1
|
Villarón-Casales C, de Bernardo N, Alarcón-Jiménez J, López-Malo D, Proaño B, Martín-Ruiz J, de la Rubia Ortí JE. Amplitude of Lower Limb Muscle Activation in Different Phases of the Illinois Test in Parkinson's Disease Patients: A Pilot Study. J Clin Med 2024; 13:5792. [PMID: 39407859 PMCID: PMC11476849 DOI: 10.3390/jcm13195792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder with high prevalence in men and is characterized by symptoms such as tremors and gait difficulties. This study aimed to determine muscle activation in patients with PD by considering sex differences. Methods: This pilot study used analytical, quantitative, observational, and case-control methods. Surface electromyography was used to assess muscle activity during a variant of the Illinois agility test. The study population comprised an experimental group of patients with PD (N = 30) and a control group of healthy individuals without the disease (N = 10). Results: The Illinois agility test revealed significant differences in completion times between the groups. The Parkinson's disease group took longer overall (p = 0.004), especially for standing up (p < 0.001) and sitting down (p = 0.002), than the control group. In the control group, sex influenced gastrocnemius muscle activation, with women showing higher activation (rs = -0.87). Women also had greater rectus femoris activation during standing and sitting, with higher activation on the right side when standing (rs = -0.66) and the left side when sitting (rs = -0.87). In the control group, men exhibited greater activation of the right biceps femoris (rs = 0.87). However, in the Parkinson's disease group, sex did not affect muscle activation. Conclusions: Patients with Parkinson's showed lower muscle activation than healthy individuals while standing up, sitting down, and walking.
Collapse
Affiliation(s)
- Carlos Villarón-Casales
- Biomechanics and Physiotherapy in Sports (BIOCAPS), Faculty of Health Sciences, European University of Valencia, 46001 Valencia, Spain; (C.V.-C.); (D.L.-M.)
| | - Nieves de Bernardo
- Department of Physiotherapy, Catholic University of Valencia, 46900 Valencia, Spain;
| | - Jorge Alarcón-Jiménez
- Department of Physiotherapy, Catholic University of Valencia, 46900 Valencia, Spain;
| | - Daniel López-Malo
- Biomechanics and Physiotherapy in Sports (BIOCAPS), Faculty of Health Sciences, European University of Valencia, 46001 Valencia, Spain; (C.V.-C.); (D.L.-M.)
| | - Belén Proaño
- Department of Nursing, Catholic University of Valencia, 46001 Valencia, Spain; (B.P.); (J.E.d.l.R.O.)
| | - Julio Martín-Ruiz
- Department of Health and Functional Assessment, Catholic University of Valencia, 46900 Valencia, Spain
| | | |
Collapse
|
2
|
Falaki A, Cuadra C, Lewis MM, Prado-Rico JM, Huang X, Latash ML. Multi-muscle synergies in preparation for gait initiation in Parkinson's disease. Clin Neurophysiol 2023; 154:12-24. [PMID: 37524005 DOI: 10.1016/j.clinph.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE We investigated changes in indices of muscle synergies prior to gait initiation and the effects of gaze shift in patients with Parkinson's disease (PD). A long-term objective of the study is to develop a method for quantitative assessment of gait-initiation problems in PD. METHODS PD patients without clinical signs of postural instability and two control groups (age-matched and young) performed a gait initiation task in a self-paced manner, with and without a quick prior gaze shift produced by turning the head. Muscle groups with parallel scaling of activation levels (muscle modes) were identified as factors in the muscle activation space. Synergy index stabilizing center of pressure trajectory in the anterior-posterior and medio-lateral directions (indices of stability) was quantified in the muscle mode space. A drop in the synergy index in preparation to gait initiation (anticipatory synergy adjustment, ASA) was quantified. RESULTS Compared to the control groups, PD patients showed significantly smaller synergy indices and ASA for both directions of the center of pressure shift. Both PD and age-matched controls, but not younger controls, showed detrimental effects of the prior gaze shift on the ASA indices. CONCLUSIONS PD patients without clinically significant posture or gait disorders show impaired stability of the center of pressure and its diminished adjustment during gait initiation. SIGNIFICANCE The indices of stability and ASA may be useful to monitor pre-clinical gait disorders, and lower ASA may be relevant to emergence of freezing of gait in PD.
Collapse
Affiliation(s)
- Ali Falaki
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Cristian Cuadra
- Department of Physical Therapy, Emory University, Atlanta, GA, USA; Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538 Santiago, Chile
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Devetak GF, Bohrer RCD, Rinaldin C, Rodacki ALF, Manffra EF. Time profile of kinematic synergies of stroke gait. Clin Biomech (Bristol, Avon) 2023; 106:105990. [PMID: 37209470 DOI: 10.1016/j.clinbiomech.2023.105990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND In stroke subjects, the motor skills differ between sides and among subjects with different levels of motor recovery, impacting inter-joint coordination. How these factors can affect the kinematic synergies over time during gait has not been investigated yet. This work aimed to determine the time profile of kinematic synergies of stroke patients throughout the single support phase of gait. METHODS Kinematic data from 17 stroke and 11 healthy individuals was recorded using a Vicon System. The Uncontrolled Manifold approach was employed to determine the distribution of components of variability and the synergy index. To analyze the time profile of kinematic synergies, we applied the statistical parametric mapping method. Comparisons were made within the stroke group (paretic and non-paretic limbs) and between groups (stroke and healthy). The stroke group was also subdivided into subgroups with worse and better motor recovery. FINDINGS There are significant differences in synergy index at the end of the single support phase between stroke and healthy subjects; paretic and non-paretic limbs; and paretic limb according to the motor recovery. Comparisons of mean values showed significantly larger values of synergy index for the paretic limb compared to the non-paretic and healthy. INTERPRETATION Despite the sensory-motor deficits and the atypical kinematic behavior, stroke patients can produce joint covariations to control the center of mass trajectory in the forward progression plane, but the modulation of the synergy is impaired, reflecting altered adjustments, especially in the paretic limb of subjects with worse levels of motor recovery.
Collapse
Affiliation(s)
- Gisele Francini Devetak
- Clinics Hospital, Federal University of Paraná (UFPR/EBSERH), Brazil; Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Brazil.
| | | | - Carla Rinaldin
- Graduate Program on Health Technology, Pontifícia Universidade Católica do Paraná (PUCPR), Brazil
| | | | | |
Collapse
|
4
|
Ghislieri M, Lanotte M, Knaflitz M, Rizzi L, Agostini V. Muscle synergies in Parkinson's disease before and after the deep brain stimulation of the bilateral subthalamic nucleus. Sci Rep 2023; 13:6997. [PMID: 37117317 PMCID: PMC10147693 DOI: 10.1038/s41598-023-34151-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
The aim of this study is to quantitatively assess motor control changes in Parkinson's disease (PD) patients after bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS), based on a novel muscle synergy evaluation approach. A group of 20 PD patients evaluated at baseline (before surgery, T0), at 3 months (T1), and at 12 months (T2) after STN-DBS surgery, as well as a group of 20 age-matched healthy control subjects, underwent an instrumented gait analysis, including surface electromyography recordings from 12 muscles. A smaller number of muscle synergies was found in PD patients (4 muscle synergies, at each time point) compared to control subjects (5 muscle synergies). The neuromuscular robustness of PD patients-that at T0 was smaller with respect to controls (PD T0: 69.3 ± 2.2% vs. Controls: 77.6 ± 1.8%, p = 0.004)-increased at T1 (75.8 ± 1.8%), becoming not different from that of controls at T2 (77.5 ± 1.9%). The muscle synergies analysis may offer clinicians new knowledge on the neuromuscular structure underlying PD motor types of behavior and how they can improve after electroceutical STN-DBS therapy.
Collapse
Affiliation(s)
- Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy.
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy.
| | - Michele Lanotte
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy
- AOU Città della Salute e della Scienza di Torino, 10126, Turin, Italy
| | - Marco Knaflitz
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
| | - Laura Rizzi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126, Turin, Italy
- AOU Città della Salute e della Scienza di Torino, 10126, Turin, Italy
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, 10129, Turin, Italy
| |
Collapse
|
5
|
de Freitas PB, Freitas SMSF, Prado-Rico JM, Lewis MM, Du G, Yanosky JD, Huang X, Latash ML. Synergic control in asymptomatic welders during multi-finger force exertion and load releasing while standing. Neurotoxicology 2022; 93:324-336. [PMID: 36309163 PMCID: PMC10398836 DOI: 10.1016/j.neuro.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Motor synergies, i.e., neural mechanisms that organize multiple motor elements to ensure stability of actions, are affected by several neurological condition. Asymptomatic welders showed impaired synergy controlling the stability of multi-finger action compared to non-welders and this impairment was associated with microstructural damage in the globus pallidus. We further explored the effect of welding-related metal exposure on multi-finger synergy and extended our investigation to posture-stabilizing synergy during a standing task. Occupational, MRI, and performance-stabilizing synergies during multi-finger accurate force production and load releasing while standing were obtained from 29 welders and 19 age- and sex-matched controls. R2* and R1 relaxation rate values were used to estimate brain iron and manganese content, respectively, and diffusion tensor imaging was used to reflect brain microstructural integrity. Associations of brain MRI (caudate, putamen, globus pallidus, and red nucleus), and motor synergy were explored by group status. The results revealed that welders had higher R2* values in the caudate (p = 0.03), putamen (p = 0.01), and red nucleus (p = 0.08, trend) than controls. No group effect was revealed on multi-finger synergy index during steady-state phase of action (ΔVZss). Compared to controls, welders exhibited lower ΔVZss (-0.106 ± 0.084 vs. 0.160 ± 0.092, p = 0.04) and variance that did not affect the performance variable (VUCM, 0.022 ± 0.003 vs. 0.038 ± 0.007, p = 0.03) in the load releasing, postural task. The postural synergy index, ΔVZss, was associated negatively with higher R2* in the red nucleus in welders (r = -0.44, p = 0.03), but not in controls. These results suggest that the synergy index in the load releasing during a standing task may reflect welding-related neurotoxicity in workers with chronic metals exposure. This finding may have important clinical and occupational health implications.
Collapse
Affiliation(s)
- Paulo B de Freitas
- Interdisciplinary Graduate Program in Health Science, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy, Universidade Cidade de São Paulo, São Paulo, SP, Brazil
| | - Janina M Prado-Rico
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Jeff D Yanosky
- Department of Public Health Science, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuemei Huang
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Pharmacology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Radiology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Neurosurgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA; Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Intra-muscle Synergies Stabilizing Reflex-mediated Force Changes. Neuroscience 2022; 505:59-77. [DOI: 10.1016/j.neuroscience.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022]
|
7
|
Synergies Stabilizing Vertical Posture in Spaces of Control Variables. Neuroscience 2022; 500:79-94. [PMID: 35952997 DOI: 10.1016/j.neuroscience.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
In this study, we address the question: Can the central nervous system stabilize vertical posture in the abundant space of neural commands? We assume that the control of vertical posture is associated with setting spatial referent coordinates (RC) for the involved muscle groups, which translates into two basic commands, reciprocal and co-activation. We explored whether the two commands co-varied across trials to stabilize the initial postural state. Young, healthy participants stood quietly against an external horizontal load and were exposed to smooth unloading episodes. Linear regression between horizontal force and center of mass coordinate during the unloading phase was computed to define the intercept (RC) and slope (apparent stiffness, k). Hyperbolic regression between the intercept and slope across unloading episodes and randomization analysis both demonstrated high indexes of co-variation stabilizing horizontal force in the initial state. Higher co-variation indexes were associated with lower average k values across the participants suggesting destabilizing effects of muscle coactivation. Analysis of deviations in the {RC; k} space keeping the posture unchanged (motor equivalent) between two states separated by a voluntary quick body sway showed significantly larger motor equivalent deviations compared to non-motor equivalent ones. This is the first study demonstrating posture-stabilizing synergies in the space of neural control variables using various computational methods. It promises direct applications to studies of postural disorders and rehabilitation.
Collapse
|
8
|
Latash ML, Yamagata M. Recent Advances in the Neural Control of Movements: Lessons for Functional Recovery. Phys Ther Res 2021; 25:1-11. [PMID: 35582118 PMCID: PMC9095426 DOI: 10.1298/ptr.r0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 09/05/2023]
Abstract
We review the current views on the control and coordination of movements following the traditions set by Nikolai Bernstein. In particular, we focus on the theory of neural control of effectors - from motor units to individual muscles, to joints, limbs, and to the whole body - with spatial referent coordinates organized into a hierarchy with multiple few-to-many mappings. Further, we discuss synergies ensuring stability of natural human movements within the uncontrolled manifold hypothesis. Synergies are organized within the neural control hierarchy based on the principle of motor abundance. Movement disorders are discussed as consequences of an inability to use the whole range of changes in referent coordinates (as in spasticity) and an inability to ensure controlled stability of salient variables as reflected in indices of multi-element synergies and their adjustments in preparation to actions (as in brain disorders, including Parkinson's disease, multiple-system atrophy, and stroke). At the end of the review, we discuss possible implications of this theoretical approach to peripheral disorders and their rehabilitations using, as an example, osteoarthritis. In particular, "joint stiffening" is viewed as a maladaptive strategy, which can compromise stability of salient variables during walking.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, USA
| | - Momoko Yamagata
- Department of Human Development, Graduate School of Human Development and Environment, Kobe University, Japan
- Department of Physical Therapy, Human Health Science, Graduate School of Medicine, Kyoto University, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Japan
| |
Collapse
|
9
|
Latash ML. One more time about motor (and non-motor) synergies. Exp Brain Res 2021; 239:2951-2967. [PMID: 34383080 DOI: 10.1007/s00221-021-06188-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
We revisit the concept of synergy based on the recently translated classical book by Nikolai Bernstein (On the construction of movements, Medgiz, Moscow 1947; Latash, Bernstein's Construction of Movements, Routledge, Abingdon 2020b) and progress in understanding the physics and neurophysiology of biological action. Two aspects of synergies are described: organizing elements into stable groups (modes) and ensuring dynamical stability of salient performance variables. The ability of the central nervous system to attenuate synergies in preparation for a quick action-anticipatory synergy adjustments-is emphasized. Recent studies have demonstrated synergies at the level of hypothetical control variables associated with spatial referent coordinates for effectors. Overall, the concept of synergies fits naturally the hierarchical scheme of control with referent coordinates with an important role played by back-coupling loops within the central nervous system and from peripheral sensory endings. Further, we review studies showing non-trivial changes in synergies with development, aging, fatigue, practice, and a variety of neurological disorders. Two aspects of impaired synergic control-impaired stability and impaired agility-are introduced. The recent generalization of the concept of synergies for non-motor domains, including perception, is discussed. We end the review with a list of unresolved and troubling issues.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
Stability of Action and Kinesthetic Perception in Parkinson's Disease. J Hum Kinet 2021; 76:145-159. [PMID: 33603931 PMCID: PMC7877286 DOI: 10.2478/hukin-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present a review of action and perception stability within the theoretical framework based on the idea of control with spatial referent coordinates for the effectors at a number of hierarchical levels. Stability of salient variables is ensured by synergies, neurophysiological structures that act in multi-dimensional spaces of elemental variables and limit variance to the uncontrolled manifold during action and iso-perceptual manifold during perception. Patients with Parkinson’s disease show impaired synergic control reflected in poor stability (low synergy indices) and poor agility (low indices of anticipatory synergy adjustments prior to planned quick actions). They also show impaired perception across modalities, including kinesthetic perception. We suggest that poor stability at the level of referent coordinates can be the dominant factor leading to poor stability of percepts.
Collapse
|
11
|
Ambike S, Penedo T, Kulkarni A, Santinelli FB, Barbieri FA. Step length synergy while crossing obstacles is weaker in patients with Parkinson's disease. Gait Posture 2021; 84:340-345. [PMID: 33454501 DOI: 10.1016/j.gaitpost.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Impaired movement stability is a common symptom of Parkinson's disease (PD) that leads to falls and mishandled objects. Decline in synergistic stabilization of movement in PD patients has been observed in manual and postural tasks. However, locomotor synergies have not been quantified in PD patients. RESEARCH QUESTION The purpose of this work was to quantify the strength of the synergy stabilizing the step length while crossing an obstacle in PD patients. We hypothesized that (1) the distances of the front and rear feet relative to the obstacle would display compensatory across-trial co-variance that stabilizes step length in PD patients and age-matched controls, and (2) the step-length stabilization would be weaker in PD patients. METHODS Thirteen PD patients and eleven healthy age-matched controls walked up to and stepped over a 15 cm high obstacle fifteen times.We measured the distances of the rear and front foot toes from the obstacle during the crossing step. We used the uncontrolled manifold method to parse the across-trial variance in toe distances into a component that maintains the step length and a component that changes the step length. These variance components yielded the synergy index that quantified the stability of step length. RESULTS Step length was stabilized in PD patients as well as controls. However, the synergy index was 53% lower in the PD patients (p < 0.01). Thus, both our hypotheses were supported. SIGNIFICANCE This is the first study reporting impaired locomotor synergies in PD patients. Most PD patients in our sample were early stage (10 out of 13 patients were Hoehn-Yahr ≤ 2). Therefore, this result motivates further studies to establish step-length synergy during adaptive locomotor tasks as a biomarker for early detection of locomotor impairments in PD patients.
Collapse
Affiliation(s)
- Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States.
| | - Tiago Penedo
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Ashwini Kulkarni
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Felipe Balistieri Santinelli
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Fabio A Barbieri
- Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Graduate Program in Movement Sciences, School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
12
|
Solnik S, Furmanek MP, Piscitelli D. Movement Quality: A Novel Biomarker Based on Principles of Neuroscience. Neurorehabil Neural Repair 2020; 34:1067-1077. [PMID: 33185150 DOI: 10.1177/1545968320969936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A major problem in neurorehabilitation is the lack of objective outcomes to measure movement quality. Movement quality features, such as coordination and stability, are essential for everyday motor actions. These features allow reacting to continuously changing environment or to resist external perturbations. Neurological disorders affect movement quality, leading to functionally impaired movements. Recent findings suggest that the central nervous system organizes motor elements (eg, muscles, joints, fingers) into task-specific ensembles to stabilize motor tasks performance. A method to quantify this feature has been previously developed based on the uncontrolled manifold (UCM) hypothesis. UCM quantifies movement quality in a spatial-temporal domain using intertrial analysis of covariation between motor elements. In this point-of-view article, we first describe major obstacles (eg, the need for group analysis) that interfere with UCM application in clinical settings. Then, we propose a process of quantifying movement quality for a single individual with a novel use of bootstrapping simulations and UCM analysis. Finally, we reanalyze previously published data from individuals with neurological disorders performing a wide range of motor tasks, that is, multi-digit pressing and postural balance tasks. Our method allows one to assess motor quality impairments in a single individual and to detect clinically important motor behavior changes. Our solution may be incorporated into a clinical setting to assess sensorimotor impairments, evaluate the effects of specific neurological treatments, or track movement quality recovery over time. We also recommended the proposed solution to be used jointly with a typical statistical analysis of UCM parameters in cohort studies.
Collapse
Affiliation(s)
- Stanislaw Solnik
- University of North Georgia, Dahlonega, GA, USA.,University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Mariusz P Furmanek
- Northeastern University, Boston, MA, USA.,The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Daniele Piscitelli
- McGill University, Montreal, Quebec, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Quebec, Canada
| |
Collapse
|
13
|
Laws of nature that define biological action and perception. Phys Life Rev 2020; 36:47-67. [PMID: 32868159 DOI: 10.1016/j.plrev.2020.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
We describe a physical approach to biological functions, with the emphasis on the motor and sensory functions. The approach assumes the existence of biology-specific laws of nature uniting salient physical variables and parameters. In contrast to movements in inanimate nature, actions are produced by changes in parameters of the corresponding laws of nature. For movements, parameters are associated with spatial referent coordinates (RCs) for the effectors. Stability of motor actions is ensured by the abundant mapping of RCs across hierarchical control levels. The sensory function is viewed as based on an interaction of efferent and afferent signals leading to an iso-perceptual manifold where percepts of salient sensory variables are stable. This approach offers novel interpretations for a variety of known neurophysiological and behavioral phenomena and makes a number of novel testable predictions. In particular, we discuss novel interpretations for the well-known phenomena of agonist-antagonist co-activation and vibration-induced illusions of both position and force. We also interpret results of several new experiments with unintentional force changes and with analysis of accuracy of perception of variables produced by elements of multi-element systems. Recently, this approach has been expanded to interpret motor disorders including spasticity and consequences of subcortical disorders (such as Parkinson's disease). We suggest that the approach can be developed for cognitive functions.
Collapse
|
14
|
Patel M, Nilsson MH, Rehncrona S, Tjernström F, Magnusson M, Johansson R, Fransson PA. Effects of Deep Brain Stimulation on Postural Control in Parkinson's Disease. Comput Biol Med 2020; 122:103828. [DOI: 10.1016/j.compbiomed.2020.103828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
|
15
|
Mileti I, Zampogna A, Santuz A, Asci F, Del Prete Z, Arampatzis A, Palermo E, Suppa A. Muscle Synergies in Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3209. [PMID: 32517013 PMCID: PMC7308810 DOI: 10.3390/s20113209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Over the last two decades, experimental studies in humans and other vertebrates have increasingly used muscle synergy analysis as a computational tool to examine the physiological basis of motor control. The theoretical background of muscle synergies is based on the potential ability of the motor system to coordinate muscles groups as a single unit, thus reducing high-dimensional data to low-dimensional elements. Muscle synergy analysis may represent a new framework to examine the pathophysiological basis of specific motor symptoms in Parkinson's disease (PD), including balance and gait disorders that are often unresponsive to treatment. The precise mechanisms contributing to these motor symptoms in PD remain largely unknown. A better understanding of the pathophysiology of balance and gait disorders in PD is necessary to develop new therapeutic strategies. This narrative review discusses muscle synergies in the evaluation of motor symptoms in PD. We first discuss the theoretical background and computational methods for muscle synergy extraction from physiological data. We then critically examine studies assessing muscle synergies in PD during different motor tasks including balance, gait and upper limb movements. Finally, we speculate about the prospects and challenges of muscle synergy analysis in order to promote future research protocols in PD.
Collapse
Affiliation(s)
- Ilaria Mileti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (Z.D.P.); (E.P.)
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (F.A.)
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (A.S.); (A.A.)
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (F.A.)
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (Z.D.P.); (E.P.)
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (A.S.); (A.A.)
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (I.M.); (Z.D.P.); (E.P.)
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (F.A.)
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
16
|
Synergic control of action in levodopa-naïve Parkinson's disease patients: I. Multi-finger interaction and coordination. Exp Brain Res 2019; 238:229-245. [PMID: 31838566 DOI: 10.1007/s00221-019-05709-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023]
Abstract
We explored the origin of the impaired control of action stability in Parkinson's disease (PD) by testing levodopa-naïve PD patients to disambiguate effects of PD from possible effects of long-term exposure to levodopa. Thirteen levodopa-naïve PD patients and 13 controls performed single- and multi-finger force production tasks, including producing a self-paced quick force pulse into a target. A subgroup of patients (n = 10) was re-tested about 1 h after the first dose of levodopa. Compared to controls, PD patients showed lower maximal forces and synergy indices stabilizing total force (reflecting the higher inter-trial variance component affecting total force). In addition, PD patients showed a trend toward shorter anticipatory synergy adjustments (a drop in the synergy index in preparation to a quick action) and larger non-motor equivalent finger force deviations. Lower maximal force, higher unintentional force production (enslaving) and higher inter-trial variance indices occurred in PD patients after one dosage of levodopa. We conclude that impairment in synergies is present in levodopa-naïve patients, mainly in indices reflecting stability (synergy index), but not agility (anticipatory synergy adjustments). A single dose of levodopa, however, did not improve synergy indices, as it did in PD patients on chronic anti-PD medication, suggesting a different mechanism of action. The results suggest that indices of force-stabilizing synergies may be used as an early behavioral sign of PD, although it may not be sensitive to acute drug effects in drug-naïve patients.
Collapse
|
17
|
Nardini AG, Freitas SMSF, Falaki A, Latash ML. Preparation to a quick whole-body action: control with referent body orientation and multi-muscle synergies. Exp Brain Res 2019; 237:1361-1374. [PMID: 30877340 PMCID: PMC6475607 DOI: 10.1007/s00221-019-05510-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 11/28/2022]
Abstract
We examined the control of postural stability in preparation to a discrete, quick whole-body sway toward a target and back to the initial position. Several predictions were tested based on the theory of control with referent body orientation and the notion of multi-muscle synergies stabilizing center of pressure (COP) coordinate. Healthy, young adults performed fast, discrete whole-body motion forward-and-back and backward-and-back under visual feedback on the COP. We used two methods to assess COP stability, analysis of inter-trial variance and analysis of motor equivalence in the muscle activation space. Actions were always preceded by COP counter-movements. Backward COP shifts were faster, and the indices of multi-muscle synergies stabilizing COP were higher prior to those actions. Patterns of muscle activation at the motion onset supported the idea of a gradual shift in the referent body orientation. Prior to the backward movements, there was a trend toward higher muscle co-activation, compared to reciprocal activation. We found strong correlations between the sets of indices of motor equivalence and those of inter-trial variance. Overall, the results support the theory of control with referent coordinates and the idea of multi-muscle synergies stabilizing posture by confirming a number of non-trivial predictions based on these concepts. The findings favor using indices of motor equivalence in clinical studies to minimize the number of trials performed by each subject.
Collapse
Affiliation(s)
- Alethéa Gomes Nardini
- Graduate Program in Physical Therapy, City University of São Paulo, São Paulo, SP, Brazil
- Undergraduate Program in Physical Therapy, University of Paulista, São Paulo, SP, Brazil
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy, City University of São Paulo, São Paulo, SP, Brazil
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Neurology, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, USA
| | - Ali Falaki
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Mark L Latash
- Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Coordination in adults with neurological impairment - A systematic review of uncontrolled manifold studies. Gait Posture 2019; 69:66-78. [PMID: 30677709 DOI: 10.1016/j.gaitpost.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Analysis of sensorimotor synergies has been greatly advanced by the Uncontrolled Manifold (UCM) approach. The UCM method is based on partitioning inter-trial variance displayed by elemental variables into 'good' (VUCM) and 'bad' (VORT) variability that, respectively, indicate maintenance or loss of task stability. In clinical populations, these indices can be used to investigate the strength, flexibility, stereotypy and agility of synergistic control. RESEARCH QUESTION How are synergies affected by neurological impairment in adults? Specifically, this study aimed to determine i) the impact of pathology on VUCM, VORT, and their ratio (synergy index); ii) the relationship between synergy indices and functional performance; iii) changes in anticipatory synergy adjustments (ASAs); and iv) the effects of interventions on synergies. METHODS Systematic review of UCM studies on adults with neurological impairment. RESULTS Most of the 17 studies had moderate to high quality scores in the adapted Critical Review Form and the UCM reporting quality checklist developed for this review. i) Most of the studies found reduced synergy indices for patients with Parkinson's disease (PD), olivo-ponto-cerebellar atrophy, multiple sclerosis and spinocerebellar degeneration, with variable levels of change in VUCM and VORT. Reduction in synergy indices was not as consistent for stroke, in three out of six studies it was unchanged. ii) Five of seven studies found no significant correlations between scores on motor function scales and UCM indices. iii) Seven studies consistently reported ASAs that are smaller in magnitude, delayed, or both, for patients compared to healthy controls. iv) Two studies reported increased synergy indices, either via increase in VUCM or decrease in VORT, after dopaminergic drugs for patients with PD. There were similar synergy indices but improved ASAs after deep brain stimulation for patients with PD. SIGNIFICANCE UCM can provide reliable and sensitive indicators of altered synergistic control in adults with neurological impairment.
Collapse
|
19
|
Quantitative analysis of multi-element synergy stabilizing performance: comparison of three methods with respect to their use in clinical studies. Exp Brain Res 2018; 237:453-465. [PMID: 30460392 DOI: 10.1007/s00221-018-5436-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
A number of analyses associated with the uncontrolled manifold (UCM) hypothesis have been used recently to investigate stability of actions across populations. We explored whether some of those methods have an advantage for clinical studies because they require fewer trials to achieve consistent findings. We compared the number of trials needed for the analysis of inter-trial variance, analysis of motor equivalence, and analysis in the space of referent coordinates. Young healthy adults performed four-finger accurate force production tasks under visual feedback with the right (dominant) and left hand over three days. Three methods [analytical (M1), experimental (M2), and cumulative mean (M3) methods] were used to define the minimal number of trials required to reach certain statistical criteria. Two of these methods, M1 and M2, showed qualitatively similar results. Fewer trials (M1: 5-13, M2: 4-10) were needed for analysis of motor equivalence compared to inter-trial variance analysis (M1: 14-24, M2: 10-14). The third method (M3) showed no major differences among the outcome variables. The index of synergy in the inter-trial variance analysis required a very small number of trials (M1, M2: 2-4). Variables related to referent coordinates required only a few trials (under 3), whereas the synergy index in this analysis required the largest number of trials (M1: 24-34, M2: 12-16). This is the first study to quantify the number of trials needed for UCM-based methods of assessing motor coordination broadly used in clinical studies. Clinical studies can take advantage of specific recommendations based on the current data regarding the number of trials needed for each analysis thus allowing minimizing the test session duration without compromising data reliability.
Collapse
|
20
|
Palermo E, Suppa A. Deep brain stimulation and motor synergies in Parkinson's disease. Clin Neurophysiol 2018; 129:1309-1310. [PMID: 29661596 DOI: 10.1016/j.clinph.2018.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Affiliation(s)
- E Palermo
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - A Suppa
- Department of Human Neuroscience, Sapienza University of Rome, Italy; IRCCS Neuromed Institute, Pozzilli IS, Italy.
| |
Collapse
|