1
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Boré A, Descoteaux M, Lepage JF, Théoret H. Multimodal response-predictor analysis for three non-invasive brain stimulation protocols. Brain Res 2024; 1850:149372. [PMID: 39645141 DOI: 10.1016/j.brainres.2024.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Non-invasive brain stimulation (NIBS) methods such as paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are used to modulate cortical excitability and reduce symptoms in a variety of psychiatric disorders. Recent studies have shown significant inter-individual variability in the physiological response to these techniques when they are applied over the hand representation of primary motor cortex (M1hand). The goal of the present study was to identify neurophysiological, neuroanatomical, and neurochemical baseline characteristics that may predict response to commonly used NIBS protocols using data from a previously published study (Therrien-Blanchet et al., 2023). To this end, PAS, anodal tDCS, and 20-Hz tACS were administered to healthy participants in a repeated measures design. Pre/Post differences in transcranial magnetic stimulation-induced input-output curves were used to quantify changes in corticospinal excitability. Primary predictors were late I-wave latency, cortical thickness (CT) of M1hand, and fractional anisotropy of the corticospinal tract (CSThand) originating from M1hand. Secondary exploratory analysis was performed with CT in areas outside motor cortex, diffusion MRI (dMRI) metrics of the CSThand, magnetic resonance spectroscopy measurements of GABA, glutamate, and n-acetyl aspartate of M1hand, baseline corticospinal excitability, and cranial circumference. Multiple regression analysis showed that none of the primary variables predicted intervention outcome for any of the NIBS protocols. Exploratory analysis revealed no significant correlation between predictor variables and PAS outcome. tDCS and tACS were significantly correlated with some baseline measures. These data suggest that modulation of cortical excitability following several NIBS protocols may not be easily predicted by baseline characteristics, underscoring the need for a better understanding of their mechanism of action. Significant exploratory associations need to be confirmed in larger samples and confirmatory designs.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | | | - Amira Merabtine
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Emelie Boucher
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| | - Lydia Helena Hofmann
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Département de Psychologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Zhu G, Wang S, Zhang G, Zhang Y, Huang Z, Tan X, Chen Y, Sun H, Xu D. High-frequency magnetic paired associated stimulation promotes motor function recovery in ischemic stroke patients: a study protocol for single-center, sham stimulation randomized controlled trials (H2MPAS). Trials 2024; 25:618. [PMID: 39300455 PMCID: PMC11414031 DOI: 10.1186/s13063-024-08451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Numerous studies have validated the clinical effectiveness of electromagnetic pairing-associated stimulation. Building upon this foundation, we have developed a novel approach involving high-frequency magnetic paired-associated stimulation, aiming to enhance clinical applicability and potentially improve efficacy. However, the clinical effectiveness of this approach remains unclear. Our objective is to demonstrate the therapeutic efficacy of this novel approach by employing high-frequency pairing to intervene in patients experiencing motor dysfunction following a stroke. METHODS This is a single-center, single-blind, sham stimulation controlled clinical trial involving patients with upper limb motor dysfunction post-stroke. The intervention utilizes paired magnetic stimulation, combining peripheral and central magnetic stimulation, in patients with Brunnstrom stage III-V stroke lasting from 3 months to 1 year. Evaluation of patients' upper limb motor function occurred before the intervention and after 3 weeks of intervention. Follow-up visits will be conducted after 5 weeks and 3 months of intervention. The primary outcome measure is the Action Research Arm Test, with secondary measures including the Fugl-Meyer Assessment-upper, Modified Barthel Index, modified Tardieu scale, functional near-infrared spectroscopy, and neuroelectrophysiology. DISCUSSION The high-frequency magnetic paired associative stimulation used in this study combined high-frequency magnetic stimulation with paired stimulation, potentially facilitating both cortical excitation through high-frequency stimulation and specific circuit enhancement through paired stimulation. As dual-coil magnetic stimulation equipment becomes increasingly popular, magnetic-magnetic paired associated stimulation may offer patients improved clinical outcomes at reduced costs. TRIAL REGISTRATION Chinese Clinical Trial Registry,ChiCTR2400083363. Registered on 23 April 2024.
Collapse
Affiliation(s)
- Guangyue Zhu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuping Wang
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guodong Zhang
- Department of Rehabilitation, Nanjing University of Traditional Chinese Medicine Affiliated Suzhou Hospital of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zhang
- Department of Neurology, Tongji Hospital Affiliated to Tongji University, Shanghai, 200437, China
| | - Zhexue Huang
- Department of Neurology, Tongji Hospital Affiliated to Tongji University, Shanghai, 200437, China
| | - Xiaoshun Tan
- Department of Neurology, Tongji Hospital Affiliated to Tongji University, Shanghai, 200437, China
| | - Yuhui Chen
- Department of Neurology, Tongji Hospital Affiliated to Tongji University, Shanghai, 200437, China
| | - Hui Sun
- Department of Neurology, Tongji Hospital Affiliated to Tongji University, Shanghai, 200437, China.
| | - Dongsheng Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Lanza G, Mogavero MP, Lanuzza B, Tripodi M, Cantone M, Pennisi M, Bella R, Ferri R. A Topical Review on Transcranial Magnetic Stimulation in Restless Legs Syndrome. CURRENT SLEEP MEDICINE REPORTS 2024; 10:207-216. [DOI: 10.1007/s40675-024-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 07/26/2024]
|
4
|
Kanig C, Osnabruegge M, Schwitzgebel F, Litschel K, Seiberl W, Mack W, Schoisswohl S, Schecklmann M. Retest reliability of repetitive transcranial magnetic stimulation over the healthy human motor cortex: a systematic review and meta-analysis. Front Hum Neurosci 2023; 17:1237713. [PMID: 37771347 PMCID: PMC10525715 DOI: 10.3389/fnhum.2023.1237713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/08/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Repetitive transcranial magnetic stimulation (rTMS) is used to induce long-lasting changes (aftereffects) in cortical excitability, which are often measured via single-pulse TMS (spTMS) over the motor cortex eliciting motor-evoked potentials (MEPs). rTMS includes various protocols, such as theta-burst stimulation (TBS), paired associative stimulation (PAS), and continuous rTMS with a fixed frequency. Nevertheless, subsequent aftereffects of rTMS are variable and seem to fail repeatability. We aimed to summarize standard rTMS procedures regarding their test-retest reliability. Hereby, we considered influencing factors such as the methodological quality of experiments and publication bias. Methods We conducted a literature search via PubMed in March 2023. The inclusion criteria were the application of rTMS, TBS, or PAS at least twice over the motor cortex of healthy subjects with measurements of MEPs via spTMS as a dependent variable. The exclusion criteria were measurements derived from the non-stimulated hemisphere, of non-hand muscles, and by electroencephalography only. We extracted test-retest reliability measures and aftereffects from the eligible studies. With the Rosenthal fail-safe N, funnel plot, and asymmetry test, we examined the publication bias and accounted for influential factors such as the methodological quality of experiments measured with a standardized checklist. Results A total of 15 studies that investigated test-retest reliability of rTMS protocols in a total of 291 subjects were identified. Reliability measures, i.e., Pearson's r and intraclass correlation coefficient (ICC) applicable from nine studies, were mainly in the small to moderate range with two experiments indicating good reliability of 20 Hz rTMS (r = 0.543) and iTBS (r = 0.55). The aftereffects of rTMS procedures seem to follow the heuristics of respective inhibition or facilitation, depending on the protocols' frequency, and application pattern. There was no indication of publication bias and the influence of methodological quality or other factors on the reliability of rTMS. Conclusion The reliability of rTMS appears to be in the small to moderate range overall. Due to a limited number of studies reporting test-retest reliability values and heterogeneity of dependent measures, we could not provide generalizable results. We could not identify any protocol as superior to the others.
Collapse
Affiliation(s)
- Carolina Kanig
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mirja Osnabruegge
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Florian Schwitzgebel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Karsten Litschel
- Department of Electrical Engineering, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Seiberl
- Institute of Sport Science, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Wolfgang Mack
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Stefan Schoisswohl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Lepage JF, Théoret H. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Cereb Cortex 2023:7030623. [PMID: 36749004 DOI: 10.1093/cercor/bhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Amira Merabtine
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emelie Boucher
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lydia Helena Hofmann
- Department of Psychology and Neuroscience, Maastricht University, Maastricht 6229, The Netherlands
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Facilitation of Motor Evoked Potentials in Response to a Modified 30 Hz Intermittent Theta-Burst Stimulation Protocol in Healthy Adults. Brain Sci 2021; 11:brainsci11121640. [PMID: 34942942 PMCID: PMC8699605 DOI: 10.3390/brainsci11121640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
Theta-burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) developed to induce neuroplasticity. TBS usually consists of 50 Hz bursts at 5 Hz intervals. It can facilitate motor evoked potentials (MEPs) when applied intermittently, although this effect can vary between individuals. Here, we sought to determine whether a modified version of intermittent TBS (iTBS) consisting of 30 Hz bursts repeated at 6 Hz intervals would lead to lasting MEP facilitation. We also investigated whether recruitment of early and late indirect waves (I-waves) would predict individual responses to 30 Hz iTBS. Participants (n = 19) underwent single-pulse TMS to assess MEP amplitude at baseline and variations in MEP latency in response to anterior-posterior, posterior-anterior, and latero-medial stimulation. Then, 30 Hz iTBS was administered, and MEP amplitude was reassessed at 5-, 20- and 45-min. Post iTBS, most participants (13/19) exhibited MEP facilitation, with significant effects detected at 20- and 45-min. Contrary to previous evidence, recruitment of early I-waves predicted facilitation to 30 Hz iTBS. These observations suggest that 30 Hz/6 Hz iTBS is effective in inducing lasting facilitation in corticospinal excitability and may offer an alternative to the standard 50 Hz/5 Hz protocol.
Collapse
|
7
|
Kishore A, James P, Popa T, Thejaus A, Rajeswari P, Sarma G, Krishnan S, Meunier S. Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clin Neurophysiol 2021; 132:2493-2502. [PMID: 34454278 DOI: 10.1016/j.clinph.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The extent of plastic responses of motor cortex (M1) to paired associative stimulation (PAS) varies among healthy subjects. Continuous theta-burst stimulation (cTBS) of cerebellum enhances the mean PAS-induced plasticity in groups of healthy subjects. We tested whether the initial status of Responder or Non -Responder to PAS, influenced the effect of cerebellar stimulation on PAS-induced plasticity. METHODS We assessed in 19 young healthy volunteers (8 Responders, 11 Non-Responders to PAS), how cTBS and iTBS (intermittent TBS) applied to the cerebellum before a PAS protocol influenced the plastic responsiveness of M1 to PAS. We tested whether the PAS-induced plastic effects could be depotentiated by a short cTBS protocol applied to M1 shortly after PAS and whether cerebellar stimulation influenced GABA-ergic intracortical inhibition and M1 plasticity in parallel. RESULTS Cerebellar cTBS restored the M1 response to PAS in Non-Responders while cerebellar iTBS turned the potentiating response to PAS to a depressive response in both groups. The depotentiation protocol abolished both responses. CONCLUSION Non-Responder status to PAS is a state of M1 amenable to bidirectional plastic modulation when primed by a change in cerebello-thalamic drive. SIGNIFICANCE The meaning of lack of responsiveness to certain protocols probing plasticity should be reconsidered.
Collapse
Affiliation(s)
- Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India.
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Arun Thejaus
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Parvathy Rajeswari
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelleépinière, ICM, F-75013 Paris, France
| |
Collapse
|
8
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
9
|
Guidali G, Roncoroni C, Bolognini N. Paired associative stimulations: Novel tools for interacting with sensory and motor cortical plasticity. Behav Brain Res 2021; 414:113484. [PMID: 34302877 DOI: 10.1016/j.bbr.2021.113484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
In the early 2000s, a novel non-invasive brain stimulation protocol, the paired associative stimulation (PAS), was introduced, allowing to induce and investigate Hebbian associative plasticity within the humans' motor system, with patterns resembling spike-timing-dependent plasticity properties found in cellular models. Since this evidence, PAS efficacy has been proved in healthy, and to a lesser extent, in clinical populations. Recently, novel 'modified' protocols targeting sensorimotor and crossmodal networks appeared in the literature. In the present work, we have reviewed recent advances using these 'modified' PAS protocols targeting sensory and motor cortical networks. To better categorize them, we propose a novel classification according to the nature of the peripheral and cortical stimulations (i.e., within-system, cross-systems, and cortico-cortical PAS). For each protocol of the categories mentioned above, we describe and discuss their main features, how they have been used to study and promote brain plasticity, and their advantages and disadvantages. Overall, current evidence suggests that these novel non-invasive brain stimulation protocols represent very promising tools to study the plastic properties of humans' sensorimotor and crossmodal networks, both in the healthy and in the damaged central nervous system.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Camilla Roncoroni
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy; Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
10
|
Inhibitory Effect of Apomorphine on Focal and Nonfocal Plasticity in the Human Motor Cortex. Pharmaceutics 2021; 13:pharmaceutics13050718. [PMID: 34068263 PMCID: PMC8153161 DOI: 10.3390/pharmaceutics13050718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
Dopamine is crucial for neuroplasticity, which is considered to be the neurophysiological foundation of learning and memory. The specific effect of dopamine on plasticity such as long-term potentiation (LTP) and long-term depression (LTD) is determined by receptor subtype specificity, concentration level, and the kind of plasticity induction technique. In healthy human subjects, the dopamine precursor levodopa (L-DOPA) exerts a dosage-dependent non-linear effect on motor cortex plasticity. Low and high dosage L-DOPA impaired or abolished plasticity, while medium-dose preserved and reversed plasticity in previous studies. Similar dosage-dependent effects were also observed for selective D1-like and D2-like receptor activation that favor excitatory and inhibitory plasticity, respectively. However, such a dosage-dependent effect has not been explored for a nonselective dopamine agonist such as apomorphine in humans. To this aim, nonfocal and focal motor cortex plasticity induction using paired associative stimulation (PAS) and transcranial direct current stimulation (tDCS) were performed respectively in healthy participants under 0.1, 0.2, 0.3 mg apomorphine or placebo drug. Transcranial magnetic stimulation-elicited motor-evoked potentials were used to monitor motor cortical excitability alterations. We hypothesized that, similar to L-DOPA, apomorphine will affect motor cortex plasticity. The results showed that apomorphine with the applied dosages has an inhibitory effect for focal and nonfocal LTP-like and LTD-like plasticity, which was either abolished, diminished or reversed. The detrimental effect on plasticity induction under all dosages of apomorphine suggests a predominantly presynaptic mechanism of action of these dosages.
Collapse
|
11
|
Guidali G, Roncoroni C, Bolognini N. Modulating Frontal Networks' Timing-Dependent-Like Plasticity With Paired Associative Stimulation Protocols: Recent Advances and Future Perspectives. Front Hum Neurosci 2021; 15:658723. [PMID: 33967723 PMCID: PMC8100231 DOI: 10.3389/fnhum.2021.658723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Starting from the early 2000s, paired associative stimulation (PAS) protocols have been used in humans to study brain connectivity in motor and sensory networks by exploiting the intrinsic properties of timing-dependent cortical plasticity. In the last 10 years, PAS have also been developed to investigate the plastic properties of complex cerebral systems, such as the frontal ones, with promising results. In the present work, we review the most recent advances of this technique, focusing on protocols targeting frontal cortices to investigate connectivity and its plastic properties, subtending high-order cognitive functions like memory, decision-making, attentional, or emotional processing. Overall, current evidence reveals that PAS can be effectively used to assess, enhance or depress physiological connectivity within frontal networks in a timing-dependent way, in turn modulating cognitive processing in healthy and pathological conditions.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Camilla Roncoroni
- Department of Psychology, NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology, NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
12
|
Dai W, Nakagawa K, Nakajima T, Kanosue K. Determinants of Neural Plastic Changes Induced by Motor Practice. Front Hum Neurosci 2021; 15:613867. [PMID: 33584230 PMCID: PMC7875877 DOI: 10.3389/fnhum.2021.613867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
Short-term motor practice leads to plasticity in the primary motor cortex (M1). The purpose of this study is to investigate the factors that determine the increase in corticospinal tract (CST) excitability after motor practice, with special focus on two factors; “the level of muscle activity” and “the presence/absence of a goal of keeping the activity level constant.” Fifteen healthy subjects performed four types of rapid thumb adduction in separate sessions. In the “comfortable task” (C) and “forceful task” (F), the subjects adducted their thumb using comfortable and strong forces. In the “comfortable with a goal task” (CG) and “forceful with a goal task” (FG), subjects controlled the muscle activity at the same level as in the C and F, respectively, by adjusting the peak electromyographic amplitude within the target ranges. Paired associative stimulation (PAS), which combines peripheral nerve (median nerve) stimulation and transcranial magnetic stimulation (TMS), with an inter-stimulus interval of 25 ms (PAS25) was also done. Before and after the motor tasks and PAS25, TMS was applied to the M1. None of the four tasks showed any temporary changes in behavior, meaning no learning occurred. Motor-evoked potential (MEP) amplitude increased only after the FG and it exhibited a positive correlation with the MEP increase after PAS25, suggesting that FG and PAS25 share at least similar plasticity mechanisms in the M1. Resting motor threshold (RMT) decreased only after FG, suggesting that FG would also be associated with the membrane depolarization of M1 neurons. These results suggest task-dependent plasticity from the synergistic effect of forceful muscle activity and of setting a goal of keeping the activity level constant.
Collapse
Affiliation(s)
- Wen Dai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
13
|
Merchant SHI, Frangos E, Parker J, Bradson M, Wu T, Vial-Undurraga F, Leodori G, Bushnell MC, Horovitz SG, Hallett M, Popa T. The role of the inferior parietal lobule in writer's cramp. Brain 2021; 143:1766-1779. [PMID: 32428227 DOI: 10.1093/brain/awaa138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Humans have a distinguishing ability for fine motor control that is subserved by a highly evolved cortico-motor neuronal network. The acquisition of a particular motor skill involves a long series of practice movements, trial and error, adjustment and refinement. At the cortical level, this acquisition begins in the parieto-temporal sensory regions and is subsequently consolidated and stratified in the premotor-motor cortex. Task-specific dystonia can be viewed as a corruption or loss of motor control confined to a single motor skill. Using a multimodal experimental approach combining neuroimaging and non-invasive brain stimulation, we explored interactions between the principal nodes of the fine motor control network in patients with writer's cramp and healthy matched controls. Patients and healthy volunteers underwent clinical assessment, diffusion-weighted MRI for tractography, and functional MRI during a finger tapping task. Activation maps from the task-functional MRI scans were used for target selection and neuro-navigation of the transcranial magnetic stimulation. Single- and double-pulse TMS evaluation included measurement of the input-output recruitment curve, cortical silent period, and amplitude of the motor evoked potentials conditioned by cortico-cortical interactions between premotor ventral (PMv)-motor cortex (M1), anterior inferior parietal lobule (aIPL)-M1, and dorsal inferior parietal lobule (dIPL)-M1 before and after inducing a long term depression-like plastic change to dIPL node with continuous theta-burst transcranial magnetic stimulation in a randomized, sham-controlled design. Baseline dIPL-M1 and aIPL-M1 cortico-cortical interactions were facilitatory and inhibitory, respectively, in healthy volunteers, whereas the interactions were converse and significantly different in writer's cramp. Baseline PMv-M1 interactions were inhibitory and similar between the groups. The dIPL-PMv resting state functional connectivity was increased in patients compared to controls, but no differences in structural connectivity between the nodes were observed. Cortical silent period was significantly prolonged in writer's cramp. Making a long term depression-like plastic change to dIPL node transformed the aIPL-M1 interaction to inhibitory (similar to healthy volunteers) and cancelled the PMv-M1 inhibition only in the writer's cramp group. These findings suggest that the parietal multimodal sensory association region could have an aberrant downstream influence on the fine motor control network in writer's cramp, which could be artificially restored to its normal function.
Collapse
Affiliation(s)
- Shabbir Hussain I Merchant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Eleni Frangos
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Parker
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Megan Bradson
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Felipe Vial-Undurraga
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Giorgio Leodori
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,IRCCS Neuromed, Pozzilli, IS, Italy
| | - M C Bushnell
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Traian Popa
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| |
Collapse
|
14
|
Investigating the influence of paired-associative stimulation on multi-session skill acquisition and retention in older adults. Clin Neurophysiol 2020; 131:1497-1507. [DOI: 10.1016/j.clinph.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
|
15
|
Guidali G, Carneiro MI, Bolognini N. Paired Associative Stimulation drives the emergence of motor resonance. Brain Stimul 2020; 13:627-636. [DOI: 10.1016/j.brs.2020.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
|
16
|
Alokaily AO, Yarossi M, Fluet GG, Tunik E, Adamovich SV. The Effect of Movement Phase on the Contralaterally Coordinated Paired Associative Stimulation-Induced Excitability. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:3080-3083. [PMID: 30441045 DOI: 10.1109/embc.2018.8512931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Paired associative stimulation (PAS) has been shown to increase corticospinal excitability (CSE) providing a promising adjuvant therapeutic approach for stroke. Combining PAS with movement of the stimulated limb may further increase enhancement of CSE, however, individuals with moderate to severe stroke may not be able to engage in the necessary repetitive voluntary movements of the paretic limb. The objective of this study was to investigate the feasibility of contralaterally coordinated PAS (ccPAS) applied to the resting hand extensors during fast extension of the contralateral hand. A potential dependency of CSE modulation on the phase of the movement of the opposite hand was evaluated. Eleven participants each completed three session: PAS applied to the resting right hand during the preparation phase of the extension of the contralateral (left) hand; PAS applied during the execution phase of the left hand extension; and PAS applied with both hands at rest. Motor evoked potentials (MEPs) were evoked from the right extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) muscles prior and immediately after each session. PAS delivered during the muscle contraction of the left hand and PAS delivered at rest both increased the MEP amplitude in the right EDC. PAS delivered before the left hand movement onset led to a decrease in the MEP amplitude measured in the right EDC muscle. We conclude that PAS induced bidirectional changes in the amplitude of MEPs that were dependent on the phase of the movement of the opposite hand.
Collapse
|
17
|
Alder G, Signal N, Olsen S, Taylor D. A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Front Neurosci 2019; 13:895. [PMID: 31507367 PMCID: PMC6718871 DOI: 10.3389/fnins.2019.00895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Non-invasive neuromodulatory interventions have the potential to influence neural plasticity and augment motor rehabilitation in people with stroke. Paired associative stimulation (PAS) involves the repeated pairing of single pulses of electrical stimulation to a peripheral nerve and single pulses of transcranial magnetic stimulation over the contralateral primary motor cortex. Efficacy of PAS in the lower limb of healthy and stroke populations has not been systematically appraised. Optimal protocols including stimulation parameter settings have yet to be determined. This systematic review (a) examines the efficacy of PAS on lower limb corticomotor excitability in healthy and stroke populations and (b) evaluates the stimulation parameters employed. Five databases were searched for randomized, non-randomized, and pre-post experimental studies evaluating lower limb PAS in healthy and stroke populations. Two independent reviewers identified eligible studies and assessed methodological quality using a modified Downs and Blacks Tool and the TMS Checklist. Intervention stimulation parameters and TMS measurement details were also extracted and compared. Twelve articles, comprising 24 experiments, met the inclusion criteria. Four articles evaluated PAS in people with stroke. Following a single session of PAS, 21 experiments reported modulation of corticomotor excitability, lasting up to 60 min; however, the research lacked methodological rigor. Intervention stimulation parameters were highly variable across experiments, and whilst these appeared to influence efficacy, variations in the intervention and outcome assessment methods hindered the ability to draw conclusions about optimal parameters. Lower limb PAS research requires further investigation before considering its translation into clinical practice. Eight key recommendations serve as guide for enhancing future research in the field.
Collapse
Affiliation(s)
- Gemma Alder
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Nada Signal
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Sharon Olsen
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Denise Taylor
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
18
|
O'Connor MP, O'Donnell S. Implications of iterative communication for biological system performance. J Theor Biol 2018; 436:93-104. [PMID: 28987465 DOI: 10.1016/j.jtbi.2017.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
The performance of integrated biological systems can often be described by the behavior of component subunits: the proportion of subunits performing an activity, and the rate of recruitment to the activity, can be relevant to system performance. We develop a model for activation of subunits (receivers) to a task when activation requires repeated signals (iterative communication). The model predicts how system performance will be affected by the parameters of iterative communication. Receiver activation is influenced by the frequency of stimulation, by forgetting about past interactions, and by the number of stimuli needed to activate the receivers. These parameters, along with the probability of activated receivers returning to a de-activated state, modulate the system-wide time course of activation and the steady-state proportion of activated receivers. Parameters can interact to affect system-wide activation, and multiple parameter combinations can yield similar patterns of activation. Group performance is less variable at higher stimulation frequencies and in systems with greater numbers of receivers. Biological constraints on iterative communication, such as time and energy costs, may limit the parameter values that are feasible for a given system. Iterative communication parameters may be subject to natural selection at the system (group) level because they affect system performance.
Collapse
Affiliation(s)
- Michael P O'Connor
- Departments of Biodiversity Earth and Environmental Science and Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Sean O'Donnell
- Departments of Biodiversity Earth and Environmental Science and Biology, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Sidhu SK, Pourmajidian M, Opie GM, Semmler JG. Increasing motor cortex plasticity with spaced paired associative stimulation at different intervals in older adults. Eur J Neurosci 2017; 46:2674-2683. [PMID: 28965371 DOI: 10.1111/ejn.13729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/01/2022]
Abstract
The ability of priming non-invasive brain stimulation (NIBS) to modulate neuroplasticity induction (i.e. metaplasticity) within primary motor cortex (M1) may be altered in older adults. Previous studies in young subjects suggest that consecutive NIBS protocols interact in a time-dependent manner and involve homoeostatic metaplasticity mechanisms. This was investigated in older adults by assessing the response to consecutive blocks of paired-associative stimulation (PAS) separated by different inter-PAS intervals (IPIs). Fifteen older (62-82 years) subjects participated in four sessions, with each session involving two PAS blocks separated by IPIs of 10 (IPI10 ) or 30 (IPI30 ) mins. For each IPI, the first (priming) PAS block was either PASLTP (N20 latency + 2 ms) or PASLTD (N20 latency - 10 ms), while the second (test) PAS block was always PASLTP . Changes in M1 excitability were assessed by recording motor evoked potentials from a muscle of the right hand. For both IPIs, the response produced by PASLTD -primed PASLTP was significantly greater than the response produced by PASLTP -primed PASLTP . Furthermore, the effects of PASLTD priming on PASLTP were significantly greater for IPI30 . These findings suggest that priming PAS can increase plasticity induction in older adults, and this occurs through mechanisms involving homoeostatic metaplasticity. They also demonstrate that the timing between priming and test NIBS is a crucial determinant of this effect, with a 30-min interval being most effective. Providing a 30-min delay between priming NIBS and motor training may improve the efficacy of NIBS in augmenting motor performance and learning in the elderly.
Collapse
Affiliation(s)
- Simranjit K Sidhu
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - Maryam Pourmajidian
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, North Terrace Campus, Frome Road, Adelaide, SA 5005, Australia
| |
Collapse
|
20
|
D'Amico JM, Dongés SC, Taylor JL. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis. J Neurophysiol 2017; 119:369-376. [PMID: 29046429 DOI: 10.1152/jn.00919.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Paired corticospinal-motoneuronal stimulation (PCMS), which delivers repeated pairs of transcranial magnetic stimuli (TMS) and maximal motor nerve stimuli, can alter corticospinal transmission to low-threshold motoneurons in the human spinal cord. To determine whether similar changes occur for high-threshold motoneurons, we tested whether maximal voluntary activation and force can be affected by PCMS in healthy individuals. On 2 separate days, healthy participants ( n = 14) performed brief thumb adduction maximal voluntary contractions (MVCs) before and after a control protocol (TMS only) or PCMS designed to facilitate corticospinal transmission to adductor pollicis. Peripheral nerve stimulation alone was not performed. During each MVC, a superimposed twitch was elicited by a supramaximal stimulus delivered to the ulnar nerve. With muscles relaxed following the maximal contraction, a similar stimulus elicited a resting twitch. Voluntary activation was calculated as (1 - superimposed twitch/resting twitch) × 100%. Although voluntary activation decreased over time in both conditions, the decrease was less after PCMS (-0.4 ± 4.1%) than after the control protocol (-4.9 ± 4.9%; P = 0.007). This was supported by a greater increase in electromyographic response after PCMS than control (7 ± 13% vs. -3 ± 10%; P = 0.043). However, maximal force was not affected. The findings indicate a modest effect of PCMS on maximal neural drive to adductor pollicis, suggesting that PCMS can affect corticospinal transmission to high-threshold motoneurons. NEW & NOTEWORTHY Paired corticospinal-motoneuronal stimulation (PCMS) induces changes in the human spinal cord. To date, the reported effects of PCMS have been limited to low-threshold motoneurons and low-force tasks in healthy and spinal cord injured individuals. For the first time, we show that these plastic changes are not limited to lower threshold motoneurons, but occur across the entire motoneuron pool as demonstrated by the increases in voluntary activation and muscle activity during maximal voluntary contractions of adductor pollicis.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Neuroscience Research Australia, Randwick, New South Wales , Australia
| | - Siobhan C Dongés
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Department of Physiology, School of Medical Sciences, University of New South Wales , Sydney , Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Department of Physiology, School of Medical Sciences, University of New South Wales , Sydney , Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
21
|
Zhou Q, Li M, Yi L, He B, Li X, Jiang Y. Intraoperative neuromonitoring during brain arteriovenous malformation microsurgeries and postoperative dysfunction: A retrospective follow-up study. Medicine (Baltimore) 2017; 96:e8054. [PMID: 28953623 PMCID: PMC5626266 DOI: 10.1097/md.0000000000008054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To evaluate the effectiveness of intraoperative neuromonitoring (IONM) during arteriovenous malformation (AVM) surgery, we retrospectively analyzed neurologic dysfunction in patients who underwent AVM surgery with (IONM group) and without IONM (non-IONM group). The sensitivity and specificity of short-term neurologic dysfunction were calculated in the IONM group. IONM parameters were obtained in all patients. There was no significant difference in neurologic dysfunction between patients in the IONM and non-IONM groups. The short-term hemiplegia ratio among grade III patients in the IONM group was significantly lower than the non-IONM group. The sensitivity of IONM for predicting short-term neurologic dysfunction in the IONM group was 86.7% with a specificity of 100%. Of the different parameters monitored intraoperatively, the somatosensory-evoked potential (SEP), maximum expiratory pressure (MEP), and brain auditory-evoked potential (BAEP) may be beneficial in grade III and IV patients. The BAEP complemented the SEP and MEP. Electromyography and the visual-evoked potential have promise in preserving cranial nerve and visual function. For grades I and II patients, no SEP monitoring was safe. For grade V patients, further investigation is required to prevent neurologic dysfunction because of highly related risks for disability and postoperative complications. Moreover, a larger sample size is required to demonstrate the usefulness of IONM during awake craniotomies.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Neurosurgery
- Department of Neurosurgery Neurophysiology Center, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | - Lei Yi
- Department of Neurosurgery
| | - Bifen He
- Department of Neurosurgery Neurophysiology Center, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinxin Li
- Department of Neurosurgery Neurophysiology Center, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | |
Collapse
|
22
|
Sale MV, Nydam AS, Mattingley JB. Stimulus uncertainty enhances long-term potentiation-like plasticity in human motor cortex. Cortex 2017; 88:32-41. [DOI: 10.1016/j.cortex.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/06/2016] [Accepted: 12/09/2016] [Indexed: 11/15/2022]
|
23
|
Gomes-Osman J, Cabral DF, Hinchman C, Jannati A, Morris TP, Pascual-Leone A. The effects of exercise on cognitive function and brain plasticity - a feasibility trial. Restor Neurol Neurosci 2017; 35:547-556. [PMID: 28984621 PMCID: PMC5839170 DOI: 10.3233/rnn-170758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exercise-mediated cognitive improvements can be at least partly attributed to neuroplastic changes in the nervous system, and may be influenced by the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene. Transcranial magnetic stimulation (TMS) can be used to assess mechanisms of plasticity in humans noninvasively. OBJECTIVES To assess the feasibility of evaluating the effects of short-term regular exercise on cognitive performance, and to evaluate the relationship between these effects, TMS measures of plasticity, and BDNF Met carrier status in young healthy sedentary adults. METHODS Of the 19 participants who enrolled in the study, 14 sedentary adults (12 females, age mean±SD, 27±12.3 yr), with less than two sessions of physical exercise in the preceding 2 months, completed an aerobic exercise regimen including four 30-min daily sessions per week for 4 weeks (for a total of 16 sessions) delivered at 55-64% of age-predicted maximal heart rate. Prior to and following the exercise regimen, participants performed a neuropsychological test battery and an intermittent theta-burst TMS plasticity protocol. RESULTS All participants completed the various measures and adhered to the exercise regimen. There were no complications and the results obtained were reliable. The feasibility of the approach is thus well established. Between-group comparisons of pre-post change revealed trends toward increased performance on the Stroop and faster reaction times in the CPT detectability in the Val66Val subgroup (p = 0.07 and p = 0.08), and a reduction in TBS-induced modulation of TMS responses in Met carriers (p = 0.07). CONCLUSION Acute exercise interventions in sedentary adults can be meaningfully conducted along with cognitive and neurophysiologic measures to assess behavioral and neurobiological effects and assessment of BDNF polymorphism. TMS measures of plasticity can be used to evaluate the effects of exercise on brain plasticity, and relate them to neuropsychological measures of cognition.
Collapse
Affiliation(s)
- Joyce Gomes-Osman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Danylo F. Cabral
- Department of Physical Therapy, University of Miami Miller School of Medicine, Coral Gables, FL, USA
| | - Carrie Hinchman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Timothy P. Morris
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain
| |
Collapse
|
24
|
Park JE. Apraxia: Review and Update. J Clin Neurol 2017; 13:317-324. [PMID: 29057628 PMCID: PMC5653618 DOI: 10.3988/jcn.2017.13.4.317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Praxis, the ability to perform skilled or learned movements is essential for daily living. Inability to perform such praxis movements is defined as apraxia. Apraxia can be further classified into subtypes such as ideomotor, ideational and limb-kinetic apraxia. Relevant brain regions have been found to include the motor, premotor, temporal and parietal cortices. Apraxia is found in a variety of highly prevalent neurological disorders including dementia, stroke and Parkinsonism. Furthermore, apraxia has been shown to negatively affect quality of life. Therefore, recognition and treatment of this disorder is critical. This article provides an overview of apraxia and highlights studies dealing with the neurophysiology of this disorder, opening up novel perspectives for the use of motor training and noninvasive brain stimulation as treatment.
Collapse
Affiliation(s)
- Jung E Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea.
| |
Collapse
|
25
|
Lahr J, Paßmann S, List J, Vach W, Flöel A, Klöppel S. Effects of Different Analysis Strategies on Paired Associative Stimulation. A Pooled Data Analysis from Three Research Labs. PLoS One 2016; 11:e0154880. [PMID: 27144307 PMCID: PMC4856316 DOI: 10.1371/journal.pone.0154880] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 02/02/2023] Open
Abstract
Paired associative stimulation (PAS) is a widely used transcranial magnetic stimulation (TMS) paradigm to non-invasively induce synaptic plasticity in the human brain in vivo. Altered PAS-induced plasticity has been demonstrated for several diseases. However, researchers are faced with a high inter- and intra-subject variability of the PAS response. Here, we pooled original data from nine PAS studies from three centers and analyzed the combined dataset of 190 healthy subjects with regard to age dependency, the role of stimulation parameters and the effect of different statistical methods. We observed no main effect of the PAS intervention over all studies (F(2;362) = 0.44; p = 0.644). The rate of subjects showing the expected increase of motor evoked potential (MEP) amplitudes was 53%. The PAS effect differed significantly between studies as shown by a significant interaction effect (F(16;362) = 1.77; p = 0.034) but post-hoc testing did not reveal significant effects after correction for multiple tests. There was a trend toward increased variability of the PAS effect in older subjects. Acquisition parameters differed across studies but without systematically influencing changes in MEP-size. The use of post/baseline quotients systematically indicated stronger PAS effects than post/baseline difference or the logarithm of the post/baseline quotient. The non-significant PAS effects across studies and a wide range of responder rates between studies indicate a high variability of this method. We were thus not able to replicate findings from a previous meta-analysis showing robust effects of PAS. No pattern emerged regarding acquisition parameters that at this point could guide future studies to reduce variability and help increase response rate. For future studies, we propose to report the responder rate and recommend the use of the logarithmized post/baseline quotient for further analyses to better address the possibility that results are driven by few extreme cases.
Collapse
Affiliation(s)
- Jacob Lahr
- Freiburg Brain Imaging, University Medical Center, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Germany
- Department of Neurology, University Medical Center, Freiburg, Germany
| | - Sven Paßmann
- Department of Neurology, Charité Universitätsmedizin, Berlin, Germany
| | - Jonathan List
- Department of Neurology, Charité Universitätsmedizin, Berlin, Germany
| | - Werner Vach
- Center for Medical Biometry and Medical Informatics, University of Freiburg, Freiburg, Germany
| | - Agnes Flöel
- Department of Neurology, Charité Universitätsmedizin, Berlin, Germany
- Center for Stroke Research Berlin, Charité Universitätsmedizin, Berlin, Germany
- Cluster of Excellence NeuroCure, Charité Universitätsmedizin, Berlin, Germany
| | - Stefan Klöppel
- Freiburg Brain Imaging, University Medical Center, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Germany
- Department of Neurology, University Medical Center, Freiburg, Germany
- Center of Geriatrics and Gerontology Freiburg, University Medical Center, Freiburg, Germany
| |
Collapse
|
26
|
No difference in paired associative stimulation induced cortical neuroplasticity between patients with mild cognitive impairment and elderly controls. Clin Neurophysiol 2016; 127:1254-1260. [DOI: 10.1016/j.clinph.2015.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
|