually lost within the first year post-SCI, a process believed to reflect reorganization of segmental interneurons after the loss of normal descending (cortical) inhibition. This reorganization co-varies in time with the development of involuntary spasms and spasticity. The purpose of this study is to determine whether long-term vibration training may initiate the return of H-reflex paired-pulse depression in individuals with chronic, complete SCI. Five men with SCI received twice-weekly vibration training (30Hz, 0.6g) to one lower limb while seated in a wheelchair. The contra-lateral limb served as a within-subject control. Paired-pulse H-reflexes were obtained before, during, and after a session of vibration. Untrained limb H-reflex depression values were comparable to chronic SCI values from previous reports. In contrast, the trained limbs of all 5 participants showed depression values that were within the range of previously-reported Acute SCI and Non-SCI H-reflex depression. The average difference between limbs was 34.98% (p=0.016). This evidence for the return of H-reflex depression suggests that even for people with long-standing SCI, plasticity persists in segmental reflex pathways. The spinal networks involved with the clinical manifestation of spasticity may thus retain adaptive plasticity after long-term SCI. The results of this study indicate that vibration training may hold promise as an anti-spasticity rehabilitation intervention.
Collapse
|
9
|
Petrie MA, Kimball AL, McHenry CL, Suneja M, Yen CL, Sharma A, Shields RK. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans. PLoS One 2016; 11:e0160594. [PMID: 27486743 PMCID: PMC4972309 DOI: 10.1371/journal.pone.0160594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/21/2016] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. Purpose: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Methods: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. Results: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). Conclusion: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.
Collapse
Affiliation(s)
- Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Amy L. Kimball
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Colleen L. McHenry
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
| | - Chu-Ling Yen
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Arpit Sharma
- Department of Biochemistry, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
10
|
Dudley-Javoroski S, Petrie MA, McHenry CL, Amelon RE, Saha PK, Shields RK. Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb. Osteoporos Int 2016; 27:1149-1160. [PMID: 26395887 PMCID: PMC4767656 DOI: 10.1007/s00198-015-3326-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/15/2015] [Indexed: 11/30/2022]
Abstract
SUMMARY This study examined the effect of a controlled dose of vibration upon bone density and architecture in people with spinal cord injury (who eventually develop severe osteoporosis). Very sensitive computed tomography (CT) imaging revealed no effect of vibration after 12 months, but other doses of vibration may still be useful to test. INTRODUCTION The purposes of this report were to determine the effect of a controlled dose of vibratory mechanical input upon individual trabecular bone regions in people with chronic spinal cord injury (SCI) and to examine the longitudinal bone architecture changes in both the acute and chronic state of SCI. METHODS Participants with SCI received unilateral vibration of the constrained lower limb segment while sitting in a wheelchair (0.6g, 30 Hz, 20 min, three times weekly). The opposite limb served as a control. Bone mineral density (BMD) and trabecular micro-architecture were measured with high-resolution multi-detector CT. For comparison, one participant was studied from the acute (0.14 year) to the chronic state (2.7 years). RESULTS Twelve months of vibration training did not yield adaptations of BMD or trabecular micro-architecture for the distal tibia or the distal femur. BMD and trabecular network length continued to decline at several distal femur sub-regions, contrary to previous reports suggesting a "steady state" of bone in chronic SCI. In the participant followed from acute to chronic SCI, BMD and architecture decline varied systematically across different anatomical segments of the tibia and femur. CONCLUSIONS This study supports that vibration training, using this study's dose parameters, is not an effective anti-osteoporosis intervention for people with chronic SCI. Using a high-spatial-resolution CT methodology and segmental analysis, we illustrate novel longitudinal changes in bone that occur after spinal cord injury.
Collapse
Affiliation(s)
- S Dudley-Javoroski
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA, 52242, USA
| | - M A Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA, 52242, USA
| | - C L McHenry
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA, 52242, USA
| | - R E Amelon
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA
| | - P K Saha
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, USA
- Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - R K Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
McHenry CL, Wu J, Shields RK. Potential regenerative rehabilitation technology: implications of mechanical stimuli to tissue health. BMC Res Notes 2014; 7:334. [PMID: 24894666 PMCID: PMC4055276 DOI: 10.1186/1756-0500-7-334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Mechanical loads induced through muscle contraction, vibration, or compressive forces are thought to modulate tissue plasticity. With the emergence of regenerative medicine, there is a need to understand the optimal mechanical environment (vibration, load, or muscle force) that promotes cellular health. To our knowledge no mechanical system has been proposed to deliver these isolated mechanical stimuli in human tissue. We present the design, performance, and utilization of a new technology that may be used to study localized mechanical stimuli on human tissues. A servo-controlled vibration and limb loading system were developed and integrated into a single instrument to deliver vibration, compression, or muscle contractile loads to a single limb (tibia) in humans. The accuracy, repeatability, transmissibility, and safety of the mechanical delivery system were evaluated on eight individuals with spinal cord injury (SCI). FINDINGS The limb loading system was linear, repeatable, and accurate to less than 5, 1, and 1 percent of full scale, respectively, and transmissibility was excellent. The between session tests on individuals with spinal cord injury (SCI) showed high intra-class correlations (>0.9). CONCLUSIONS All tests supported that therapeutic loads can be delivered to a lower limb (tibia) in a safe, accurate, and measureable manner. Future collaborations between engineers and cellular physiologists will be important as research programs strive to determine the optimal mechanical environment for developing cells and tissues in humans.
Collapse
Affiliation(s)
- Colleen L McHenry
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - Jason Wu
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - Richard K Shields
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| |
Collapse
|
12
|
Wirth F, Schempf G, Stein G, Wellmann K, Manthou M, Scholl C, Sidorenko M, Semler O, Eisel L, Harrach R, Angelova S, Jaminet P, Ankerne J, Ashrafi M, Ozsoy O, Ozsoy U, Schubert H, Abdulla D, Dunlop SA, Angelov DN, Irintchev A, Schönau E. Whole-Body Vibration Improves Functional Recovery in Spinal Cord Injured Rats. J Neurotrauma 2013; 30:453-68. [DOI: 10.1089/neu.2012.2653] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Felicitas Wirth
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Greta Schempf
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Gregor Stein
- Department of Orthopedics and Trauma Surgery, University of Cologne, Köln, Germany
| | | | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Carolin Scholl
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Malina Sidorenko
- Department of Anatomy, Medical Faculty, University of Sofia, Sofia, Bulgaria
| | - Oliver Semler
- Department of Children's Hospital, University of Cologne, Köln, Germany
| | - Leonie Eisel
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Rachida Harrach
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Srebrina Angelova
- Jean-Uhrmacher Institute for ENT-Research, University of Cologne, Köln, Germany
| | - Patrick Jaminet
- Department of Hand, Plastic, and Reconstructive Surgery with Burn Unit, BG- Trauma Centre, University of Tuebingen, Tuebingen, Germany
| | - Janina Ankerne
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Mahak Ashrafi
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Ozlem Ozsoy
- Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Umut Ozsoy
- Department of Physiology Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | - Diana Abdulla
- Department of Anatomy I, University of Cologne, Köln, Germany
| | - Sarah A. Dunlop
- Experimental and Regenerative Neuroscience, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Andrey Irintchev
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Eckhard Schönau
- Department of Children's Hospital, University of Cologne, Köln, Germany
| |
Collapse
|