1
|
Male AG, O’Shea RP. Attention is required for canonical brain signature of prediction error despite early encoding of the stimuli. PLoS Biol 2023; 21:e3001866. [PMID: 37339145 PMCID: PMC10281583 DOI: 10.1371/journal.pbio.3001866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/11/2023] [Indexed: 06/22/2023] Open
Abstract
Prediction error is a basic component of predictive-coding theory of brain processing. According to the theory, each stage of brain processing of sensory information generates a model of the current sensory input; subsequent input is compared against the model and only if there is a mismatch, a prediction error, is further processing performed. Recently, Smout and colleagues found that a signature of prediction error, the visual (v) mismatch negativity (MMN), for a fundamental property of visual input-its orientation-was absent without endogenous attention on the stimuli. This is remarkable because the weight of evidence for MMNs from audition and vision is that they occur without endogenous attention. To resolve this discrepancy, we conducted an experiment addressing 2 alternative explanations for Smout and colleagues' finding: that it was from a lack of reproducibility or that participants' visual systems did not encode the stimuli when attention was on something else. We conducted a similar experiment to that of Smout and colleagues. We showed 21 participants sequences of identically oriented Gabor patches, standards, and, unpredictably, otherwise identical, Gabor patches differing in orientation by ±15°, ±30°, and ±60°, deviants. To test whether participants encoded the orientation of the standards, we varied the number of standards preceding a deviant, allowing us to search for a decrease in activity with the number of repetitions of standards-repetition suppression. We diverted participants' attention from the oriented stimuli with a central, letter-detection task. We reproduced Smout and colleagues' finding of no vMMN without endogenous attention, strengthening their finding. We found that our participants showed repetition suppression: They did encode the stimuli preattentively. We also found early processing of deviants. We discuss various explanations why the earlier processing did not extend into the vMMN time window, including low precision of prediction.
Collapse
Affiliation(s)
- Alie G. Male
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, United States of America
| | - Robert P. O’Shea
- Discipline of Psychology, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
- Wilhelm Wundt Institute for Psychology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Font-Alaminos M, Ribas-Prats T, Gorina-Careta N, Escera C. Emergence of prediction error along the human auditory hierarchy. Hear Res 2020; 399:107954. [PMID: 32234254 DOI: 10.1016/j.heares.2020.107954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/25/2022]
Abstract
Auditory prediction errors have been extensively associated with the mismatch negativity (MMN), a cortical auditory evoked potential that denotes deviance detection. Yet, many studies lacked the appropriate controls to disentangle sensory adaptation from prediction error. Furthermore, subcortical deviance detection has been shown in humans through recordings of the frequency-following response (FFR), an early auditory evoked potential that reflects the neural tracking of the periodic characteristics of a sound, suggesting the possibility that prediction errors emerge subcortically in the auditory pathway. The present study aimed at investigating the emergence of prediction error along the auditory hierarchy in humans through combined recordings of the FFR and the MMN, tapping at subcortical and cortical levels, respectively, while disentangling prediction error from sensory adaptation with the use of appropriate controls. "Oddball" sequences of pure tones featuring repeated "standard" stimuli (269 Hz; p = 0.8) and rare "deviant" stimuli (p = 0.2; of 289, 329 and 409 Hz delivered in separated blocks to test "frequency separation" effects) were presented to nineteen healthy young participants. "Reversed" oddball sequences (where standard and deviant tones swapped their roles) were presented allowing comparison of responses to same physical stimuli as a function of functional role (i.e., standard, deviant). Critically, control sequences featuring five equiprobable tones (p = 0.2) allowed to dissociate sensory adaptation from prediction error. Results revealed that the MMN amplitude increased as a function of frequency separation yet displayed the same amplitude when retrieved against the control sequences, confirming previous results. FFRs showed repetition enhancement effects across all frequency separations, as supported by larger spectral amplitude to standard than to deviant and control stimuli. This pattern of results provides insights into the hierarchy of the human prediction error system in audition, suggesting that prediction errors in humans emerge at cortical level.
Collapse
Affiliation(s)
- Marta Font-Alaminos
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Teresa Ribas-Prats
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Natàlia Gorina-Careta
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron 171, 08035, Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Shiramatsu TI, Takahashi H. Mismatch-negativity (MMN) in animal models: Homology of human MMN? Hear Res 2020; 399:107936. [PMID: 32197715 DOI: 10.1016/j.heares.2020.107936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Mismatch negativity (MMN) has long been considered to be one of the deviance-detecting neural characteristics. Animal models exhibit similar neural activities, called MMN-like responses; however, there has been considerable debate on whether MMN-like responses are homologous to MMN in humans. Herein, we reviewed several studies that compared the electrophysiological, pharmacological, and functional properties of MMN-like responses and adaptation-exhibiting middle-latency responses (MLRs) in animals with those in humans. Accumulating evidence suggests that there are clear differences between MMN-like responses and MLRs, in particular that MMN-like responses can be distinguished from mere effects of adaptation, i.e., stimulus-specific adaptation. Finally, we discuss a new direction for research on MMN-like responses by introducing our recent work, which demonstrated that MMN-like responses represent empirical salience of deviant stimuli, suggesting a new functional role of MMN beyond simple deviance detection.
Collapse
Affiliation(s)
| | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
4
|
Pinheiro AP, Schwartze M, Gutierrez F, Kotz SA. When temporal prediction errs: ERP responses to delayed action-feedback onset. Neuropsychologia 2019; 134:107200. [DOI: 10.1016/j.neuropsychologia.2019.107200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/26/2022]
|
5
|
The effects of aging on early stages of the auditory deviance detection system. Clin Neurophysiol 2018; 129:2252-2258. [PMID: 30216909 DOI: 10.1016/j.clinph.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aging effects on auditory change detection have been studied using the Mismatch Negativity (MMN) potential. However, recent studies have found earlier correlates of deviance detection at the level of the middle-latency response (MLR) and the effects of aging on this deviant-related response have not yet been clarified. The purpose of this study was to examine the effects of aging on both levels of the auditory deviance detection system. METHODS MMN and MLR responses were recorded in 33 young and 29 older adults from 32 scalp electrodes during frequency oddball and swapped-oddball conditions. RESULTS In the young group, modulation of MLR and a clear MMN response were observed, whereas in the aged group, no evidence of deviance detection was found at the level of MLR and the MMN amplitude was significantly diminished. CONCLUSIONS Based on the obtained results, aging affects both levels of the auditory deviance detection system which seems to be a result of deficits in regularity encoding along the auditory hierarchy. SIGNIFICANCE The current findings suggest that age-related physiological changes result in deficits in regularity encoding, starting from early stages of processing. This might eventually affect stream segregation and induce difficulties in understanding speech in complex environments.
Collapse
|
6
|
The Role of the Auditory Brainstem in Regularity Encoding and Deviance Detection. THE FREQUENCY-FOLLOWING RESPONSE 2017. [DOI: 10.1007/978-3-319-47944-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
López-Caballero F, Zarnowiec K, Escera C. Differential deviant probability effects on two hierarchical levels of the auditory novelty system. Biol Psychol 2016; 120:1-9. [DOI: 10.1016/j.biopsycho.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
|
8
|
Early indices of deviance detection in humans and animal models. Biol Psychol 2016; 116:23-7. [DOI: 10.1016/j.biopsycho.2015.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
|
9
|
Aghamolaei M, Zarnowiec K, Grimm S, Escera C. Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy. Eur J Neurosci 2015; 43:529-35. [DOI: 10.1111/ejn.13138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/27/2015] [Accepted: 11/17/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Maryam Aghamolaei
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
- Department of Audiology; Faculty of Rehabilitation Sciences; Tehran University of Medical Sciences; Tehran Iran
| | - Katarzyna Zarnowiec
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
| | - Sabine Grimm
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
- Cognitive and Biological Psychology; Institute of Psychology; University of Leipzig; Leipzig Germany
| | - Carles Escera
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
| |
Collapse
|
10
|
Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence. PLoS One 2015; 10:e0136794. [PMID: 26348628 PMCID: PMC4562708 DOI: 10.1371/journal.pone.0136794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective.
Collapse
|
11
|
Bauer AKR, Jaeger M, Thorne JD, Bendixen A, Debener S. The auditory dynamic attending theory revisited: A closer look at the pitch comparison task. Brain Res 2015; 1626:198-210. [PMID: 25934332 DOI: 10.1016/j.brainres.2015.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/26/2022]
Abstract
The dynamic attending theory as originally proposed by Jones, 1976. Psychol. Rev. 83(5), 323-355 posits that tone sequences presented at a regular rhythm entrain attentional oscillations and thereby facilitate the processing of sounds presented in phase with this rhythm. The increased interest in neural correlates of dynamic attending requires robust behavioral indicators of the phenomenon. Here we aimed to replicate and complement the most prominent experimental implementation of dynamic attending (Jones et al., 2002. Psychol. Sci. 13(4), 313-319). The paradigm uses a pitch comparison task in which two tones, the initial and the last of a longer series, have to be compared. In-between the two, distractor tones with variable pitch are presented, at a regular pace. A comparison tone presented in phase with the entrained rhythm is hypothesized to lead to better behavioral performance. Aiming for a conceptual replication, four different variations of the original paradigm were created which were followed by an exact replication attempt. Across all five experiments, only 40 of the 140 tested participants showed the hypothesized pattern of an inverted U-shaped profile in task accuracy, and the group average effects did not replicate the pattern reported by Jones et al., 2002. Psychol. Sci. 13(4), 313-319 in any of the five experiments. However, clear evidence for a relationship between musicality and overall behavioral performance was found. This study casts doubt on the suitability of the pitch comparison task for demonstrating auditory dynamic attending. We discuss alternative tasks that have been shown to support dynamic attending theory, thus lending themselves more readily to studying its neural correlates. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- Anna-Katharina R Bauer
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.
| | - Manuela Jaeger
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Jeremy D Thorne
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Alexandra Bendixen
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany; Auditory Psychophysiology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Cornella M, Bendixen A, Grimm S, Leung S, Schröger E, Escera C. Spatial auditory regularity encoding and prediction: Human middle-latency and long-latency auditory evoked potentials. Brain Res 2015; 1626:21-30. [PMID: 25912975 DOI: 10.1016/j.brainres.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 04/11/2015] [Indexed: 11/19/2022]
Abstract
By encoding acoustic regularities present in the environment, the human brain can generate predictions of what is likely to occur next. Recent studies suggest that deviations from encoded regularities are detected within 10-50ms after stimulus onset, as indicated by electrophysiological effects in the middle latency response (MLR) range. This is upstream of previously known long-latency (LLR) signatures of deviance detection such as the mismatch negativity (MMN) component. In the present study, we created predictable and unpredictable contexts to investigate MLR and LLR signatures of the encoding of spatial auditory regularities and the generation of predictions from these regularities. Chirps were monaurally delivered in an either regular (predictable: left-right-left-right) or a random (unpredictable left/right alternation or repetition) manner. Occasional stimulus omissions occurred in both types of sequences. Results showed that the Na component (peaking at 34ms after stimulus onset) was attenuated for regular relative to random chirps, albeit no differences were observed for stimulus omission responses in the same latency range. In the LLR range, larger chirp-and omission-evoked responses were elicited for the regular than for the random condition, and predictability effects were more prominent over the right hemisphere. We discuss our findings in the framework of a hierarchical organization of spatial regularity encoding. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- M Cornella
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - A Bendixen
- Institute of Psychology, University of Leipzig, Leipzig, Germany; Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - S Grimm
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - S Leung
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - E Schröger
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - C Escera
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
13
|
Echoic memory: investigation of its temporal resolution by auditory offset cortical responses. PLoS One 2014; 9:e106553. [PMID: 25170608 PMCID: PMC4149571 DOI: 10.1371/journal.pone.0106553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 08/06/2014] [Indexed: 11/20/2022] Open
Abstract
Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.
Collapse
|
14
|
Recasens M, Grimm S, Wollbrink A, Pantev C, Escera C. Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex. Hum Brain Mapp 2014; 35:5701-16. [PMID: 24996147 DOI: 10.1002/hbm.22582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/29/2014] [Accepted: 06/28/2014] [Indexed: 11/10/2022] Open
Abstract
Our auditory system is able to encode acoustic regularity of growing levels of complexity to model and predict incoming events. Recent evidence suggests that early indices of deviance detection in the time range of the middle-latency responses (MLR) precede the mismatch negativity (MMN), a well-established error response associated with deviance detection. While studies suggest that only the MMN, but not early deviance-related MLR, underlie complex regularity levels, it is not clear whether these two mechanisms interplay during scene analysis by encoding nested levels of acoustic regularity, and whether neuronal sources underlying local and global deviations are hierarchically organized. We registered magnetoencephalographic evoked fields to rapidly presented four-tone local sequences containing a frequency change. Temporally integrated local events, in turn, defined global regularities, which were infrequently violated by a tone repetition. A global magnetic mismatch negativity (MMNm) was obtained at 140-220 ms when breaking the global regularity, but no deviance-related effects were shown in early latencies. Conversely, Nbm (45-55 ms) and Pbm (60-75 ms) deflections of the MLR, and an earlier MMNm response at 120-160 ms, responded to local violations. Distinct neuronal generators in the auditory cortex underlay the processing of local and global regularity violations, suggesting that nested levels of complexity of auditory object representations are represented in separated cortical areas. Our results suggest that the different processing stages and anatomical areas involved in the encoding of auditory representations, and the subsequent detection of its violations, are hierarchically organized in the human auditory cortex.
Collapse
Affiliation(s)
- Marc Recasens
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, 08035, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, 08035, Catalonia, Spain
| | | | | | | | | |
Collapse
|
15
|
Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A. Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 2014; 8:111. [PMID: 25009474 PMCID: PMC4068197 DOI: 10.3389/fnsys.2014.00111] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/24/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to detect unexpected stimuli in the acoustic environment and determine their behavioral relevance to plan an appropriate reaction is critical for survival. This perspective article brings together several viewpoints and discusses current advances in understanding the mechanisms the auditory system implements to extract relevant information from incoming inputs and to identify unexpected events. This extraordinary sensitivity relies on the capacity to codify acoustic regularities, and is based on encoding properties that are present as early as the auditory midbrain. We review state-of-the-art studies on the processing of stimulus changes using non-invasive methods to record the summed electrical potentials in humans, and those that examine single-neuron responses in animal models. Human data will be based on mismatch negativity (MMN) and enhanced middle latency responses (MLR). Animal data will be based on the activity of single neurons at the cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and to stimulus-specific neural adaptation (SSA). Theoretical models of the neural mechanisms that could create SSA and novelty responses will also be discussed.
Collapse
Affiliation(s)
- Manuel S Malmierca
- Auditory Neurophysiology Unit, Laboratory for the Neurobiology of Hearing, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain ; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca Salamanca, Spain
| | - Maria V Sanchez-Vives
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona, Spain ; Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain
| | - Carles Escera
- Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona Barcelona, Spain ; Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Alexandra Bendixen
- Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
16
|
Fulham WR, Michie PT, Ward PB, Rasser PE, Todd J, Johnston PJ, Thompson PM, Schall U. Mismatch negativity in recent-onset and chronic schizophrenia: a current source density analysis. PLoS One 2014; 9:e100221. [PMID: 24949859 PMCID: PMC4064992 DOI: 10.1371/journal.pone.0100221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia.
Collapse
Affiliation(s)
- W. Ross Fulham
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Patricia T. Michie
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip B. Ward
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
- Schizophrenia Research Unit, South Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul E. Rasser
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Juanita Todd
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- School of Psychology, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Patrick J. Johnston
- Department of Psychology and York Neuroimaging Centre, University of York, Heslington, United Kingdom
| | - Paul M. Thompson
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, University of Southern California, Los Angeles, California, United States of America
| | - Ulrich Schall
- Centre for Translational Neuroscience and Mental Health, The University of Newcastle, Newcastle, New South Wales, Australia
- Schizophrenia Research Institute, Darlinghurst, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|