1
|
Grilc N, Valappil AC, Tillin NA, Mian OS, Wright DJ, Holmes PS, Castelli F, Bruton AM. Motor imagery drives the effects of combined action observation and motor imagery on corticospinal excitability for coordinative lower-limb actions. Sci Rep 2024; 14:13057. [PMID: 38844650 PMCID: PMC11156847 DOI: 10.1038/s41598-024-63758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Combined action observation and motor imagery (AOMI) facilitates corticospinal excitability (CSE) and may potentially induce plastic-like changes in the brain in a similar manner to physical practice. This study used transcranial magnetic stimulation (TMS) to explore changes in CSE for AOMI of coordinative lower-limb actions. Twenty-four healthy adults completed two baseline (BLH, BLNH) and three AOMI conditions, where they observed a knee extension while simultaneously imagining the same action (AOMICONG), plantarflexion (AOMICOOR-FUNC), or dorsiflexion (AOMICOOR-MOVE). Motor evoked potential (MEP) amplitudes were recorded as a marker of CSE for all conditions from two knee extensor, one dorsi flexor, and two plantar flexor muscles following TMS to the right leg representation of the left primary motor cortex. A main effect for experimental condition was reported for all three muscle groups. MEP amplitudes were significantly greater in the AOMICONG condition compared to the BLNH condition (p = .04) for the knee extensors, AOMICOOR-FUNC condition compared to the BLH condition (p = .03) for the plantar flexors, and AOMICOOR-MOVE condition compared to the two baseline conditions for the dorsi flexors (ps ≤ .01). The study findings support the notion that changes in CSE are driven by the imagined actions during coordinative AOMI.
Collapse
Affiliation(s)
- Neza Grilc
- Department of Life Sciences, Brunel University London, HNZW 271, Heinz Wolff Building, Uxbridge, UB8 3PH, UK
- School of Life and Health Sciences, University of Roehampton, London, UK
| | | | - Neale A Tillin
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Omar S Mian
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - David J Wright
- School of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Paul S Holmes
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Federico Castelli
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adam M Bruton
- Department of Life Sciences, Brunel University London, HNZW 271, Heinz Wolff Building, Uxbridge, UB8 3PH, UK.
- School of Life and Health Sciences, University of Roehampton, London, UK.
| |
Collapse
|
2
|
Mouth rinsing and ingesting salty or bitter solutions does not influence corticomotor excitability or neuromuscular function. Eur J Appl Physiol 2023; 123:1179-1189. [PMID: 36700971 DOI: 10.1007/s00421-023-05141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE To explore the effect of tasting unpleasant salty or bitter solutions on lower limb corticomotor excitability and neuromuscular function. METHODS Nine females and eleven males participated (age: 27 ± 7 years, BMI: 25.3 ± 4.0 kg m-2). Unpleasant salty (1 M) and bitter (2 mM quinine) solutions were compared to water, sweetened water, and no solution, which functioned as control conditions. In a non-blinded randomized cross-over order, each solution was mouth rinsed (10 s) and ingested before perceptual responses, instantaneous heart rate (a marker of autonomic nervous system activation), quadricep corticomotor excitability (motor-evoked potential amplitude) and neuromuscular function during a maximal voluntary contraction (maximum voluntary force, resting twitch force, voluntary activation, 0-50 ms impulse, 0-100 impulse, 100-200 ms impulse) were measured. RESULTS Hedonic value (water: 47 ± 8%, sweet: 23 ± 17%, salt: 71 ± 8%, bitter: 80 ± 10%), taste intensity, unpleasantness and increases in heart rate (no solution: 14 ± 5 bpm, water: 18 ± 5 bpm, sweet: 20 ± 5 bpm, salt: 24 ± 7 bpm, bitter: 23 ± 6 bpm) were significantly higher in the salty and bitter conditions compared to control conditions. Nausea was low in all conditions (< 15%) but was significantly higher in salty and bitter conditions compared to water (water: 3 ± 5%, sweet: 6 ± 13%, salt: 7 ± 9%, bitter: 14 ± 16%). There was no significant difference between conditions in neuromuscular function or corticomotor excitability variables. CONCLUSION At rest, unpleasant tastes appear to have no influence on quadricep corticomotor excitability or neuromuscular function. These data question the mechanisms via which unpleasant tastes are proposed to influence exercise performance.
Collapse
|
3
|
Hardesty RL, Ellaway PH, Gritsenko V. The human motor cortex contributes to gravity compensation to maintain posture and during reaching. J Neurophysiol 2023; 129:83-101. [PMID: 36448705 PMCID: PMC9799140 DOI: 10.1152/jn.00367.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The neural control of posture and movement is interdependent. During voluntary movement, the neural motor command is executed by the motor cortex through the corticospinal tract and its collaterals and subcortical targets. Here we address the question of whether the control mechanism for the postural adjustments at nonmoving joints is also involved in overcoming gravity at the moving joints. We used single-pulse transcranial magnetic stimulation to measure the corticospinal excitability in humans during postural and reaching tasks. We hypothesized that the corticospinal excitability is proportional to background muscle activity and the gravity-related joint moments during both static postures and reaching movements. To test this hypothesis, we used visual targets in virtual reality to instruct five postures and three movements with or against gravity. We then measured the amplitude and gain of motor evoked potentials in multiple arm and hand muscles at several phases of the reaching motion and during static postures. The stimulation caused motor evoked potentials in all muscles that were proportional to the muscle activity. During both static postures and reaching movements, the muscle activity and the corticospinal contribution to these muscles changed in proportion with the postural moments needed to support the arm against gravity, supporting the hypothesis. Notably, these changes happened not only in antigravity muscles. Altogether, these results provide evidence that the changes in corticospinal excitability cause muscle cocontraction that modulates limb stiffness. This suggests that the motor cortex is involved in producing postural adjustments that support the arm against gravity during posture maintenance and reaching.NEW & NOTEWORTHY Animal studies suggest that the corticospinal tract and its collaterals are crucial for producing postural adjustments that accompany movement in limbs other than the moving limb. Here we provide evidence for a similar control schema for both arm posture maintenance and gravity compensation during movement of the same limb. The observed interplay between the postural and movement control signals within the corticospinal tract may help explain the underlying neural motor deficits after stroke.
Collapse
Affiliation(s)
- Russell L Hardesty
- Departments of Human Performance and Neuroscience, Rockefeller Neuroscience Center, West Virginia University, Morgantown, West Virginia
| | - Peter H Ellaway
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Valeriya Gritsenko
- Departments of Human Performance and Neuroscience, Rockefeller Neuroscience Center, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
4
|
Hu N, Avela J, Kidgell DJ, Nevanperä S, Walker S, Piirainen JM. Reliability of transcranial magnetic stimulation and H-reflex measurement during balance perturbation tasks. Front Physiol 2022; 13:957650. [PMID: 36311220 PMCID: PMC9614306 DOI: 10.3389/fphys.2022.957650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Following ankle movement, posterior balance perturbation evokes short- (SLR ∼30–50 ms), medium- (MLR ∼50–60 ms), and long-latency responses (LLR ∼70–90 ms) in soleus muscle before voluntary muscle contraction. Transcranial magnetic stimulation (TMS) and Hoffmann-reflex (H-reflex) measurements can provide insight into the contributions of corticospinal and spinal mechanisms to each response. Motor evoked potential (MEP) and H-reflex responses have shown good reliability in some dynamic muscle contraction tasks. However, it is still unclear how reliable these methods are in dynamic balance perturbation and corticospinal modulation during long amplitude balance perturbation tasks. 14 subjects completed two test sessions in this study to evaluate the reliability of MEPs, H-reflex, and corticospinal modulation during balance perturbation. In each session, the balance perturbation system operated at 0.25 m/s, accelerating at 2.5 m/s2 over 0.3 m displacement. MEPs and H-reflexes were elicited in the right leg soleus muscle at four delays after ankle movement (10 ms, 40 ms, 80 ms, and 140 ms), respectively. Test-retest reliability of MEP and H-reflex amplitudes were assessed via intraclass correlation coefficients (ICC) both between- and within-session. Between-session test-retest reliability for MEPs was excellent (ICC = 0.928–0.947), while H-reflex demonstrated moderate-to-good reliability (ICC = 0.626–0.887). Within-session reliability for both MEPs and H-reflex was excellent (ICC = 0.927–0.983). TMS and H-reflex measurements were reliable at different delays after perturbation between- and within-sessions, which indicated that these methods can be used to measure corticospinal excitability during balance perturbation.
Collapse
Affiliation(s)
- Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- *Correspondence: Nijia Hu,
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dawson J. Kidgell
- School of Primary and Allied Health Care, Department of Physiotherapy, Monash University, Melbourne, VIC, Australia
| | - Samuli Nevanperä
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jarmo M. Piirainen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Su B, Jia Y, Zhang L, Li D, Shen Q, Wang C, Chen Y, Gao F, Wei J, Huang G, Liu H, Wang L. Reliability of TMS measurements using conventional hand-hold method with different numbers of stimuli for tibialis anterior muscle in healthy adults. Front Neural Circuits 2022; 16:986669. [PMID: 36247728 PMCID: PMC9563236 DOI: 10.3389/fncir.2022.986669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: The objective of this study was to determine the reliability of corticomotor excitability measurements using the conventional hand-hold transcranial magnetic stimulation (TMS) method for the tibialis anterior (TA) muscle in healthy adults and the number of stimuli required for reliable assessment. Methods: Forty healthy adults participated in three repeated sessions of corticomotor excitability assessment in terms of resting motor threshold (rMT), slope of recruitment curve (RC), peak motor evoked potential amplitude (pMEP), and MEP latency using conventional TMS method. The first two sessions were conducted with a rest interval of 1 h, and the last session was conducted 7–10 days afterward. With the exception of rMT, the other three outcomes measure elicited with the block of first 3–10 stimuli were analyzed respectively. The within-day (session 1 vs. 2) and between-day (session 1 vs. 3) reliability for all four outcome measures were assessed using intraclass correlation coefficient (ICC), standard error of measurement, and minimum detectable difference at 95% confidence interval. Results: Good to excellent within-day and between-day reliability was found for TMS-induced outcome measures examined using 10 stimuli (ICC ≥ 0.823), except in pMEP, which showed between-day reliability at moderate level (ICC = 0.730). The number of three stimuli was adequate to achieve minimum acceptable within-day reliability for all TMS-induced parameters and between-day reliability for MEP latency. With regard to between-day reliability of RC slope and pMEP, at least seven and nine stimuli were recommended respectively. Conclusion: Our findings indicated the high reliability of corticomotor excitability measurement by TMS with adequate number of stimuli for the TA muscle in healthy adults. This result should be interpreted with caveats for the specific methodological choices, equipment setting, and the characteristics of the sample in the current study. Clinical Trial Registration:http://www.chictr.org.cn, identifier ChiCTR2100045141.
Collapse
Affiliation(s)
- Bin Su
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yanbing Jia
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Duo Li
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Qianqian Shen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Chun Wang
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Yating Chen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Fanglan Gao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jing Wei
- Neuro-Rehabilitation Center, JORU Rehabilitation Hospital, Yixing, China
| | - Guilan Huang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Hao Liu
- School of Rehabilitation Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Lin Wang Hao Liu
| | - Lin Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lin Wang Hao Liu
| |
Collapse
|
6
|
The Lateralization of Resting Motor Threshold to Predict Medication-Mediated Improvement in Parkinson’s Disease. Brain Sci 2022; 12:brainsci12070842. [PMID: 35884651 PMCID: PMC9313197 DOI: 10.3390/brainsci12070842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Cortical stimulation patterns in patients with Parkinson’s disease (PD) are asymmetric and get altered over time. This study examined cortical neurophysiological markers for PD and identified neurophysiological markers for lateralization in PD. We used transcranial magnetic stimulation (TMS) to study corticospinal and intracortical excitability in 21 patients with idiopathic PD. We used the Movement Disorder Society Unified Parkinson’s Disease Rating Scale for examination during on and off periods and evaluated inhibitory and facilitatory process markers using TMS, including resting motor thresholds (RMT), active motor thresholds, and motor evoked potential amplitude. The RMT in the more affected cortex was significantly shorter than in the less affected cortex, and was strongly correlated with improved motor function following medication. Patients in the tremor group exhibited significantly lower RMT compared to those in the akinetic-rigid group. Cortical electrophysiological laterality observed in patients with PD may be a useful marker for guiding treatment and identifying underlying compensatory mechanisms.
Collapse
|
7
|
Frischholz J, Raiteri BJ, Cresswell AG, Hahn D. Corticospinal excitability remains unchanged in the presence of residual force enhancement and does not contribute to increased torque production. PeerJ 2022; 10:e12729. [PMID: 35036100 PMCID: PMC8743010 DOI: 10.7717/peerj.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Following stretch of an active muscle, muscle force is enhanced, which is known as residual force enhancement (rFE). As earlier studies found apparent corticospinal excitability modulations in the presence of rFE, this study aimed to test whether corticospinal excitability modulations contribute to rFE. METHODS Fourteen participants performed submaximal plantar flexion stretch-hold and fixed-end contractions at 30% of their maximal voluntary soleus muscle activity in a dynamometer. During the steady state of the contractions, participants either received subthreshold or suprathreshold transcranial magnetic stimulation (TMS) of their motor cortex, while triceps surae muscle responses to stimulation were obtained via electromyography (EMG), and net ankle joint torque was recorded. B-mode ultrasound imaging was used to confirm muscle fascicle stretch during stretch-hold contractions in a subset of participants. RESULTS Following stretch of the plantar flexors, an average rFE of 7% and 11% was observed for contractions with subthreshold and suprathreshold TMS, respectively. 41-46 ms following subthreshold TMS, triceps surae muscle activity was suppressed by 19-25%, but suppression was not significantly different between stretch-hold and fixed-end contractions. Similarly, the reduction in plantar flexion torque following subthreshold TMS was not significantly different between contraction conditions. Motor evoked potentials, silent periods and superimposed twitches following suprathreshold TMS were also not significantly different between contraction conditions. DISCUSSION As TMS of the motor cortex did not result in any differences between stretch-hold and fixed-end contractions, we conclude that rFE is not linked to changes in corticospinal excitability.
Collapse
Affiliation(s)
- Jasmin Frischholz
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Brent J. Raiteri
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany
| | - Andrew G. Cresswell
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Daniel Hahn
- Human Movement Science, Faculty of Sport Science, Ruhr University Bochum, Bochum, Germany,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Alder G, Signal N, Vandal AC, Olsen S, Jochumsen M, Niazi IK, Taylor D. Investigating the Intervention Parameters of Endogenous Paired Associative Stimulation (ePAS). Brain Sci 2021; 11:brainsci11020224. [PMID: 33673171 PMCID: PMC7918620 DOI: 10.3390/brainsci11020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Advances in our understanding of neural plasticity have prompted the emergence of neuromodulatory interventions, which modulate corticomotor excitability (CME) and hold potential for accelerating stroke recovery. Endogenous paired associative stimulation (ePAS) involves the repeated pairing of a single pulse of peripheral electrical stimulation (PES) with endogenous movement-related cortical potentials (MRCPs), which are derived from electroencephalography. However, little is known about the optimal parameters for its delivery. A factorial design with repeated measures delivered four different versions of ePAS, in which PES intensities and movement type were manipulated. Linear mixed models were employed to assess interaction effects between PES intensity (suprathreshold (Hi) and motor threshold (Lo)) and movement type (Voluntary and Imagined) on CME. ePAS interventions significantly increased CME compared to control interventions, except in the case of Lo-Voluntary ePAS. There was an overall main effect for the Hi-Voluntary ePAS intervention immediately post-intervention (p = 0.002), with a sub-additive interaction effect at 30 min’ post-intervention (p = 0.042). Hi-Imagined and Lo-Imagined ePAS significantly increased CME for 30 min post-intervention (p = 0.038 and p = 0.043 respectively). The effects of the two PES intensities were not significantly different. CME was significantly greater after performing imagined movements, compared to voluntary movements, with motor threshold PES (Lo) 15 min post-intervention (p = 0.012). This study supports previous research investigating Lo-Imagined ePAS and extends those findings by illustrating that ePAS interventions that deliver suprathreshold intensities during voluntary or imagined movements (Hi-Voluntary and Hi-Imagined) also increase CME. Importantly, our findings indicate that stimulation intensity and movement type interact in ePAS interventions. Factorial designs are an efficient way to explore the effects of manipulating the parameters of neuromodulatory interventions. Further research is required to ensure that these parameters are appropriately refined to maximise intervention efficacy for people with stroke and to support translation into clinical practice.
Collapse
Affiliation(s)
- Gemma Alder
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand; (N.S.); (S.O.); (I.K.N.); (D.T.)
- Correspondence:
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand; (N.S.); (S.O.); (I.K.N.); (D.T.)
| | - Alain C. Vandal
- Department of Statistics, University of Auckland, Auckland 1142, New Zealand;
- Ko Awatea, Counties Manukau Health, Auckland 2025, New Zealand
| | - Sharon Olsen
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand; (N.S.); (S.O.); (I.K.N.); (D.T.)
| | - Mads Jochumsen
- Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark;
| | - Imran Khan Niazi
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand; (N.S.); (S.O.); (I.K.N.); (D.T.)
- Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark;
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland 0627, New Zealand; (N.S.); (S.O.); (I.K.N.); (D.T.)
| |
Collapse
|
9
|
Greenhouse-Tucknott A, Wrightson JG, Raynsford M, Harrison NA, Dekerle J. Interactions between perceptions of fatigue, effort, and affect decrease knee extensor endurance performance following upper body motor activity, independent of changes in neuromuscular function. Psychophysiology 2020; 57:e13602. [PMID: 32578885 DOI: 10.1111/psyp.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Prior exercise has previously been shown to impair subsequent endurance performance in non-activated muscles. Declines in the neuromuscular function and altered perceptual/affective responses offer possible mechanisms through which endurance performance may be limited in these remote muscle groups. We thus conducted two experiments to better understand these performance-limiting mechanisms. In the first experiment, we examined the effect of prior handgrip exercise on the behavioral, perceptual, and affective responses to a sustained, sub-maximal contraction of the knee extensors. In the second experiment, transcranial magnetic stimulation was used to assess the neuromuscular function of the knee extensors before and after the handgrip exercise. The results of the first experiment demonstrated prior handgrip exercise increased the perceptions of effort and reduced affective valence during the subsequent knee extensor endurance exercise. Both effort and affect were associated with endurance performance. Subjective ratings of fatigue were also increased by the preceding handgrip exercise but were not directly related to knee extensor endurance performance. However, perceptions of fatigue were correlated with heightened effort perception and reduced affect during the knee extensor contraction. In the second experiment, prior handgrip exercise did not significantly alter the neuromuscular function of the knee extensors. The findings of the present study indicate that motor performance in the lower limbs following demanding exercise in the upper body appears to be regulated by complex, cognitive-emotional interactions, which may emerge independent of altered neuromuscular function. Subjective fatigue states are implicated in the control of perceptual and affective processes responsible for the regulation of endurance performance.
Collapse
Affiliation(s)
| | - J G Wrightson
- Fatigue and Exercise Laboratory, University of Brighton, Brighton, UK.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Raynsford
- Fatigue and Exercise Laboratory, University of Brighton, Brighton, UK
| | - N A Harrison
- Immunopsychiatry Research Group, Cardiff University, Cardiff, UK.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - J Dekerle
- Fatigue and Exercise Laboratory, University of Brighton, Brighton, UK
| |
Collapse
|
10
|
Sivaramakrishnan A, Madhavan S. Stimulus Intensity Affects Variability of Motor Evoked Responses of the Non-Paretic, but Not Paretic Tibialis Anterior Muscle in Stroke. Brain Sci 2020; 10:brainsci10050297. [PMID: 32429115 PMCID: PMC7287783 DOI: 10.3390/brainsci10050297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Transcranial magnetic stimulus induced motor evoked potentials (MEPs) are quantified either with a single suprathreshold stimulus or using a stimulus response curve. Here, we explored variability in MEPs influenced by different stimulus intensities for the tibialis anterior muscle in stroke. Methods: MEPs for the paretic and non-paretic tibialis anterior (TA) muscle representations were collected from 26 participants with stroke at seven intensities. Variability of MEP parameters was examined with coefficients of variation (CV). Results: CV for the non-paretic TA MEP amplitude and area was significantly lower at 130% and 140% active motor threshold (AMT). CV for the paretic TA MEP amplitude and area did not vary with intensity. CV of MEP latency decreased with higher intensities for both muscles. CV of the silent period decreased with higher intensity for the non-paretic TA, but was in reverse for the paretic TA. Conclusion: We recommend a stimulus intensity of greater than 130% AMT to reduce variability for the non-paretic TA. The stimulus intensity did not affect the MEP variability of the paretic TA. Variability of MEPs is affected by intensity and side tested (paretic and non-paretic), suggesting careful selection of experimental parameters for testing.
Collapse
Affiliation(s)
- Anjali Sivaramakrishnan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +1-312-355-2517; Fax: +1-312-996-4583
| |
Collapse
|
11
|
Škarabot J, Ansdell P, Howatson G, Goodall S, Durbaba R. Corticospinal responses during passive shortening and lengthening of tibialis anterior and soleus in older compared to younger adults. Exp Physiol 2019; 105:419-426. [PMID: 31860743 DOI: 10.1113/ep088204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are there age-related differences in corticospinal responses whilst passively changing muscle length? What is the main finding and its importance? In contrast to young, older adults exhibited no modulation of corticospinal excitability in tibialis anterior during passive ankle movement. These data show impaired sensorimotor response in older adults during length changes of tibialis anterior, thus contributing to our understanding of age-related changes in sensorimotor control. ABSTRACT Corticospinal responses have been shown to increase and decrease with passive muscle shortening and lengthening, respectively, as a result of changes in muscle spindle afferent feedback. The ageing sensory system is accompanied by a number of alterations that might influence the processing and integration of sensory information. Consequently, corticospinal excitability might be modulated differently whilst changing muscle length. In 10 older adults (66 ± 4 years), corticospinal responses (MEP/Mmax ) were evoked in a static position, and during passive shortening and lengthening of soleus (SOL) and tibialis anterior (TA), and these data were compared to the re-analysed data pool of 18 younger adults (25 ± 4 years) published previously. Resting motor threshold was greater in SOL compared to TA (P < 0.001), but did not differ between young and older (P = 0.405). No differences were observed in MEP/Mmax between the static position, passive shortening or lengthening in SOL (young: all 0.02 ± 0.01; older: 0.05 ± 0.04, 0.03 ± 0.02 and 0.04 ± 0.01, respectively; P = 0.298), and responses were not dependent on age (P = 0.090). Conversely, corticospinal responses in TA were modulated differently between the age groups (P = 0.002), with greater MEP/Mmax during passive shortening (0.22 ± 0.12) compared to passive lengthening (0.13 ± 0.10) and static position (0.10 ± 0.05) in young (P < 0.001), but unchanged in older adults (0.19 ± 0.11, 0.22 ± 0.11 and 0.18 ± 0.07, respectively; P ≥ 0.867). The present experiment shows that length-dependent changes in corticospinal excitability in TA of the young are not evident in older adults. This suggests impaired sensorimotor response during muscle length changes in older age that might only be present in ankle flexors, but not extensors.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Paul Ansdell
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Rade Durbaba
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Alder G, Signal N, Olsen S, Taylor D. A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Front Neurosci 2019; 13:895. [PMID: 31507367 PMCID: PMC6718871 DOI: 10.3389/fnins.2019.00895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory interventions have the potential to influence neural plasticity and augment motor rehabilitation in people with stroke. Paired associative stimulation (PAS) involves the repeated pairing of single pulses of electrical stimulation to a peripheral nerve and single pulses of transcranial magnetic stimulation over the contralateral primary motor cortex. Efficacy of PAS in the lower limb of healthy and stroke populations has not been systematically appraised. Optimal protocols including stimulation parameter settings have yet to be determined. This systematic review (a) examines the efficacy of PAS on lower limb corticomotor excitability in healthy and stroke populations and (b) evaluates the stimulation parameters employed. Five databases were searched for randomized, non-randomized, and pre-post experimental studies evaluating lower limb PAS in healthy and stroke populations. Two independent reviewers identified eligible studies and assessed methodological quality using a modified Downs and Blacks Tool and the TMS Checklist. Intervention stimulation parameters and TMS measurement details were also extracted and compared. Twelve articles, comprising 24 experiments, met the inclusion criteria. Four articles evaluated PAS in people with stroke. Following a single session of PAS, 21 experiments reported modulation of corticomotor excitability, lasting up to 60 min; however, the research lacked methodological rigor. Intervention stimulation parameters were highly variable across experiments, and whilst these appeared to influence efficacy, variations in the intervention and outcome assessment methods hindered the ability to draw conclusions about optimal parameters. Lower limb PAS research requires further investigation before considering its translation into clinical practice. Eight key recommendations serve as guide for enhancing future research in the field.
Collapse
Affiliation(s)
- Gemma Alder
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Sharon Olsen
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
13
|
Effects of Repetitive Transcranial Magnetic Stimulation on Walking and Balance Function after Stroke: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil 2019; 97:773-781. [PMID: 29734235 DOI: 10.1097/phm.0000000000000948] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on walking and balance function in patients with stroke. DESIGN MEDLINE, EMBASE, CINAHL, PsycINFO, Web of Science, CENTRAL, and the Physiotherapy Evidence Database were comprehensively searched for randomized controlled trials published through March 2017 that investigated the effects of rTMS on lower limb function. Main outcomes included walking speed, balance function, motor function, and cortical excitability. RESULTS Nine studies were included. The meta-analysis revealed a significant effect of rTMS on walking speed (standardized mean difference, 0.64; 95% confidence interval [CI], 0.32-0.95), particularly ipsilesional stimulation (standardized mean difference, 0.80; 95% CI, 0.36-1.24). No significant effects were found for balance function (standardized mean difference, 0.10; 95% CI, -0.26 to 0.45), motor function (mean difference, 0.50, 95% CI: -0.68 to 1.68), or cortical excitability (motor-evoked potentials of the affected hemisphere: mean difference, 0.21 mV; 95% CI, -0.11 to 0.54; motor-evoked potentials of the unaffected hemisphere: mean difference, 0.09 mV; 95% CI, -0.16 to -0.02). CONCLUSION These results suggest that rTMS, particularly ipsilesional stimulation, significantly improves walking speed. Future studies with larger sample sizes and an adequate follow-up period are required to further understand the effects of rTMS on lower limb function and its relationship with changes in cortical excitability with the help of functional neuroimaging techniques. TO CLAIM CME CREDITS Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: 1) Understand the potential neurophysiologic effects of rTMS; 2) Appreciate the potential benefits of rTMS on stroke recovery; and 3) Identify indications for including rTMS in a stroke rehabilitation program. LEVEL Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 1.0 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Collapse
|
14
|
Exteroceptive suppression of voluntary activity in thenar muscles by cutaneous stimulation: How many trials should be averaged? Clin Neurol Neurosurg 2019; 184:105452. [PMID: 31377674 DOI: 10.1016/j.clineuro.2019.105452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To determine a minimum number of trials that preserve input-output (I-O) properties of duration and magnitude of exteroceptive EMG suppression (eEMGs). PATIENTS AND METHODS eEMGs was recorded in 16 healthy subjects from thenar muscles following index finger stimulation at 2.5, 5, 10, and 20 times sensory threshold (xST). Individual trials were rectified and incrementally averaged in blocks of 5, 10, 20, 30, 40, 50, and 60. To determine if the block size affects I-O properties, the goodness of curve fit parameter R2 for each block was compared to R2 of the global function across all blocks combined. RESULTS eEMGs was found in all subjects at 10xST and 20xST (100%, respectively) but less often at 5xST (63-75%) and 2.5xST (25-56%). A quadratic function best described both duration and magnitude of eEMGs. The quadratic R2 did not significantly differ between any individual block function (5-60) and the global function (eEMGs duration 0.647-0.704 vs 0.679; magnitude 0.525-0.602 vs 0.560, respectively). CONCLUSIONS Averaging 5 trials consistently shows eEMGs at and above 10xST. I-O properties of eEMGs do not differ whether 5 or up to 60 trials are averaged. Clinical studies of eEMGs in thenar muscles are possible with as few as 5 trials averaged.
Collapse
|
15
|
Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions. J Appl Physiol (1985) 2019; 126:1015-1031. [PMID: 30730812 DOI: 10.1152/japplphysiol.00987.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess differences in motor performance, as well as corticospinal and spinal responses to transcranial magnetic and percutaneous nerve stimulation, respectively, during submaximal isometric, shortening, and lengthening contractions between younger and older adults. Fifteen younger [26 yr (SD 4); 7 women, 8 men] and 14 older [64 yr (SD 3); 5 women, 9 men] adults performed isometric and shortening and lengthening dorsiflexion on an isokinetic dynamometer (5°/s) at 25% and 50% of contraction type-specific maximums. Motor evoked potentials (MEPs) and H reflexes were recorded at anatomical zero. Maximal dorsiflexor torque was greater during lengthening compared with shortening and isometric contractions ( P < 0.001) but was not age dependent ( P = 0.158). However, torque variability was greater in older compared with young adults ( P < 0.001). Background electromyographic (EMG) activity was greater in older compared with younger adults ( P < 0.005) and was contraction type dependent ( P < 0.001). As evoked responses are influenced by both the maximal level of excitation and background EMG activity, the responses were additionally normalized {[MEP/maximum M wave (Mmax)]/root-mean-square EMG activity (RMS) and [H reflex (H)/Mmax]/RMS}. (MEP/Mmax)/RMS and (H/Mmax)/RMS were similar across contraction types but were greater in young compared with older adults ( P < 0.001). Peripheral motor conduction times were prolonged in older adults ( P = 0.003), whereas peripheral sensory conduction times and central motor conduction times were not age dependent ( P ≥ 0.356). These data suggest that age-related changes throughout the central nervous system serve to accommodate contraction type-specific motor control. Moreover, a reduction in corticospinal responses and increased torque variability seem to occur without a significant reduction in maximal torque-producing capacity during older age. NEW & NOTEWORTHY This is the first study to have explored corticospinal and spinal responses with aging during submaximal contractions of different types (isometric, shortening, and lengthening) in lower limb musculature. It is demonstrated that despite preserved maximal torque production capacity corticospinal responses are reduced in older compared with younger adults across contraction types along with increased torque variability during dynamic contractions. This suggests that the age-related corticospinal changes serve to accommodate contraction type-specific motor control.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Water Research Group, School of Environmental Sciences and Development, Northwest University , Potchefstroom , South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| |
Collapse
|
16
|
Charalambous CC, Dean JC, Adkins DL, Hanlon CA, Bowden MG. Characterizing the corticomotor connectivity of the bilateral ankle muscles during rest and isometric contraction in healthy adults. J Electromyogr Kinesiol 2018; 41:9-18. [PMID: 29715530 DOI: 10.1016/j.jelekin.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
The investigation of the corticomotor connectivity (CMC) to leg muscles is an emerging research area, and establishing reliability of measures is critical. This study examined the measurement reliability and the differences between bilateral soleus (SOL) and tibialis anterior (TA) CMC in 21 neurologically intact adults. Using single pulse transcranial magnetic stimulation (TMS), each muscle's CMC was assessed twice (7 ± 2 days apart) during rest and active conditions. CMC was quantified using a standardized battery of eight measures (4/condition): motor threshold during resting (RMT), motor evoked potential amplitude and latency (raw and normalized to height) in both conditions, contralateral silent period (CSP) during active. Using two reliability metrics (intraclass correlation coefficient and coefficient of variation of method error; good reliability: ≥0.75 and ≤15, respectively) and repeated-measures ANOVA, we investigated the reliability and Muscle X Body Side interaction. For both muscles, RMT, resting raw and normalized latencies, and active raw latency demonstrated good reliability, while CSP had good reliability only for TA. Amplitude did not demonstrate good reliability for both muscles. SOL CMC was significantly different from TA CMC for all measures but CSP; body side had no significant effect. Therefore, only certain measures may reliably quantify SOL and TA CMC while different CMC (except CSP) between SOL and TA suggests dissimilar corticospinal drive to each muscle regardless of the side.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, New York University School of Medicine, New York, NY, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Jesse C Dean
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna L Adkins
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Colleen A Hanlon
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Mark G Bowden
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
17
|
Doguet V, Nosaka K, Guével A, Thickbroom G, Ishimura K, Jubeau M. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors. Exp Physiol 2017; 102:1513-1523. [DOI: 10.1113/ep086480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Valentin Doguet
- Laboratory ‘Movement, Interactions, Performance’, EA 4334, Faculty of Sport Sciences; University of Nantes; Nantes France
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Arnaud Guével
- Laboratory ‘Movement, Interactions, Performance’, EA 4334, Faculty of Sport Sciences; University of Nantes; Nantes France
| | - Gary Thickbroom
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Kazuhiro Ishimura
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences; Edith Cowan University; Joondalup Western Australia Australia
| | - Marc Jubeau
- Laboratory ‘Movement, Interactions, Performance’, EA 4334, Faculty of Sport Sciences; University of Nantes; Nantes France
| |
Collapse
|
18
|
Beaulieu LD, Massé-Alarie H, Ribot-Ciscar E, Schneider C. Reliability of lower limb transcranial magnetic stimulation outcomes in the ipsi- and contralesional hemispheres of adults with chronic stroke. Clin Neurophysiol 2017; 128:1290-1298. [DOI: 10.1016/j.clinph.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 12/30/2022]
|
19
|
Bashir S, Yoo WK, Kim HS, Lim HS, Rotenberg A, Abu Jamea A. The Number of Pulses Needed to Measure Corticospinal Excitability by Navigated Transcranial Magnetic Stimulation: Eyes Open vs. Close Condition. Front Hum Neurosci 2017; 11:121. [PMID: 28377705 PMCID: PMC5359302 DOI: 10.3389/fnhum.2017.00121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022] Open
Abstract
Objective: Motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) enable measures of the corticospinal excitability (CSE). However the reliability of TMS-derived CSE measures is suboptimal due to appreciable pulse-to-pulse MEP amplitude variability. We thus calculated how many TMS-derived MEPs will be needed to obtain a reliable CSE measure in awake adult subjects, in the eyes open (EO) and eyes closed (EC) conditions. Methods: Twenty healthy adults (70% male) received 40 consecutive navigated TMS pulses (120% resting motor threshold, RMT) in the EO or EC conditions on two separate days in randomized order. Results: For either the EO or EC condition, the probability that the 95% confidence interval (CI) derived from consecutive MEP amplitude measured included the true CSE, increased when the number of consecutive stimuli increased (EO: p = 0.05; EC: p = 0.001). No significant effect of RMT, Mini-Mental State Examination (MMSE) score, or gender on the CSE estimates was identified. At least 34 consecutive stimuli were required to obtain a most reliable CSE estimate in the EO condition and 31 in the EC condition. Conclusion: Our findings indicate that >30 consecutive MEPs may be necessary in order to obtain a CSE measure in healthy adults.
Collapse
Affiliation(s)
- Shahid Bashir
- Department of Physiology, Faculty of Medicine, King Saud UniversityRiyadh, Saudi Arabia
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation Medicine, Hallym University Sacred Heart HospitalSeoul, South Korea
- Hallym Institute for Translational Genomics and Bioinformatics, Hallym University College of MedicineSeoul, South Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Ilsan HospitalSeoul, South Korea
| | - Hyun Sun Lim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Ilsan HospitalSeoul, South Korea
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children’s HospitalBoston, MA, USA
| | - Abdullah Abu Jamea
- Department of Radiology and Medical Imaging, College of Medicine, King Saud UniversityRiyadh, Saudi Arabia
| |
Collapse
|
20
|
Cavaleri R, Schabrun SM, Chipchase LS. The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis. Syst Rev 2017; 6:48. [PMID: 28264713 PMCID: PMC5340029 DOI: 10.1186/s13643-017-0440-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive means by which to assess the structure and function of the central nervous system. Current practices involve the administration of multiple stimuli over target areas of a participant's scalp. Decreasing the number of stimuli delivered during TMS assessments would improve time efficiency and decrease participant demand. However, doing so may also compromise the within- or between-session reliability of the technique. The aim of this review was therefore to determine the minimum number of TMS stimuli required to reliably measure (i) corticomotor excitability of a target muscle at a single cranial site and (ii) topography of the primary motor cortical representation of a target muscle across multiple cranial sites. METHODS Database searches were performed to identify diagnostic reliability studies published before May 2015. Two independent reviewers extracted data from studies employing single-pulse TMS to measure (i) the corticomotor excitability at a single cranial site or (ii) the topographic cortical organisation of a target muscle across a number of cranial sites. Outcome measures included motor evoked potential amplitude, map volume, number of active map sites and location of the map centre of gravity. RESULTS Only studies comparing the reliability of varying numbers of stimuli delivered to a single cranial site were identified. Five was the lowest number of stimuli that could be delivered to produce excellent within-session motor evoked potential (MEP) amplitude reliability (intraclass correlation coefficient (ICC) = 0.92, 95% CI 0.87 to 0.95). Ten stimuli were required to achieve consistent between-session MEP amplitudes among healthy participants (ICC = 0.89, 95% CI 0.76 to 0.95). However, between-session reliability was influenced by participant characteristics, intersession intervals and target musculature. CONCLUSIONS Further exploration of the reliability of multi-site TMS mapping is required. Five stimuli produce reliable MEP recordings during single-site TMS investigations involving one session. For single-site analyses involving multiple sessions, ten stimuli are recommended when investigating corticomotor excitability in healthy participants or the upper limb musculature. However, greater numbers of stimuli may be required for clinical populations or assessments involving the lower limb. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42015024579.
Collapse
Affiliation(s)
- Rocco Cavaleri
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Siobhan M Schabrun
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Lucy S Chipchase
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Sydney, NSW, 2560, Australia.
| |
Collapse
|
21
|
Determining the Optimal Number of Stimuli per Cranial Site during Transcranial Magnetic Stimulation Mapping. NEUROSCIENCE JOURNAL 2017; 2017:6328569. [PMID: 28331848 PMCID: PMC5346381 DOI: 10.1155/2017/6328569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 01/21/2023]
Abstract
The delivery of five stimuli to each cranial site is recommended during transcranial magnetic stimulation (TMS) mapping. However, this time-consuming practice restricts the use of TMS mapping beyond the research environment. While reducing the number of stimuli administered to each cranial site may improve efficiency and decrease physiological demand, doing so may also compromise the procedure's validity. Therefore, the aim of this study was to determine the minimum number of stimuli per cranial site required to obtain valid outcomes during TMS mapping. Map volume and centre of gravity (CoG) recordings obtained using five stimuli per cranial site were retrospectively compared to those obtained using one, two, three, and four stimuli per cranial site. For CoG longitude, one stimulus per cranial site produced valid recordings (ICC = 0.91, 95% CI 0.82 to 0.95). However, this outcome is rarely explored in isolation. As two stimuli per cranial site were required to obtain valid CoG latitude (ICC = 0.99, 95% CI 0.99 to 0.99) and map volume (ICC = 0.99, 95% CI 0.99 to 0.99) recordings, it is recommended that a minimum of two stimuli be delivered to each cranial site during TMS mapping in order to obtain valid outcomes.
Collapse
|
22
|
Beaulieu LD, Flamand VH, Massé-Alarie H, Schneider C. Reliability and minimal detectable change of transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimul 2016; 10:196-213. [PMID: 28031148 DOI: 10.1016/j.brs.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used worldwide for noninvasively testing human motor systems but its psychometric properties remain unclear. OBJECTIVE/HYPOTHESIS This work systematically reviewed studies on the reliability of TMS outcome measures of primary motor cortex (M1) excitability in healthy humans, with an emphasis on retrieving minimal detectable changes (MDC). METHODS The literature search was performed in three databases (Pubmed, CINAHL, Embase) up to June 2016 and additional studies were identified through hand-searching. French and English-written studies had to report the reliability of at least one TMS outcome of M1 in healthy humans. Two independent raters assessed the eligibility of potential studies, and eligible articles were reviewed using a structured data extraction form and two critical appraisal scales. RESULTS A total of 34 articles met the selection criteria, which tested the intra- and inter-rater reliability (relative and absolute subtypes) of several TMS outcomes. However, our critical appraisal of studies raised concerns on the applicability and generalization of results because of methodological and statistical pitfalls. Importantly, MDC were generally large and likely affected by various factors, especially time elapsed between sessions and number of stimuli delivered. CONCLUSIONS This systematic review underlined that the evidence about the reliability of TMS outcomes is scarce and affected by several methodological and statistical problems. Data and knowledge of the review provided however relevant insights on the ability of TMS outcomes to track plastic changes within an individual or within a group, and recommendations were made to level up the quality of future work in the field.
Collapse
Affiliation(s)
- Louis-David Beaulieu
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada.
| | - Véronique H Flamand
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada; Center for Interdisciplinary Research in Rehabilitation and Social Integration, Quebec City, Qc, Canada
| | - Hugo Massé-Alarie
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada
| | - Cyril Schneider
- Clinical Neuroscience and Neurostimulation Laboratory, CHU de Québec Research Center - Neuroscience Division, Quebec City, Qc, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Qc, Canada
| |
Collapse
|
23
|
Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs. Eur J Appl Physiol 2016; 116:2197-2214. [DOI: 10.1007/s00421-016-3475-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
|
24
|
Troni W, Melillo F, Bertolotto A, Malucchi S, Capobianco M, Sperli F, Di Sapio A. Normative Values for Intertrial Variability of Motor Responses to Nerve Root and Transcranial Stimulation: A Condition for Follow-Up Studies in Individual Subjects. PLoS One 2016; 11:e0155268. [PMID: 27182973 PMCID: PMC4868303 DOI: 10.1371/journal.pone.0155268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Intertrial variability (ITV) of motor responses to peripheral (CMAP) and transcranial (MEP) stimulation prevents their use in follow-up studies. Our purpose was to develop strategies to reduce and measure CMAP and MEP ITV to guide long-term monitoring of conduction slowing and conduction failure of peripheral and central motor pathway in the individual patient. Methods Maximal compound muscle action potentials to High Voltage Electrical Stimulation (HVES) of lumbo-sacral nerve roots (r-CMAP) and activated, averaged motor evoked potentials (MEPs) to Transcranial Magnetic Stimulation (TMS) using double cone coil were recorded from 10 proximal and distal muscle districts of lower limbs. The procedure was repeated twice, 1–2 days apart, in 30 subjects, including healthy volunteers and clinically stable multiple sclerosis patients, using constant stimulating and recording sites and adopting a standardized procedure of voluntary activation. ITV for latency and area indexes and for the ratio between MEP and r-CMAP areas (a-Ratio) was expressed as Relative Intertrial Variation (RIV, 5th-95th percentile). As an inverse correlation between the size of area and ITV was found, raw ITV values were normalized as a function of area to make them comparable with one another. Results All RIV values for latencies were significantly below the optimum threshold of ± 10%, with the exception of r-CMAP latencies recorded from Vastus Lateralis muscle. RIVs for a-Ratio, the most important index of central conduction failure, ranged from a maximum of -25.3% to +32.2% (Vastus Medialis) to a minimum of -15.0% to + 17.4% (Flexor Hallucis Brevis). Conclusions The described procedure represents an effort to lower as much as possible variability of motor responses in serial recording; the reported ITV normative values are the necessary premise to detect significant changes of motor conduction slowing and failure in the individual patient in follow-up studies.
Collapse
Affiliation(s)
- Walter Troni
- Service of Neurology and Clinical Neurophysiology, Clinica Fornaca di Sessant, Turin, Italy
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
- * E-mail:
| | - Federica Melillo
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Antonio Bertolotto
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Simona Malucchi
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Marco Capobianco
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Francesca Sperli
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Alessia Di Sapio
- 2nd Department of Neurology, Multiple Sclerosis Regional Centre, San Luigi Gonzaga Hospital, Orbassano, Italy
| |
Collapse
|
25
|
Park J, Chang WH, Cho JW, Youn J, Kim YK, Kim SW, Kim YH. Usefulness of Transcranial Magnetic Stimulation to Assess Motor Function in Patients With Parkinsonism. Ann Rehabil Med 2016; 40:81-7. [PMID: 26949673 PMCID: PMC4775762 DOI: 10.5535/arm.2016.40.1.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the clinical significance of upper and lower extremity transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) in patients with parkinsonism. Methods Twenty patients (14 men, 6 women; mean age 70.5±9.1 years) suffering from parkinsonism were included in this study. All participants underwent single-pulse TMS session to assess the corticospinal excitability of the upper and lower extremity motor cortex. The resting motor threshold (RMT) was defined as the lowest stimulus intensity able to evoke MEPs of an at least 50 µV peak-to-peak amplitude in 5 of 10 consecutive trials. Five sweeps of MEPs at 120% of the RMT were performed, and the mean amplitude and latency of the MEPs were calculated. Patients were also assessed using the Unified Parkinson's Disease Rating Scale part III (UPDRS-III) and the 5-meter Timed Up and Go (5m-TUG) test. Results There was a significant positive correlation between the RMTs of MEPs in the upper and lower extremities (r=0.612, p=0.004) and between the amplitude of MEPs in the upper and lower extremities (r=0.579, p=0.007). The RMT of upper extremity MEPs showed a significant negative relationship with the UPDRS-III score (r=–0.516, p=0.020). In addition, RMTs of lower extremity MEPs exhibited a negative relationship with the UPDRS-III score, but the association was not statistically significant (r=–406, p=0.075). Conclusion These results indicated that the RMT of MEPs reflect the severity of motor dysfunction in patients with parkinsonism. MEP is a potential quantitative, electrodiagnostic method to assess motor function in patients with parkinsonism.
Collapse
Affiliation(s)
- Jaechan Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Kwan Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Woong Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.; Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.; Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
26
|
Lin LF, Huang YZ, Hu CJ, Liou TH, Chang KH, Lin YN. Using surface electromyography to guide the activation during motor-evoked potential measurement: An activation control method for follow-up studies. Brain Inj 2015; 29:1661-6. [DOI: 10.3109/02699052.2015.1075150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
O'Leary TJ, Morris MG, Collett J, Howells K. Reliability of single and paired-pulse transcranial magnetic stimulation in the vastus lateralis muscle. Muscle Nerve 2015; 52:605-15. [PMID: 25620286 DOI: 10.1002/mus.24584] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is an important tool to examine neurological pathologies, movement disorders, and central nervous system responses to exercise, fatigue, and training. The reliability has not been examined in a functional locomotor knee extensor muscle. METHODS Within- (n = 10) and between-day (n = 16) reliability of single and paired-paired pulse TMS was examined from the active vastus lateralis. RESULTS Motor evoked potential amplitude and cortical silent period duration showed good within- and between-day reliability (intraclass correlation coefficient [ICC] ≥ 0.82). Short- and long-interval intracortical inhibition (SICI and LICI, respectively) demonstrated good within-day reliability (ICC ≥ 0.84). SICI had moderate to good between-day reliability (ICC ≥ 0.67), but LICI was not repeatable (ICC = 0.47). Intracortical facilitation showed moderate to good within-day reliability (ICC ≥ 0.73) but poor to moderate reliability between days (ICC ≥ 0.51). CONCLUSIONS TMS can reliably assess cortical function in a knee extensor muscle. This may be useful to examine neurological disorders that affect locomotion.
Collapse
Affiliation(s)
- Thomas J O'Leary
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, Oxon, OX3 0BP, United Kingdom
| | - Martyn G Morris
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, Oxon, OX3 0BP, United Kingdom
| | - Johnny Collett
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, Oxon, OX3 0BP, United Kingdom
| | - Ken Howells
- Department of Sport and Health Sciences, Oxford Brookes University, Gipsy Lane, Oxford, Oxon, OX3 0BP, United Kingdom
| |
Collapse
|
28
|
Beaulieu LD, Massé-Alarie H, Brouwer B, Schneider C. Noninvasive neurostimulation in chronic stroke: a double-blind randomized sham-controlled testing of clinical and corticomotor effects. Top Stroke Rehabil 2015; 22:8-17. [PMID: 25776116 DOI: 10.1179/1074935714z.0000000032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Repetitive peripheral magnetic stimulation (RPMS) is a painless and noninvasive method to produce afferents via the depolarization of the peripheral nervous system. A few studies tested RPMS after-effects on cerebral plasticity and motor recovery in stroke individuals, but evidences remain limited. OBJECTIVES This study aimed to explore whether RPMS could mediate improvements in corticomotor and clinical outcomes associated with ankle impairments in chronic stroke. METHODS Eighteen subjects with chronic stroke were randomly allocated to RPMS or sham group and compared to 14 healthy subjects. Stimulation was applied over the paretic tibialis anterior (TA). Ankle impairments on the paretic side and ipsilesional TA cortical motor representation were tested clinically and by transcranial magnetic stimulation (TMS), respectively. RESULTS In the RPMS group, ankle dorsiflexion mobility and maximal isometric strength increased and resistance to plantar flexor stretch decreased. The magnitude of change seemed to be related to cortical and corticospinal integrity. Sham stimulation yielded no effect. Changes in TMS outcome and their relationships with clinical improvements were limited. CONCLUSIONS RPMS improved ankle impairments in chronic stroke likely by a dynamic influence of sensory inputs on synaptic plasticity. The neurophysiological mechanisms potentially underlying the clinical effects are unclear. More studies are warranted to test the spinal and hemispheric changes responsible for the clinical improvements with emphasis on circuits spared by the lesion.
Collapse
|
29
|
Cuypers K, Thijs H, Meesen RLJ. Optimization of the transcranial magnetic stimulation protocol by defining a reliable estimate for corticospinal excitability. PLoS One 2014; 9:e86380. [PMID: 24475111 PMCID: PMC3901672 DOI: 10.1371/journal.pone.0086380] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The goal of this study was to optimize the transcranial magnetic stimulation (TMS) protocol for acquiring a reliable estimate of corticospinal excitability (CSE) using single-pulse TMS. Moreover, the minimal number of stimuli required to obtain a reliable estimate of CSE was investigated. In addition, the effect of two frequently used stimulation intensities [110% relative to the resting motor threshold (rMT) and 120% rMT] and gender was evaluated. Thirty-six healthy young subjects (18 males and 18 females) participated in a double-blind crossover procedure. They received 2 blocks of 40 consecutive TMS stimuli at either 110% rMT or 120% rMT in a randomized order. Based upon our data, we advise that at least 30 consecutive stimuli are required to obtain the most reliable estimate for CSE. Stimulation intensity and gender had no significant influence on CSE estimation. In addition, our results revealed that for subjects with a higher rMT, fewer consecutive stimuli were required to reach a stable estimate of CSE. The current findings can be used to optimize the design of similar TMS experiments.
Collapse
Affiliation(s)
- Koen Cuypers
- REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Motor Control Laboratory, Research Center for Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, K.U. Leuven, Heverlee, Belgium
| | - Herbert Thijs
- I-BioStat, Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- I-BioStat, Interuniversity Institute for Biostatistics and statistical Bioinformatics, Leuven University, Leuven, Belgium
| | - Raf L. J. Meesen
- REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
- Motor Control Laboratory, Research Center for Movement Control and Neuroplasticity, Department of Biomedical Kinesiology, Group Biomedical Sciences, K.U. Leuven, Heverlee, Belgium
- * E-mail:
| |
Collapse
|