1
|
Donaghy R, Pioro EP. Neurophysiologic Innovations in ALS: Enhancing Diagnosis, Monitoring, and Treatment Evaluation. Brain Sci 2024; 14:1251. [PMID: 39766450 PMCID: PMC11674262 DOI: 10.3390/brainsci14121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease of both upper motor neurons (UMNs) and lower motor neurons (LMNs) leading invariably to decline in motor function. The clinical exam is foundational to the diagnosis of the disease, and ordinal severity scales are used to track its progression. However, the lack of objective biomarkers of disease classification and progression delay clinical trial enrollment, muddle inclusion criteria, and limit accurate assessment of drug efficacy. Ultimately, biomarker evidence of therapeutic target engagement will support, and perhaps supplant, more traditional clinical trial outcome measures. Electrophysiology tools including nerve conduction study and electromyography (EMG) have already been established as diagnostic biomarkers of LMN degeneration in ALS. Additional understanding of the motor manifestations of disease is provided by motor unit number estimation, electrical impedance myography, and single-fiber EMG techniques. Dysfunction of UMN and non-motor brain areas is being increasingly assessed with transcranial magnetic stimulation, high-density electroencephalography, and magnetoencephalography; less common autonomic and sensory nervous system dysfunction in ALS can also be characterized. Although most of these techniques are used to explore the underlying disease mechanisms of ALS in research settings, they have the potential on a broader scale to noninvasively identify disease subtypes, predict progression rates, and assess physiologic engagement of experimental therapies.
Collapse
Affiliation(s)
- Ryan Donaghy
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Erik P. Pioro
- Djavad Mowafaghian Centre for Brain Health, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Wu J, Zhang G, Zhang L, Ye S, Huang T, Fan D. The integrity of the corticospinal tract and corpus callosum, and the risk of ALS: univariable and multivariable Mendelian randomization. Sci Rep 2024; 14:17216. [PMID: 39060317 PMCID: PMC11282093 DOI: 10.1038/s41598-024-68374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Studies suggest that amyotrophic lateral sclerosis (ALS) compromises the integrity of white matter fiber tracts, primarily affecting motor fibers. However, it remains uncertain whether the integrity of these fibers influences the risk of ALS. We performed bidirectional two-sample Mendelian randomization (MR) and multivariable MR analyses to evaluate the associative relationships between the integrity of fiber tracts [including the corticospinal tract (CST) and corpus callosum (CC)] and the risk of ALS. Genetic instrumental variables for specific fiber tracts were obtained from published genome-wide association studies (GWASs), including 33,292 European individuals from five diffusion magnetic resonance imaging (dMRI) datasets. Summary-level GWAS data for ALS were derived from 27,205 ALS patients and 110,881 controls. The MR results suggested that an increase in the first principal component (PC1) of fractional anisotropy (FA) in the genu of the CC (GCC) was correlated with an increased risk of ALS (PFDR = 0.001, odds ratio = 1.363, 95% confidence interval 1.178-1.577). Although other neuroimaging phenotypes [mean diffusivity in the CST, radial diffusivity (RD) in the CST, FA in the GCC, PC1 in the body of the CC (BCC), PC1 in the CST, and RD in the GCC] did not pass correction, they were also considered to have suggestive associations with the risk of ALS. No evidence revealed that ALS caused changes in the integrity of fiber tracts. In summary, the results of this study provide genetic support for the potential association between the integrity of specific fiber tracts and the risk of ALS. Greater fiber integrity in the GCC and BCC may be a risk factor for ALS, while greater fiber integrity in the CST may have a protective effect on ALS. This study provides insights into ALS development.
Collapse
Affiliation(s)
- Jieying Wu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, 100191, China.
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China.
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Grapperon AM, Harlay V, Boucekine M, Devos D, Rolland AS, Desnuelle C, Delmont E, Verschueren A, Attarian S. Could the motor unit number index be an early prognostic biomarker for amyotrophic lateral sclerosis? Clin Neurophysiol 2024; 163:47-55. [PMID: 38703699 DOI: 10.1016/j.clinph.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE To evaluate the associations between motor unit number index (MUNIX) and disease progression and prognosis in amyotrophic lateral sclerosis (ALS) in a large-scale longitudinal study. METHODS MUNIX was performed at the patient's first visit, at 3, 6, and 12 months in 4 muscles. MUNIX data from the patients were compared with those from 38 age-matched healthy controls. Clinical data included the revised ALS functional rating scale (ALSFRS-R), the forced vital capacity (FVC), and the survival of the patients. RESULTS Eighty-two patients were included at baseline, 62 were evaluated at three months, 48 at six months, and 33 at twelve months. MUNIX score was lower in ALS patients compared to controls. At baseline, MUNIX was correlated with ALSFRS-R and FVC. Motor unit size index (MUSIX) was correlated with patient survival. Longitudinal analyses showed that MUNIX decline was greater than ALSFRS-R decline at each evaluation. A baseline MUNIX score greater than 378 predicted survival over the 12-month period with a sensitivity of 82% and a specificity of 56%. CONCLUSIONS This longitudinal study suggests that MUNIX could be an early quantitative marker of disease progression and prognosis in ALS. SIGNIFICANCE MUNIX might be considered as potential indicator for monitoring disease progression.
Collapse
Affiliation(s)
- Aude-Marie Grapperon
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France.
| | - Vincent Harlay
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Mohamed Boucekine
- Aix Marseille University, Center for Studies and Research on Health Services and Quality of Life, Marseille, France
| | - David Devos
- Department of Medical Pharmacology, Expert Center of ALS Lille University, INSERM UMRS_1772, Lille University Hospital, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, ACT4ALS-MND Network, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Expert Center of ALS Lille University, INSERM UMRS_1772, Lille University Hospital, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, ACT4ALS-MND Network, France
| | - Claude Desnuelle
- Côte d'Azur University, Medical Faculty of Nice, Department of Neurology, Nice, France
| | - Emilien Delmont
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Annie Verschueren
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France
| | - Shahram Attarian
- APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, ERN Euro-NMD Center, Marseille, France; Aix Marseille University, Inserm, GMGF, Marseille, France
| |
Collapse
|
4
|
Shin-Yi Lin C, Howells J, Rutkove S, Nandedkar S, Neuwirth C, Noto YI, Shahrizaila N, Whittaker RG, Bostock H, Burke D, Tankisi H. Neurophysiological and imaging biomarkers of lower motor neuron dysfunction in motor neuron diseases/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 162:91-120. [PMID: 38603949 DOI: 10.1016/j.clinph.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
This chapter discusses comprehensive neurophysiological biomarkers utilised in motor neuron disease (MND) and, in particular, its commonest form, amyotrophic lateral sclerosis (ALS). These encompass the conventional techniques including nerve conduction studies (NCS), needle and high-density surface electromyography (EMG) and H-reflex studies as well as novel techniques. In the last two decades, new methods of assessing the loss of motor units in a muscle have been developed, that are more convenient than earlier methods of motor unit number estimation (MUNE),and may use either electrical stimulation (e.g. MScanFit MUNE) or voluntary activation (MUNIX). Electrical impedance myography (EIM) is another novel approach for the evaluation that relies upon the application and measurement of high-frequency, low-intensity electrical current. Nerve excitability techniques (NET) also provide insights into the function of an axon and reflect the changes in resting membrane potential, ion channel dysfunction and the structural integrity of the axon and myelin sheath. Furthermore, imaging ultrasound techniques as well as magnetic resonance imaging are capable of detecting the constituents of morphological changes in the nerve and muscle. The chapter provides a critical description of the ability of each technique to provide neurophysiological insight into the complex pathophysiology of MND/ALS. However, it is important to recognise the strengths and limitations of each approach in order to clarify utility. These neurophysiological biomarkers have demonstrated reliability, specificity and provide additional information to validate and assess lower motor neuron dysfunction. Their use has expanded the knowledge about MND/ALS and enhanced our understanding of the relationship between motor units, axons, reflexes and other neural circuits in relation to clinical features of patients with MND/ALS at different stages of the disease. Taken together, the ultimate goal is to aid early diagnosis, distinguish potential disease mimics, monitor and stage disease progression, quantify response to treatment and develop potential therapeutic interventions.
Collapse
Affiliation(s)
- Cindy Shin-Yi Lin
- Faculty of Medicine and Health, Central Clinical School, Brain and Mind Centre, University of Sydney, Sydney 2006, Australia.
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sanjeev Nandedkar
- Natus Medical Inc, Middleton, Wisconsin, USA and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital, St. Gallen, Switzerland
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Roger G Whittaker
- Newcastle University Translational and Clinical Research Institute (NUTCRI), Newcastle University., Newcastle Upon Tyne, United Kingdom
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, United Kingdom
| | - David Burke
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Xue S, Gao F, Wu X, Xu Q, Weng X, Zhang Q. MUNIX repeatability evaluation method based on FastICA demixing. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:16362-16382. [PMID: 37920016 DOI: 10.3934/mbe.2023730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
To enhance the reproducibility of motor unit number index (MUNIX) for evaluating neurological disease progression, this paper proposes a negative entropy-based fast independent component analysis (FastICA) demixing method to assess MUNIX reproducibility in the presence of inter-channel mixing of electromyography (EMG) signals acquired by high-density electrodes. First, composite surface EMG (sEMG) signals were obtained using high-density surface electrodes. Second, the FastICA algorithm based on negative entropy was employed to determine the orthogonal projection matrix that minimizes the negative entropy of the projected signal and effectively separates mixed sEMG signals. Finally, the proposed experimental approach was validated by introducing an interrelationship criterion to quantify independence between adjacent channel EMG signals, measuring MUNIX repeatability using coefficient of variation (CV), and determining motor unit number and size through MUNIX. Results analysis shows that the inclusion of the full (128) channel sEMG information leads to a reduction in CV value by $1.5 \pm 0.1$ and a linear decline in CV value with an increase in the number of channels. The correlation between adjacent channels in participants decreases by $0.12 \pm 0.05$ as the number of channels gradually increases. The results demonstrate a significant reduction in the number of interrelationships between sEMG signals following negative entropy-based FastICA processing, compared to the mixed sEMG signals. Moreover, this decrease in interrelationships becomes more pronounced with an increasing number of channels. Additionally, the CV of MUNIX gradually decreases with an increase in the number of channels, thereby optimizing the issue of abnormal MUNIX repeatability patterns and further enhancing the reproducibility of MUNIX based on high-density surface EMG signals.
Collapse
Affiliation(s)
- Suqi Xue
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Farong Gao
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China
| | - Qun Xu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xuecheng Weng
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qizhong Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
6
|
Vucic S, Menon P, Huynh W, Mahoney C, Ho KS, Hartford A, Rynders A, Evan J, Evan J, Ligozio S, Glanzman R, Hotchkin MT, Kiernan MC. Efficacy and safety of CNM-Au8 in amyotrophic lateral sclerosis (RESCUE-ALS study): a phase 2, randomised, double-blind, placebo-controlled trial and open label extension. EClinicalMedicine 2023; 60:102036. [PMID: 37396808 PMCID: PMC10314176 DOI: 10.1016/j.eclinm.2023.102036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Background CNM-Au8® is a catalytically-active gold nanocrystal neuroprotective agent that enhances intracellular energy metabolism and reduces oxidative stress. The phase 2, randomised, double-blind, placebo-controlled trial and open label extension RESCUE-ALS trial evaluated the efficacy and safety of CNM-Au8 for treatment of amyotrophic lateral sclerosis (ALS). Methods RESCUE-ALS and its long-term open label extension (OLE) were conducted at two multidisciplinary ALS clinics located in Sydney, Australia: (i) the Brain and Mind Centre and (ii) Westmead Hospital. The double-blind portion of RESCUE-ALS was conducted from January 16, 2020 (baseline visit, first-patient first-visit (FPFV)) through July 13, 2021 (double-blind period, last-patient last-visit (LPLV)). Participants (N = 45) were randomised 1:1 to receive 30 mg of CNM-Au8 or matching placebo daily over 36 weeks in addition to background standard of care, riluzole. The primary outcome was mean percent change in summed motor unit number index (MUNIX), a sensitive neurophysiological biomarker of lower motor neuron function. Change in total (or summated) MUNIX score and change in forced vital capacity (FVC) were secondary outcome measures. ALS disease progression events, ALS Functional Rating Scale (ALSFRS-R) change, change in quality of life (ALSSQOL-SF) were assessed as exploratory outcome measures. Long-term survival evaluated vital status of original active versus placebo randomisation for all participants through at least 12 months following last-patient last-visit (LPLV) of the double-blind period. RESCUE-ALS and the open label study are registered in clinicaltrials.gov with registration numbers NCT04098406 and NCT05299658, respectively. Findings In the intention-to-treat (ITT) population, there was no significant difference in the summated MUNIX score percent change (LS mean difference: 7.7%, 95% CI: -11.9 to 27.3%, p = 0.43), total MUNIX score change (18.8, 95% CI: -56.4 to 94.0), or FVC change (LS mean difference: 3.6, 95% CI: -12.4 to 19.7) between the active and placebo treated groups at week 36. In contrast, survival analyses through 12-month LPLV demonstrated a 60% reduction in all-cause mortality with CNM-Au8 treatment [hazard ratio = 0.408 (95% Wald CI: 0.166 to 1.001, log-rank p = 0.0429). 36 participants entered the open label extension (OLE), and those initially randomised to CNM-Au8 exhibited a slower rate of disease progression, as measured by time to the occurrence of death, tracheostomy, initiation of non-invasive ventilatory support, or gastrostomy tube placement. CNM-Au8 was well-tolerated, and no safety signals were observed. Interpretation CNM-Au8, in combination with riluzole, was well-tolerated in ALS with no identified safety signals. While the primary and secondary outcomes of this trial were not significant, the clinically meaningful exploratory results support further investigation of CNM-Au8 in ALS. Funding The RESCUE-ALS was substantially funded by a grant from FightMND. Additional funding was provided by Clene Australia Pty Ltd.
Collapse
Affiliation(s)
- Steve Vucic
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, Australia
| | - Parvathi Menon
- Brain and Nerve Research Centre, Concord Clinical School and Department of Neurology, Concord Repatriation General Hospital, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Colin Mahoney
- Brain and Mind Centre, University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Karen S. Ho
- Clene Nanomedicine, Inc., Salt Lake City, UT, USA
| | | | | | - Jacob Evan
- Clene Nanomedicine, Inc., Salt Lake City, UT, USA
| | - Jeremy Evan
- Clene Nanomedicine, Inc., Salt Lake City, UT, USA
| | | | | | | | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
7
|
Xu Q, Xue S, Gao F, Wu Q, Zhang Q. Evaluation method of motor unit number index based on optimal muscle strength combination. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3854-3872. [PMID: 36899608 DOI: 10.3934/mbe.2023181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Repeatability is an important attribute of motor unit number index (MUNIX) technology. This paper proposes an optimal contraction force combination for MUNIX calculation in an effort to improve the repeatability of this technology. In this study, the surface electromyography (EMG) signals of the biceps brachii muscle of eight healthy subjects were initially recorded with high-density surface electrodes, and the contraction strength was the maximum voluntary contraction force of nine progressive levels. Then, by traversing and comparing the repeatability of MUNIX under various combinations of contraction force, the optimal combination of muscle strength is determined. Finally, calculate MUNIX using the high-density optimal muscle strength weighted average method. The correlation coefficient and the coefficient of variation are utilized to assess repeatability. The results show that when the muscle strength combination is 10, 20, 50 and 70% of the maximum voluntary contraction force, the repeatability of MUNIX is greatest, and the correlation between MUNIX calculated using this combination of muscle strength and conventional methods is high (PCC > 0.99), the repeatability of the MUNIX method improved by 11.5-23.8%. The results indicate that the repeatability of MUNIX differs for various combinations of muscle strength and that MUNIX, which is measured with a smaller number and lower-level contractility, has greater repeatability.
Collapse
Affiliation(s)
- Qun Xu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Suqi Xue
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Farong Gao
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiuxuan Wu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qizhong Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
8
|
Okhovat AA, Advani S, Ziaadini B, Panahi A, Salehizadeh S, Nafissi S, Haghi Ashtiani B, Rajabally YA, Fatehi F. The value of MUNIX as an objective electrophysiological biomarker of disease progression in CIDP. Muscle Nerve 2022; 65:433-439. [PMID: 35040150 DOI: 10.1002/mus.27498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS Objective outcome measures to monitor treatment response and guide treatment are lacking in chronic inflammatory demyelinating polyneuropathy (CIDP). We aimed to evaluate the motor unit number index (MUNIX) as an outcome measurement in patients with CIDP and investigate the correlation of MUNIX with functional and standard electrodiagnostic tests in a single follow-up study. METHODS We evaluated MUNIX of the abductor pollicis brevis (APB), abductor digiti minimi (ADM), and tibialis anterior (TA) muslces bilaterally. Muscle force was assessed by Medical Research Council sumscores (MRCSS). Functional measures used were the Overall Neuropathy Limitation Score (ONLS) and the Rasch-built Overall Disability Scale (R-ODS) at baseline and after six months of treatment. Standard electrophysiology was evaluated by the Nerve Conduction Study Score (NCSS). RESULTS Twenty patients were included at baseline, and 16 completed the follow-up study. Significant correlations were found between the MUNIX sumscore and both MRCSS and NCSS at baseline, between both the pinch strength and grip and upper limb MUNIX at baseline and follow-up, and between MUNIX of TA and both lower limb MRCSS with lower limb ONLS at baseline and follow-up. Significant correlations also were found between MUNIX sumscore change and MRCSS change, R-ODS change, and ONLS change. DISCUSSION MUNIX changes correlated with strength and electrophysiological improvements in CIDP patients. This suggests that MUNIX may represent a useful objective biomarker for patient follow-up.
Collapse
Affiliation(s)
- Ali Asghar Okhovat
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Ziaadini
- Neurology Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Akram Panahi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Salehizadeh
- Neurologist, Tehran University of Medical Sciences, Sina Hospital, Tehran, Iran
| | - Shahriar Nafissi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Neurology Department, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Farzad Fatehi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zakharova MN, Abramova AA. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:65-73. [PMID: 34100429 PMCID: PMC8451581 DOI: 10.4103/1673-5374.314289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient’s death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.
Collapse
|
10
|
Boulay C, Delmont E, Audic F, Chabrol B, Attarian S. Motor unit number index: A potential electrophysiological biomarker for pediatric spinal muscular atrophy. Muscle Nerve 2021; 64:445-453. [PMID: 34255873 DOI: 10.1002/mus.27372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION/AIMS In adult spinal muscular atrophy (SMA), the motor unit number index (MUNIX) has been shown to be an useful electrophysiological biomarker. This study evaluated the feasibility and the clinical relevance of using the MUNIX technique for patients with pediatric SMA (Ped-SMA) and correlated MUNIX results with clinical scores. METHODS Fourteen patients with type II Ped-SMA (11 females; median age 11 y [interquartile range (IQR), 4.8-17 y]) and 14 controls (nine females; median age 10.75 y [IQR, 6.5-13.4 y]) were enrolled and matched by sex, age, height, weight, and body mass index. Clinical examination included manual muscle testing, dynamometry (grasp and pinch), and motor function measure (MFM). The MUNIX technique was evaluated in the abductor digiti minimi (ADM) and abductor pollicis brevis (APB) on two sides when possible. RESULTS In the patients with Ped-SMA, the MUNIX and compound muscle action potential (CMAP) amplitudes were significantly decreased and the motor size unit index (MUSIX) was significantly increased in the ADM and APB when compared to controls. The intraclass correlation coefficient was good for the intrarater variability of the CMAP amplitude, MUNIX, and MUSIX in the ADM (0.95, 0.83, and 0.89, respectively) and the APB (0.98, 0.96, and 0.94, respectively). The total CMAP amplitude correlated with the grasp and pinch scores (P < .05), and the MUNIX measurements correlated with the MFM scores. DISCUSSION The MUNIX technique, which accurately estimated lower motor neuron loss and the number of remaining functional motor units, was shown to be a useful electrophysiological biomarker for disease progression and a potential biomarker for treatment response.
Collapse
Affiliation(s)
- Christophe Boulay
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, UMR 7286, Medicine Faculty, Marseille, France
| | - Frédérique Audic
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Brigitte Chabrol
- Neuropediatric Department, Children Timone University Hospital, Aix-Marseille University, Marseille, France.,Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, Inserm UMR S 910, Medical Genetics and Functional Genomics, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France.,Aix-Marseille University, Inserm UMR S 910, Medical Genetics and Functional Genomics, Marseille, France
| |
Collapse
|
11
|
Querin G, Lenglet T, Debs R, Stojkovic T, Behin A, Salachas F, Le Forestier N, Amador MDM, Bruneteau G, Laforêt P, Blancho S, Marchand-Pauvert V, Bede P, Hogrel JY, Pradat PF. Development of new outcome measures for adult SMA type III and IV: a multimodal longitudinal study. J Neurol 2021; 268:1792-1802. [PMID: 33388927 DOI: 10.1007/s00415-020-10332-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was the comprehensive characterisation of longitudinal clinical, electrophysiological and neuroimaging measures in type III and IV adult spinal muscular atrophy (SMA) with a view to propose objective monitoring markers for future clinical trials. METHODS Fourteen type III or IV SMA patients underwent standardised assessments including muscle strength testing, functional evaluation (SMAFRS and MFM), MUNIX (abductor pollicis brevis, APB; abductor digiti minimi, ADM; deltoid; tibialis anterior, TA; trapezius) and quantitative cervical spinal cord MRI to appraise segmental grey and white matter atrophy. Patients underwent a follow-up assessment with the same protocol 24 months later. Longitudinal comparisons were conducted using the Wilcoxon-test for matched data. Responsiveness was estimated using standardized response means (SRM) and a composite score was generated based on the three most significant variables. RESULTS Significant functional decline was observed based on SMAFRS (p = 0.019), pinch and knee flexion strength (p = 0.030 and 0.027), MUNIX and MUSIX value in the ADM (p = 0.0006 and 0.043) and in TA muscle (p = 0.025). No significant differences were observed based on cervical MRI measures. A significant reduction was detected in the composite score (p = 0.0005, SRM = -1.52), which was the most responsive variable and required a smaller number of patients than single variables in the estimation of sample size for clinical trials. CONCLUSIONS Quantitative strength testing, SMAFRS and MUNIX readily capture disease progression in adult SMA patients. Composite multimodal scores increase predictive value and may reduce sample size requirements in clinical trials.
Collapse
Affiliation(s)
- Giorgia Querin
- Centre de Référence Maladies Neuromusculaires Paris-Est, APHP, Hôpital Pitié-Salpêtrière, Service de Neuromyologie, Paris, France
- Laboratoire D'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
- Institut de Myologie, I-Motion Adultes Plateforme, Paris, France
| | - Timothée Lenglet
- Département de Neurophysiologie, APHP, Hôpital Pitié-Salpêtrière, Paris, France
- APHP, Centre Référant SLA, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rabab Debs
- Département de Neurophysiologie, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tanya Stojkovic
- Centre de Référence Maladies Neuromusculaires Paris-Est, APHP, Hôpital Pitié-Salpêtrière, Service de Neuromyologie, Paris, France
| | - Anthony Behin
- Centre de Référence Maladies Neuromusculaires Paris-Est, APHP, Hôpital Pitié-Salpêtrière, Service de Neuromyologie, Paris, France
| | | | - Nadine Le Forestier
- APHP, Centre Référant SLA, Hôpital Pitié-Salpêtrière, Paris, France
- Département de Recherche en Éthique, EA 1610: Etudes Des Sciences Et Techniques, Université Paris Sud/Paris Saclay, Paris, France
| | | | - Gaëlle Bruneteau
- APHP, Centre Référant SLA, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches, France
- INSERM U1179, END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France
| | - Sophie Blancho
- Institut Pour La Recherche Sur La Moelle Epinière Et L'Encéphale (IRME), Paris, France
| | | | - Peter Bede
- Laboratoire D'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
- APHP, Centre Référant SLA, Hôpital Pitié-Salpêtrière, Paris, France
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College, Dublin, Ireland
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Investigation Center, Paris, France
| | - Pierre-François Pradat
- Laboratoire D'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France.
- APHP, Centre Référant SLA, Hôpital Pitié-Salpêtrière, Paris, France.
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, Altnagelvin Hospital, Derry/Londonderry, C-TRIC, UK.
- Département de Neurologie, 47 Boulevard de l'sHôpital, 75634, Paris cedex 13, France.
| |
Collapse
|
12
|
Gunes T, Sirin NG, Sahin S, Kose E, Isak B. Use of CMAP, MScan fit-MUNE, and MUNIX in understanding neurodegeneration pattern of ALS and detection of early motor neuron loss in daily practice. Neurosci Lett 2020; 741:135488. [PMID: 33217503 DOI: 10.1016/j.neulet.2020.135488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The pattern of lower motor neuron (LMN) degeneration in amyotrophic lateral sclerosis (ALS), i.e., dying-back (from the nerve ending to cell body) or dying-forward (from the cell body to nerve ending), has been widely discussed. In this study, we aimed to evaluate LMN loss using compound muscle action potential (CMAP), motor unit number index (MUNIX), and MScan-fit-based motor unit number estimation (MUNE) to understand the pattern of neurodegeneration in ALS. METHODS Twenty-five patients were compared with 25 controls using CMAP amplitude and area, MUNIX, and MScan-fit MUNE in three proximal and distal muscles innervated by the ulnar nerve. RESULTS Unlike the controls, the CMAP area, MScan-fit MUNE, and MUNIX recorded in ALS patients showed more neurodegeneration in distal muscles than proximal muscles. In ALS patients with unaffected CMAP amplitudes (n = 13), the CMAP area, MScan-fit MUNE, and MUNIX showed subtle motor unit loss of 30.7 %, 53.8 %, and 38.4 %, respectively. CONCLUSION The CMAP area, MScan-fit MUNE, and MUNIX showed neurodegeneration earlier than the reduction in CMAP amplitude. These tests confirmed dying-back neurodegeneration, while only MUSIX showed re-innervation in ALS.
Collapse
Affiliation(s)
- Taskin Gunes
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey; VM Maltepe Medicalpark Hospital, Istanbul, Turkey.
| | | | - Sevki Sahin
- Department of Neurology, Maltepe University Hospital, Istanbul, Turkey.
| | - Ercan Kose
- Department of Neurology, Sultan 2. Abdulhamit Han Training and Research Hospital, Istanbul, Turkey.
| | - Baris Isak
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey.
| |
Collapse
|
13
|
Neuwirth C, Weber M. MUNIX
in children with spinal muscular atrophy: An unexpected journey. Muscle Nerve 2020; 62:565-566. [DOI: 10.1002/mus.27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic Kantonsspital St Gallen St Gallen Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic Kantonsspital St Gallen St Gallen Switzerland
| |
Collapse
|
14
|
Head-down tilt bed rest with or without artificial gravity is not associated with motor unit remodeling. Eur J Appl Physiol 2020; 120:2407-2415. [PMID: 32797257 PMCID: PMC7557493 DOI: 10.1007/s00421-020-04458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The objective of this study was to assess whether artificial gravity attenuates any long-duration head-down 60 bed rest (HDBR)-induced alterations in motor unit (MU) properties. METHODS Twenty-four healthy participants (16 men; 8 women; 26-54 years) underwent 60-day HDBR with (n = 16) or without (n = 8) 30 min artificial gravity daily induced by whole-body centrifugation. Compound muscle action potential (CMAP), MU number (MUNIX) and MU size (MUSIX) were estimated using the method of Motor Unit Number Index in the Abductor digiti minimi and tibialis anterior muscles 5 days before (BDC-5), and during day 4 (HDT4) and 59 (HDT59) of HDBR. RESULTS The CMAP, MUNIX, and MUSIX at baseline did not change significantly in either muscle, irrespective of the intervention (p > 0.05). Across groups, there were no significant differences in any variable during HDBR, compared to BDC-5. CONCLUSION Sixty days of HDBR with or without artificial gravity does not induce alterations in motor unit number and size in the ADM or TA muscles in healthy individuals.
Collapse
|
15
|
Rajabkhah S, Moradi K, Okhovat AA, Van Alfen N, Fathi D, Aghaghazvini L, Ashraf-Ganjouei A, Attarian S, Nafissi S, Fatehi F. Application of muscle ultrasound for the evaluation of patients with amyotrophic lateral sclerosis: An observational cross-sectional study. Muscle Nerve 2020; 62:516-521. [PMID: 32710682 DOI: 10.1002/mus.27036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION We evaluated the association between muscle ultrasound, number of motor units, and clinical parameters, and assessed their utility for distinguishing amyotrophic lateral scleorisis (ALS) patients from healthy individuals. METHODS Three muscle pairs (abductor pollicis brevis, abductor digiti minimi, and tibialis anterior) of 18 ALS patients and 18 controls underwent muscle ultrasound (echointensity and thickness) and assessment of motor unit number index (MUNIX). The clinical and functional status of participants were also assessed. RESULTS Mean age of the patients was 53.8 ± 12.1 years, and score on the ALS Functional Rating Scale-Revised was 38.9 ± 4.1. Echointensity of all tested muscles of ALS participants was significantly higher than that of controls, but there was no significant difference in muscle thickness. Muscle echointensity correlated significantly with clinical and electrophysiological parameters. CONCLUSION Echointensity of muscles was highly associated with clinical scales and MUNIX, confirming its relevance as an ancillary diagnostic test in ALS patients.
Collapse
Affiliation(s)
- Sahebeh Rajabkhah
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Kamyar Moradi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Ali A Okhovat
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nens Van Alfen
- Department of Neurology and Clinical Neurophysiology, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, The Netherlands
| | - Davood Fathi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Aghaghazvini
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran
| | - Shahram Attarian
- Neuromuscular Disease and ALS Reference Center, Timone University Hospital Aix-Marseille University, Marseille, France
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Jalal al Ahmad, Tehran, 1411713135, Iran.,Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Bashford J, Mills K, Shaw C. The evolving role of surface electromyography in amyotrophic lateral sclerosis: A systematic review. Clin Neurophysiol 2020; 131:942-950. [PMID: 32044239 PMCID: PMC7083223 DOI: 10.1016/j.clinph.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/23/2019] [Accepted: 12/14/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads to inexorable motor decline and a median survival of three years from symptom onset. Surface EMG represents a major technological advance that has been harnessed in the development of novel neurophysiological biomarkers. We have systematically reviewed the current application of surface EMG techniques in ALS. METHODS We searched PubMed to identify 42 studies focusing on surface EMG and its associated analytical methods in the diagnosis, prognosis and monitoring of ALS patients. RESULTS A wide variety of analytical techniques were identified, involving motor unit decomposition from high-density grids, motor unit number estimation and measurements of neuronal hyperexcitability or neuromuscular architecture. Some studies have proposed specific diagnostic and prognostic criteria however clinical calibration in large ALS cohorts is currently lacking. The most validated method to monitor disease is the motor unit number index (MUNIX), which has been implemented as an outcome measure in two ALS clinical trials. CONCLUSION Surface EMG offers significant practical and analytical flexibility compared to invasive techniques. To capitalise on this fully, emphasis must be placed upon the multi-disciplinary collaboration of clinicians, bioengineers, mathematicians and biostatisticians. SIGNIFICANCE Surface EMG techniques can enrich effective biomarker development in ALS.
Collapse
Affiliation(s)
- J. Bashford
- UK Dementia Research Institute, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | | |
Collapse
|
17
|
Gao F, Cao Y, Zhang C, Zhang Y. A Preliminary Study of Effects of Channel Number and Location on the Repeatability of Motor Unit Number Index (MUNIX). Front Neurol 2020; 11:191. [PMID: 32256444 PMCID: PMC7090144 DOI: 10.3389/fneur.2020.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Farong Gao
- School of Automation, Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Yueying Cao
- School of Automation, Artificial Intelligence Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Yingchun Zhang
| |
Collapse
|
18
|
Moldovan M, Vucic S. Is Motor Unit Number Index (MUNIX) an index of Compound Muscle Action Potential amplitude rather than motor unit number? Clin Neurophysiol 2019; 130:1686-1687. [PMID: 31303432 DOI: 10.1016/j.clinph.2019.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mihai Moldovan
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Steve Vucic
- Department of Neurology, Westmead Hospital, Cnr Hawkesbury and Darcy Roads, Westmead, NSW 2145, Australia.
| |
Collapse
|
19
|
Amin Lari A, Ghavanini AA, Bokaee HR. A review of electrophysiological studies of lower motor neuron involvement in amyotrophic lateral sclerosis. Neurol Sci 2019; 40:1125-1136. [PMID: 30877611 DOI: 10.1007/s10072-019-03832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving both the upper and lower motor neuron diseases. In this review, we studied and compared different articles regarding the electrodiagnostic criteria for diagnosis of lower motor neuron pathology in ALS. We reviewed the most recent articles and metaanalysis regarding various lower motor neuron electrodiagnostic methods for ALS and their sensitivities. We concluded that Awaji Shima criteria is by far the most sensitive criteria for diagnosis of ALS.
Collapse
Affiliation(s)
- Ali Amin Lari
- Canadian Neurologic Center, Mississauga, ON, Canada.
| | | | | |
Collapse
|
20
|
Grollemund V, Pradat PF, Querin G, Delbot F, Le Chat G, Pradat-Peyre JF, Bede P. Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Front Neurosci 2019; 13:135. [PMID: 30872992 PMCID: PMC6403867 DOI: 10.3389/fnins.2019.00135] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/06/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive neurodegenerative condition with limited therapeutic options at present. Survival from symptom onset ranges from 3 to 5 years depending on genetic, demographic, and phenotypic factors. Despite tireless research efforts, the core etiology of the disease remains elusive and drug development efforts are confounded by the lack of accurate monitoring markers. Disease heterogeneity, late-stage recruitment into pharmaceutical trials, and inclusion of phenotypically admixed patient cohorts are some of the key barriers to successful clinical trials. Machine Learning (ML) models and large international data sets offer unprecedented opportunities to appraise candidate diagnostic, monitoring, and prognostic markers. Accurate patient stratification into well-defined prognostic categories is another aspiration of emerging classification and staging systems. Methods: The objective of this paper is the comprehensive, systematic, and critical review of ML initiatives in ALS to date and their potential in research, clinical, and pharmacological applications. The focus of this review is to provide a dual, clinical-mathematical perspective on recent advances and future directions of the field. Another objective of the paper is the frank discussion of the pitfalls and drawbacks of specific models, highlighting the shortcomings of existing studies and to provide methodological recommendations for future study designs. Results: Despite considerable sample size limitations, ML techniques have already been successfully applied to ALS data sets and a number of promising diagnosis models have been proposed. Prognostic models have been tested using core clinical variables, biological, and neuroimaging data. These models also offer patient stratification opportunities for future clinical trials. Despite the enormous potential of ML in ALS research, statistical assumptions are often violated, the choice of specific statistical models is seldom justified, and the constraints of ML models are rarely enunciated. Conclusions: From a mathematical perspective, the main barrier to the development of validated diagnostic, prognostic, and monitoring indicators stem from limited sample sizes. The combination of multiple clinical, biofluid, and imaging biomarkers is likely to increase the accuracy of mathematical modeling and contribute to optimized clinical trial designs.
Collapse
Affiliation(s)
- Vincent Grollemund
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- FRS Consulting, Paris, France
| | - Pierre-François Pradat
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Northern Ireland Center for Stratified Medecine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, United Kingdom
| | - Giorgia Querin
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
| | - François Delbot
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- Département de Mathématiques et Informatique, Paris Nanterre University, Nanterre, France
| | | | - Jean-François Pradat-Peyre
- Laboratoire d'Informatique de Paris 6, Sorbonne University, Paris, France
- Département de Mathématiques et Informatique, Paris Nanterre University, Nanterre, France
- Modal'X, Paris Nanterre University, Nanterre, France
| | - Peter Bede
- Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Sorbonne Université, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Computational Neuroimaging Group, Trinity College, Dublin, Ireland
| |
Collapse
|
21
|
Andrews JA, Shefner JM. Clinical neurophysiology of anterior horn cell disorders. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:317-326. [PMID: 31307610 DOI: 10.1016/b978-0-444-64142-7.00057-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of neurophysiological techniques for clinical assessment in the 20th century is closely related to the study of anterior horn cell diseases. The effects of motor axon loss on nerve conduction velocity and compound motor amplitude were elucidated first in amyotrophic lateral sclerosis (ALS), as was the characterization of reinnervation as detected by needle electromyography. The same changes noted in early studies still play a major role in the diagnosis of anterior horn cell diseases. In addition, much of modern neurophysiological assessment of motor axon quantitation, ion channel changes in neurogenic disease, and cortical physiology studies to assess both network and excitability abnormalities have all been applied to ALS. In this chapter, we summarize the clinical attributes of ALS and Spinal Muscular Atrophy, and review how clinical neurophysiology is employed in the clinical and the research setting.
Collapse
Affiliation(s)
- Jinsy A Andrews
- The Neurological Institute, Columbia University, New York, NY, United States
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
22
|
Shen DC, Xu YY, Hou B, Tai HF, Zhang K, Liu SW, Wang ZL, Feng F, Liu MS, Cui LY. Monitoring Value of Multimodal Magnetic Resonance Imaging in Disease Progression of Amyotrophic Lateral Sclerosis: A Prospective Observational Study. Chin Med J (Engl) 2018; 131:2904-2909. [PMID: 30539901 PMCID: PMC6302648 DOI: 10.4103/0366-6999.247214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Ongoing efforts have been made to identify new neuroimaging markers to track amyotrophic lateral sclerosis (ALS) progression. This study aimed to explore the monitoring value of multimodal magnetic resonance imaging (MRI) in the disease progression of ALS. Methods: From September 2015 to March 2017, ten patients diagnosed with ALS in Peking Union Medical College Hospital completed head MRI scans at baseline and during follow-up. Multimodal MRI analyses, including gray matter (GM) volume measured by voxel-based morphometry; cerebral blood flow (CBF) evaluated by arterial spin labeling; functional connectivity, including low-frequency fluctuation (fALFF) and regional homogeneity (ReHo), measured by resting-state functional MRI; and integrity of white-matter (WM) fiber tracts evaluated by diffusion tensor imaging, were performed in these patients. Comparisons of imaging metrics were made between baseline and follow-up using paired t-test. Results: In the longitudinal comparisons, the brain structure (GM volume of the right precentral gyri, left postcentral gyri, and right thalami) and perfusion (CBF of the bilateral temporal poles, left precentral gyri, postcentral gyri, and right middle temporal gyri) in both motor and extramotor areas at follow-up were impaired to different extents when compared with those at baseline (all P < 0.05, false discovery rate adjusted). Functional connectivity was increased in the motor areas (fALFF of the right precentral gyri and superior frontal gyri, and ReHo of right precentral gyri) and decreased in the extramotor areas (fALFF of the bilateral middle frontal gyri and ReHo of the right precuneus and cingulate gyri) (all P < 0.001, unadjusted). No significant changes were detected in terms of brain WM measures. Conclusion: Multimodal MRI could be used to monitor short-term brain changes in ALS patients.
Collapse
Affiliation(s)
- Dong-Chao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yin-Yan Xu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hong-Fei Tai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Kang Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shuang-Wu Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhi-Li Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ming-Sheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
23
|
Jacobsen AB, Bostock H, Tankisi H. Following disease progression in motor neuron disorders with 3 motor unit number estimation methods. Muscle Nerve 2018; 59:82-87. [DOI: 10.1002/mus.26304] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Anna Bystrup Jacobsen
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, 8000 Aarhus C Denmark
| | - Hugh Bostock
- Institute of Neurology; University College London; London UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, 8000 Aarhus C Denmark
| |
Collapse
|
24
|
Fatehi F, Grapperon AM, Fathi D, Delmont E, Attarian S. The utility of motor unit number index: A systematic review. Neurophysiol Clin 2018; 48:251-259. [PMID: 30287192 DOI: 10.1016/j.neucli.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
The need for a valid biomarker for assessing disease progression and for use in clinical trials on amyotrophic lateral sclerosis (ALS) has stimulated the study of methods that could measure the number of motor units. Motor unit number index (MUNIX) is a newly developed neurophysiological technique that was demonstrated to have a good correlation with the number of motor units in a given muscle, even though it does not necessarily accurately express the actual number of viable motor neurons. Several studies demonstrated the technique is reproducible and capable of following motor neuron loss in patients with ALS and peripheral polyneuropathies. The main goal of this review was to conduct an extensive review of the literature using MUNIX. We conducted a systematic search in English medical literature published in two databases (PubMed and SCOPUS). In this review, we aimed to answer the following queries: Comparison of MUNIX with other MUNE techniques; the reproducibility of MUNIX; the utility of MUNIX in ALS and preclinical muscles, peripheral neuropathies, and other neurological disorders.
Collapse
Affiliation(s)
- Farzad Fatehi
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France; Department of Neurology, Iranian Center of Neurological Research, Neuroscience Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aude-Marie Grapperon
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France
| | - Davood Fathi
- Department of Neurology, Iranian Center of Neurological Research, Neuroscience Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, Timone University Hospital, 13385 Marseille, France; Inserm, GMGF, Aix-Marseille University, Marseille, 13385 France.
| |
Collapse
|
25
|
Querin G, Lenglet T, Debs R, Stojkovic T, Behin A, Salachas F, Le Forestier N, Amador MDM, Lacomblez L, Meininger V, Bruneteau G, Laforêt P, Blancho S, Marchand-Pauvert V, Bede P, Hogrel JY, Pradat PF. The motor unit number index (MUNIX) profile of patients with adult spinal muscular atrophy. Clin Neurophysiol 2018; 129:2333-2340. [PMID: 30248623 DOI: 10.1016/j.clinph.2018.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Objective of this study is the comprehensive characterisation of motor unit (MU) loss in type III and IV Spinal Muscular Atrophy (SMA) using motor unit number index (MUNIX), and evaluation of compensatory mechanisms based on MU size indices (MUSIX). METHODS Nineteen type III and IV SMA patients and 16 gender- and age-matched healthy controls were recruited. Neuromuscular performance was evaluated by muscle strength testing and functional scales. Compound motor action potential (CMAP), MUNIX and MUSIX were studied in the abductor pollicis brevis (APB), abductor digiti minimi (ADM), deltoid, tibialis anterior and trapezius muscles. A composite MUNIX score was also calculated. RESULTS SMA patients exhibited significantly reduced MUNIX values (p < 0.05) in all muscles, while MUSIX was increased, suggesting active re-innervation. Significant correlations were identified between MUNIX/MUSIX and muscle strength. Similarly, composite MUNIX scores correlated with disability scores. Interestingly, in SMA patients MUNIX was much lower in the ADM than in the ABP, a pattern which is distinctly different from that observed in Amyotrophic Lateral Sclerosis. CONCLUSIONS MUNIX is a sensitive measure of MU loss in adult forms of SMA and correlates with disability. SIGNIFICANCE MUNIX evaluation is a promising candidate biomarker for longitudinal studies and pharmacological trials in adult SMA patients.
Collapse
Affiliation(s)
- Giorgia Querin
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Timothée Lenglet
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; APHP, Hôpital Pitié-Salpêtriere, Service d'Explorations Fonctionnelles, Paris, France
| | - Rabab Debs
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; APHP, Hôpital Pitié-Salpêtriere, Service d'Explorations Fonctionnelles, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anthony Behin
- APHP, Centre de Référence Maladies Neuromusculaires Paris-Est, Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Salachas
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Nadine Le Forestier
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Département de recherche en éthique, EA 1610: Etudes des sciences et techniques, Université Paris Sud/Paris Saclay, Paris, France
| | - Maria Del Mar Amador
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Lucette Lacomblez
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Vincent Meininger
- Hôpital des Peupliers, Ramsay Générale de Santé, F-75013 Paris, France
| | - Gaelle Bruneteau
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France
| | - Pascal Laforêt
- Neurology Department, Nord/Est/Ile de France Neuromuscular Center, Raymond-Poincaré Hospital, Garches, France; INSERM U1179, END-ICAP, Versailles Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France
| | - Sophie Blancho
- Institut pour la Recherche sur la Moelle Epinière et l'Encéphale (IRME), Paris, France
| | | | - Peter Bede
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Ireland
| | - Jean-Yves Hogrel
- Institute of Myology, Neuromuscular Investigation Center, Paris, France; Institut pour la Recherche sur la Moelle Epinière et l'Encéphale (IRME), Paris, France
| | - Pierre-François Pradat
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France; APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom.
| |
Collapse
|
26
|
Neuwirth C, Braun N, Claeys KG, Bucelli R, Fournier C, Bromberg M, Petri S, Goedee S, Lenglet T, Leppanen R, Canosa A, Goodman I, Al-Lozi M, Ohkubo T, Hübers A, Atassi N, Abrahao A, Funke A, Appelfeller M, Tümmler A, Finegan E, Glass JD, Babu S, Ladha SS, Kwast-Rabben O, Juntas-Morales R, Coffey A, Chaudhry V, Vu T, Saephanh C, Newhard C, Zakrzewski M, Rosier E, Hamel N, Raheja D, Raaijman J, Ferguson T, Weber M. Implementing Motor Unit Number Index (MUNIX) in a large clinical trial: Real world experience from 27 centres. Clin Neurophysiol 2018; 129:1756-1762. [DOI: 10.1016/j.clinph.2018.04.614] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
|
27
|
Bas J, Delmont E, Fatehi F, Salort-Campana E, Verschueren A, Pouget J, Lefebvre MN, Grapperon AM, Attarian S. Motor unit number index correlates with disability in Charcot-Marie-Tooth disease. Clin Neurophysiol 2018; 129:1390-1396. [PMID: 29729594 DOI: 10.1016/j.clinph.2018.04.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 03/11/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to assess the usefulness of motor unit number index (MUNIX) technique in Charcot-Marie-Tooth disease and test the correlation between MUNIX and clinical impairment. METHODS MUNIX technique was performed in the abductor pollicis brevis (APB), the abductor digiti minimi (ADM) and the tibialis anterior (TA) muscles in the nondominant side. A MUNIX sum score was calculated by adding the MUNIX of these 3 muscles. Muscle strength was measured using the MRC (medical research council) scale. Disability was evaluated using several functional scales, including CMT neuropathy score version 2 (CMTNSv2) and overall neuropathy limitation scale (ONLS). RESULTS A total of 56 CMT patients were enrolled. The MUNIX scores of the ADM, APB and TA muscles correlated with the MRC score of the corresponding muscle (p < 0.01). The MUNIX sum score correlated with the clinical scales CMTNSv2 (r = -0.65, p < 0.01) and ONLS (r = -0.57, p < 0.01). CONCLUSION MUNIX correlates with muscle strength and clinical measurements of disability in patients with CMT disease. SIGNIFICANCE The MUNIX technique evaluates motor axonal loss and correlates with disability. The MUNIX sum score may be a useful outcome measure of disease progression in CMT.
Collapse
Affiliation(s)
- Joachim Bas
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Emilien Delmont
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, UMR 7286, Medicine Faculty, Marseille, France
| | - Farzad Fatehi
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Emmanuelle Salort-Campana
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France
| | - Annie Verschueren
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Jean Pouget
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France
| | - Marie-Noëlle Lefebvre
- CIC-CPCET, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Aude-Marie Grapperon
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Shahram Attarian
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France.
| |
Collapse
|
28
|
Neuwirth C, Weber M. Unmasking the silent motor neuron loss in amyotrophic lateral sclerosis. Muscle Nerve 2018; 58:184-185. [PMID: 29572875 DOI: 10.1002/mus.26134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St Gallen, Rorschacherstrasse 95 St Gallen, CH-9007, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St Gallen, Rorschacherstrasse 95 St Gallen, CH-9007, Switzerland
| |
Collapse
|
29
|
Nandedkar SD, Barkhaus PE, Stålberg EV, Neuwirth C, Weber M. Motor unit number index: Guidelines for recording signals and their analysis. Muscle Nerve 2018; 58:374-380. [DOI: 10.1002/mus.26099] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Erik V. Stålberg
- University Hospital; Uppsala Sweden
- Institute of Neurosciences; Uppsala Sweden
| | | | | |
Collapse
|
30
|
Escorcio‐Bezerra ML, Abrahao A, Nunes KF, De Oliveira Braga NI, Oliveira ASB, Zinman L, Manzano GM. Motor unit number index and neurophysiological index as candidate biomarkers of presymptomatic motor neuron loss in amyotrophic lateral sclerosis. Muscle Nerve 2018; 58:204-212. [DOI: 10.1002/mus.26087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Marcio Luiz Escorcio‐Bezerra
- Department of Neurology and NeurosurgeryEscola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 65004039‐002São Paulo SP Brazil
| | - Agessandro Abrahao
- Department of Neurology and NeurosurgeryEscola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 65004039‐002São Paulo SP Brazil
- Sunnybrook Health Sciences Centre, Division of Neurology, Department of MedicineUniversity of TorontoToronto Ontario Canada
| | - Karlo Faria Nunes
- Department of Neurology and NeurosurgeryEscola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 65004039‐002São Paulo SP Brazil
| | - Nadia Iandoli De Oliveira Braga
- Department of Neurology and NeurosurgeryEscola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 65004039‐002São Paulo SP Brazil
| | - Acary Souza Bulle Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 65004039‐002São Paulo SP Brazil
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Division of Neurology, Department of MedicineUniversity of TorontoToronto Ontario Canada
| | - Gilberto Mastrocola Manzano
- Department of Neurology and NeurosurgeryEscola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 65004039‐002São Paulo SP Brazil
| |
Collapse
|
31
|
Miralles F. Motor unit number index (MUNIX) derivation from the relationship between the area and power of surface electromyogram: a computer simulation and clinical study. J Neural Eng 2018; 15:036013. [PMID: 29424359 DOI: 10.1088/1741-2552/aaae19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The motor unit number index (MUNIX) is a technique based on the surface electromyogram (sEMG) that is gaining acceptance as a method for monitoring motor neuron loss, because it is reliable and produces less discomfort than other electrodiagnostic techniques having the same intended purpose. MUNIX assumes that the relationship between the area of sEMG obtained at increasing levels of muscle activation and the values of a variable called 'ideal case motor unit count' (ICMUC), defined as the product of the ratio between area and power of the compound muscle action potential (CMAP) by that of the sEMG, is described by a decreasing power function. Nevertheless, the reason for this comportment is unknown. The objective of this work is to investigate if the definition of MUNIX could derive from more basic properties of the sEMG. APPROACH The CMAP and sEMG epochs obtained at different levels of muscle activation from (1) the abductor pollicis brevis (APB) muscle of persons with and without a carpal tunnel syndrome (CTS) and (2) from a computer model of sEMG generation previously published were analysed. MAIN RESULTS MUNIX reflects the power relationship existing between the area and power of a sEMG. The exponent of this function was smaller in patients with motor CTS than in the rest of the subjects. The analysis of the relationship between the area and power of a sEMG could aid in distinguishing a MUNIX reduction due to a motoneuron loss from that due to a loss of muscle fibre. SIGNIFICANCE MUNIX is derived from the relationship between the area and power of a sEMG. This relationship changes when there is a loss of motor units (MUs), which partially explains the diagnostic sensibility of MUNIX. Although the reasons for this change are unknown, it could reflect an increase in the proportion of MUs of great amplitude.
Collapse
Affiliation(s)
- Francesc Miralles
- Gabinet d'Electrodiagnòstic, Servei de Neurologia, Hospital Universitari Son Espases, Carretera de Valldemossa, 79., 07010 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
32
|
Motor unit number estimation in the quantitative assessment of severity and progression of motor unit loss in Hirayama disease. Clin Neurophysiol 2017; 128:1008-1014. [DOI: 10.1016/j.clinph.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/21/2017] [Accepted: 03/05/2017] [Indexed: 12/12/2022]
|
33
|
Peng Y, Zhang Y. Improving the repeatability of Motor Unit Number Index (MUNIX) by introducing additional epochs at low contraction levels. Clin Neurophysiol 2017; 128:1158-1165. [PMID: 28511128 DOI: 10.1016/j.clinph.2017.03.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the repeatability of (Motor Unit Number Index) MUNIX under repeatability conditions, specify the origin of variations and provide strategies for quality control. METHODS MUNIX calculations were performed on the bicep brachii muscles of eight healthy subjects. Negative effect of suboptimal electrode positions on MUNIX accuracy was eliminated by employing the high-density surface electromyography technique. MUNIX procedures that utilized a variety of surface interferential pattern (SIP) epoch recruitment strategies (including the original MUNIX procedure, two proposed improvement strategies and their combinations) were described. For each MUNIX procedure, ten thousands of different SIP pools were constructed by randomly recruiting necessary SIP epochs from a large SIP epoch pool (3 datasets, 9 independent electromyography recordings at different contraction levels per dataset and 10 SIP epochs per recording) and implemented for MUNIX calculation. The repeatability of each MUNIX procedure was assessed by summarizing the resulting MUNIX distribution and compared to investigate the effect of SIP epoch selection strategy on repeatability performance. RESULTS SIP epochs selected at lower contraction levels have a stronger influence on the repeatability of MUNIX than those selected at higher contraction levels. MUNIX under repeatability conditions follows a normal distribution and the standard deviation can be significantly reduced by introducing more epochs near the MUNIX definition line. CONCLUSIONS The MUNIX technique shows an inherent variation attributable to SIP epochs at low contraction levels. It is recommended that more epochs should be sampled at these low contraction levels to improve the repeatability. SIGNIFICANCE The present study thoroughly documented the inherent variation of MUNIX and the causes, and offered practical solutions to improve the repeatability of MUNIX.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA; Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
34
|
Grimaldi S, Duprat L, Grapperon AM, Verschueren A, Delmont E, Attarian S. Global motor unit number index sum score for assessing the loss of lower motor neurons in amyotrophic lateral sclerosis. Muscle Nerve 2017; 56:202-206. [PMID: 28164325 DOI: 10.1002/mus.25595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 11/11/2022]
Abstract
INTRODUCTION We propose a motor unit number index (MUNIX) global sum score in amyotrophic lateral sclerosis (ALS) to estimate the loss of functional motor units. METHODS MUNIX was assessed for 18 ALS patients and 17 healthy controls in 7 muscles: the abductor pollicis brevis (APB), abductor digiti minimi (ADM), tibialis anterior (TA), deltoid, trapezius, submental complex, and orbicularis oris. RESULTS MUNIX was significantly lower in ALS patients than in healthy controls for the APB, ADM, TA, and trapezius muscles. The MUNIX sum score of 4 muscles (ADM + APB + trapezius + TA) was lower in ALS patients (P = 0.01) and was correlated with clinical scores. DISCUSSION The global MUNIX sum score proposed in this study estimates the loss of lower motor neurons in several body regions, including the trapezius, and is correlated with clinical impairment in ALS patients. Muscle Nerve 56: 202-206, 2017.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Lauréline Duprat
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Aude-Marie Grapperon
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Annie Verschueren
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALS, APHM, University Hospital of Marseille/Timone University Hospital, 264 rue Saint Pierre, 13005, Marseille, France.,Aix Marseille University, INSERM, GMGF, Marseille, France
| |
Collapse
|
35
|
Cooper-Knock J, Green C, Altschuler G, Wei W, Bury JJ, Heath PR, Wyles M, Gelsthorpe C, Highley JR, Lorente-Pons A, Beck T, Doyle K, Otero K, Traynor B, Kirby J, Shaw PJ, Hide W. A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2017; 5:23. [PMID: 28302159 PMCID: PMC5353945 DOI: 10.1186/s40478-017-0424-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that lacks a predictive and broadly applicable biomarker. Continued focus on mutation-specific upstream mechanisms has yet to predict disease progression in the clinic. Utilising cellular pathology common to the majority of ALS patients, we implemented an objective transcriptome-driven approach to develop noninvasive prognostic biomarkers for disease progression. Genes expressed in laser captured motor neurons in direct correlation (Spearman rank correlation, p < 0.01) with counts of neuropathology were developed into co-expression network modules. Screening modules using three gene sets representing rate of disease progression and upstream genetic association with ALS led to the prioritisation of a single module enriched for immune response to motor neuron degeneration. Genes in the network module are important for microglial activation and predict disease progression in genetically heterogeneous ALS cohorts: Expression of three genes in peripheral lymphocytes - LILRA2, ITGB2 and CEBPD – differentiate patients with rapid and slowly progressive disease, suggesting promise as a blood-derived biomarker. TREM2 is a member of the network module and the level of soluble TREM2 protein in cerebrospinal fluid is shown to predict survival when measured in late stage disease (Spearman rank correlation, p = 0.01). Our data-driven systems approach has, for the first time, directly linked microglia to the development of motor neuron pathology. LILRA2, ITGB2 and CEBPD represent peripherally accessible candidate biomarkers and TREM2 provides a broadly applicable therapeutic target for ALS.
Collapse
|
36
|
Swash M. MUNIX in the clinic in ALS: MUNE comes of age. Clin Neurophysiol 2017; 128:482-483. [DOI: 10.1016/j.clinph.2016.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
|
37
|
Motor Unit Number Index (MUNIX) detects motor neuron loss in pre-symptomatic muscles in Amyotrophic Lateral Sclerosis. Clin Neurophysiol 2017; 128:495-500. [DOI: 10.1016/j.clinph.2016.11.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 11/22/2022]
|
38
|
Escorcio-Bezerra ML, Oliveira ASB, De Oliveira Braga NI, Manzano GM. Improving the reproducibility of motor unit number index. Muscle Nerve 2017; 55:635-638. [PMID: 27438087 DOI: 10.1002/mus.25260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/12/2022]
|
39
|
Abstract
The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.
Collapse
Affiliation(s)
- Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital and University of Queensland Centre for Clinical Research, Herston, Brisbane, 4006, Australia.
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane & Women's Hospital and University of Queensland Centre for Clinical Research, Herston, Brisbane, 4006, Australia
| |
Collapse
|
40
|
Philibert M, Grapperon AM, Delmont E, Attarian S. Monitoring the short-term effect of intravenous immunoglobulins in multifocal motor neuropathy using motor unit number index. Clin Neurophysiol 2017; 128:235-240. [PMID: 27988478 DOI: 10.1016/j.clinph.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/30/2016] [Accepted: 11/12/2016] [Indexed: 12/12/2022]
|
41
|
Traub R, Mitsumoto H. Recent advances and opportunities for improving diagnosis of amyotrophic lateral sclerosis. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1213164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rebecca Traub
- Department of Neurology, Columbia University, New York, NY, USA
| | - Hiroshi Mitsumoto
- Department of Neurology, The Eleanor and Lou Gehrig MDA/ALS, Research Center, Columbia University, New York, NY, USA
| |
Collapse
|
42
|
New insights into the clinical neurophysiological assessment of ALS. Neurophysiol Clin 2016; 46:157-63. [PMID: 27364772 DOI: 10.1016/j.neucli.2016.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022] Open
|
43
|
Neuwirth C, Burkhardt C, Alix J, Castro J, de Carvalho M, Gawel M, Goedee S, Grosskreutz J, Lenglet T, Moglia C, Omer T, Schrooten M, Weber M. Quality Control of Motor Unit Number Index (MUNIX) Measurements in 6 Muscles in a Single-Subject "Round-Robin" Setup. PLoS One 2016; 11:e0153948. [PMID: 27135747 PMCID: PMC4852906 DOI: 10.1371/journal.pone.0153948] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background Motor Unit Number Index (MUNIX) is a neurophysiological measure that provides an index of the number of lower motor neurons in a muscle. Its performance across centres in healthy subjects and patients with Amyotrophic Lateral Sclerosis (ALS) has been established, but inter-rater variability between multiple raters in one single subject has not been investigated. Objective To assess reliability in a set of 6 muscles in a single subject among 12 examiners (6 experienced with MUNIX, 6 less experienced) and to determine variables associated with variability of measurements. Methods Twelve raters applied MUNIX in six different muscles (abductor pollicis brevis (APB), abductor digiti minimi (ADM), biceps brachii (BB), tibialis anterior (TA), extensor dig. brevis (EDB), abductor hallucis (AH)) twice in one single volunteer on consecutive days. All raters visited at least one training course prior to measurements. Intra- and inter-rater variability as determined by the coefficient of variation (COV) between different raters and their levels of experience with MUNIX were compared. Results Mean intra-rater COV of MUNIX was 14.0% (±6.4) ranging from 5.8 (APB) to 30.3% (EDB). Mean inter-rater COV was 18.1 (±5.4) ranging from 8.0 (BB) to 31.7 (AH). No significant differences of variability between experienced and less experienced raters were detected. Conclusion We provide evidence that quality control for neurophysiological methods can be performed with similar standards as in laboratory medicine. Intra- and inter-rater variability of MUNIX is muscle-dependent and mainly below 20%. Experienced neurophysiologists can easily adopt MUNIX and adequate teaching ensures reliable utilization of this method.
Collapse
Affiliation(s)
- Christoph Neuwirth
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
- * E-mail:
| | - Christian Burkhardt
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - James Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, England
| | - José Castro
- Department of Neurosciences, Hospital de Santa Maria, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mamede de Carvalho
- Department of Neurosciences, Hospital de Santa Maria, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Malgorzata Gawel
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Stephan Goedee
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - Julian Grosskreutz
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Timothée Lenglet
- Département de Neurophysiologie, Groupe hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Cristina Moglia
- ALS Center of Torino, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Taha Omer
- Trinity College Biomedical Science Institute (TBSI) and Beaumont Hospital, Dublin, Ireland
| | - Maarten Schrooten
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Markus Weber
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
44
|
Motor Unit Number Index (MUNIX): A novel biomarker for ALS? Clin Neurophysiol 2016; 127:1938-9. [PMID: 26971474 DOI: 10.1016/j.clinph.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 11/21/2022]
|