1
|
Gettings JV, Stowe RC. Deep Brain Stimulator (DBS) Artifact in the EEG of a Pediatric Patient. Clin EEG Neurosci 2024; 55:572-575. [PMID: 37611196 DOI: 10.1177/15500594231194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We report the first case of deep brain stimulator (DBS) artifact in the EEG of a pediatric patient. Our case is a 7-year-old male with bilateral globus pallidus interna (GPi) DBS for whom the EEG recorded a rhythmic 7.5 Hz theta activity on EEG related to DBS artifact. This artifact was also appreciated as a monochromatic invariable frequency band over 7.5 Hz on density spectral array (DSA). This rhythmic artifact may mimic an ictal pattern and should be recognized as artifact in order to avoid unnecessary treatment with anti-seizure medications (ASM).
Collapse
Affiliation(s)
- Jennifer V Gettings
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert C Stowe
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Voegtle A, Terzic L, Farahat A, Hartong N, Galazky I, Hinrichs H, Nasuto SJ, de Oliveira Andrade A, Knight RT, Ivry RB, Voges J, Deliano M, Buentjen L, Sweeney-Reed CM. Ventrointermediate thalamic stimulation improves motor learning in humans. Commun Biol 2024; 7:798. [PMID: 38956172 PMCID: PMC11220095 DOI: 10.1038/s42003-024-06462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Ventrointermediate thalamic stimulation (VIM-DBS) modulates oscillatory activity in a cortical network including primary motor cortex, premotor cortex, and parietal cortex. Here we show that, beyond the beneficial effects of VIM-DBS on motor execution, this form of invasive stimulation facilitates production of sequential finger movements that follow a repeated sequence. These results highlight the role of thalamo-cortical activity in motor learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| | - Laila Terzic
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Amr Farahat
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Nanna Hartong
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Imke Galazky
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences-CBBS, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Slawomir J Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, UK
| | - Adriano de Oliveira Andrade
- Faculty of Electrical Engineering, Center for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
| | - Richard B Ivry
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California-Berkeley, Berkeley, CA, USA
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Matthias Deliano
- Combinatorial Neuroimaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lars Buentjen
- Department of Stereotactic Neurosurgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences-CBBS, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
3
|
Bosch TJ, Cole RC, Vuong SM, Flouty O, Singh A. Modulation of Cerebellar Oscillations with Subthalamic Stimulation in Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1417-1426. [PMID: 39331106 PMCID: PMC11492035 DOI: 10.3233/jpd-240065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/28/2024]
Abstract
Background Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) has emerged as a potent treatment for alleviating motor symptoms in Parkinson's disease (PD). Despite its effectiveness, the impact of high frequency STN-DBS on cerebellar oscillations remains unclear, posing an intriguing challenge for neural modulation. Given the direct and indirect connections between the STN and cerebellum, we investigated whether STN-DBS affects cerebellar oscillations. Objective To observe the effects of STN-DBS on cerebellar oscillations in patients with PD. Methods We recruited 15 PD patients receiving STN-DBS. Electroencephalographic (EEG) signals were recorded from cerebellar regions during resting-state conditions in both the OFF-DBS and STN-DBS conditions. Our analyses centered on spectral features, particularly theta and beta oscillations, guided by prior research and correlation tests to investigate the relationship between oscillatory changes and motor symptom severity. Results In the mid-cerebellar (Cbz) region, we observed a significant increase in the relative power in all frequency bands, including theta and beta oscillations during STN-DBS, showing the global effect of DBS. Importantly, the correlation results indicated significant associations between mid-cerebellar (Cbz) beta power during the OFF condition and motor severity, which were not evident during STN-DBS. Interestingly, correlations between beta power and motor severity were not observed at the mid-occipital (Oz) and mid-frontal (Cz) regions. Notably, signal similarity analyses demonstrated no evidence of volume conduction effects between the mid-cerebellar (Cbz) and nearby mid-occipital (Oz) regions. Conclusions While these findings provide valuable insights into the complex interplay between STN-DBS and neural oscillations, further research is essential to decipher their precise functional significance and clinical implications. Understanding these intricacies may contribute to the optimization of DBS therapies for PD.
Collapse
Affiliation(s)
- Taylor J. Bosch
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | - Rachel C. Cole
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Shawn M. Vuong
- Department of Neurosurgery, University of South Dakota, Sioux Falls, SD, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
- Department of Neuroscience, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
4
|
Bindra T, Ingram DG. Images: Polysomnographic artifact in a patient with Tourette syndrome. J Clin Sleep Med 2023; 19:2149-2151. [PMID: 38041536 PMCID: PMC10692946 DOI: 10.5664/jcsm.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 12/03/2023]
Abstract
Patients with Tourette syndrome frequently have sleep disturbances that may require polysomnographic testing. The use of deep brain stimulators is increasing with expanding indications including children with medically intractable Tourette syndrome. It is important to understand the effect the stimulator can have on polysomnographic monitoring. Herein we present an interesting case of an adolescent with medically intractable Tourette syndrome with a deep brain stimulator implant who underwent a polysomnogram demonstrating rhythmic, monomorphic artifact. CITATION Bindra T, Ingram DG. Images: Polysomnographic artifact in a patient with Tourette syndrome. J Clin Sleep Med. 2023;19(12):2149-2151.
Collapse
Affiliation(s)
- Tejwant Bindra
- Division of Pulmonary and Sleep Medicine, Children’s Mercy Hospital, Kansas City, Missouri
| | - David G. Ingram
- Division of Pulmonary and Sleep Medicine, Children’s Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
5
|
Venkatesh P, Wolfe C, Lega B. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
6
|
Neumann WJ, Gilron R, Little S, Tinkhauser G. Adaptive Deep Brain Stimulation: From Experimental Evidence Toward Practical Implementation. Mov Disord 2023. [PMID: 37148553 DOI: 10.1002/mds.29415] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023] Open
Abstract
Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity. Pilot studies investigating different aDBS control strategies showed promising results, but the short experimental study designs have not yet supported individualized analyses of patient-specific factors in biomarker and therapeutic response dynamics. Notwithstanding the clear theoretical advantages of a patient-tailored approach, these new stimulation possibilities open a vast and mostly unexplored parameter space, leading to practical hurdles in the implementation and development of clinical trials. Therefore, a thorough understanding of the neurophysiological and neurotechnological aspects related to aDBS is crucial to develop evidence-based treatment regimens for clinical practice. Therapeutic success of aDBS will depend on the integrated development of strategies for feedback signal identification, artifact mitigation, signal processing, and control policy adjustment, for precise stimulation delivery tailored to individual patients. The present review introduces the reader to the neurophysiological foundation of aDBS for Parkinson's disease (PD) and other network disorders, explains currently available aDBS control policies, and highlights practical pitfalls and difficulties to be addressed in the upcoming years. Finally, it highlights the importance of interdisciplinary clinical neurotechnological research within and across DBS centers, toward an individualized patient-centered approach to invasive brain stimulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Simon Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Bosch TJ, Cole RC, Bezchlibnyk Y, Flouty O, Singh A. Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson's Disease Patients. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225113. [PMID: 37092236 DOI: 10.3233/jpd-225113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson's disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillations have not been compared. OBJECTIVE To compare the effects of VLF-DBS and HF-DBS at the STN on a lower-limb pedaling motor task and motor cortical oscillations in patients with PD and with and without freezing of gait (FOG). METHODS Thirteen PD patients with bilateral STN-DBS performed a cue-triggered lower-limb pedaling motor task with electroencephalography (EEG) in OFF-DBS, VLF-DBS (4 Hz), and HF-DBS (120-175 Hz) states. We performed spectral analysis on the preparatory signals and compared GO-cue-triggered theta and movement-related beta oscillations over motor cortical regions across DBS conditions in PD patients and subgroups (PDFOG-and PDFOG+). RESULTS Both VLF-DBS and HF-DBS decreased the linear speed of the pedaling task in PD, and HF-DBS decreased speed in both PDFOG-and PDFOG+. Preparatory theta and beta activities were increased with both stimulation frequencies. Both DBS frequencies increased motor cortical theta activity during pedaling movement in PD patients, but this increase was only observed in PDFOG + group. Beta activity was not significantly different from OFF-DBS at either frequency regardless of FOG status. CONCLUSION Results suggest that VL and HF DBS may induce similar effects on lower-limb kinematics by impairing movement speed and modulating motor cortical oscillations in the lower frequency band.
Collapse
Affiliation(s)
- Taylor J Bosch
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Yarema Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
8
|
Bangel KA, Bais M, Eijsker N, Schuurman PR, van den Munckhof P, Figee M, Smit DJA, Denys D. Acute effects of deep brain stimulation on brain function in obsessive-compulsive disorder. Clin Neurophysiol 2023; 148:109-117. [PMID: 36774324 DOI: 10.1016/j.clinph.2022.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an effective treatment for refractory obsessive-compulsive disorder (OCD) yet neural markers of optimized stimulation parameters are largely unknown. We aimed to describe (sub-)cortical electrophysiological responses to acute DBS at various voltages in OCD. METHODS We explored how DBS doses between 3-5 V delivered to the ventral anterior limb of the internal capsule of five OCD patients affected electroencephalograms and intracranial local field potentials (LFPs). We focused on theta power/ phase-stability, given their previously established role in DBS for OCD. RESULTS Cortical theta power and theta phase-stability did not increase significantly with DBS voltage. DBS-induced theta power peaks were seen at the previously defined individualized therapeutic voltage. Although LFP power generally increased with DBS voltages, this occurred mostly in frequency peaks that overlapped with stimulation artifacts limiting its interpretability. Though highly idiosyncratic, three subjects showed significant acute DBS effects on electroencephalogram theta power and four subjects showed significant carry-over effects (pre-vs post DBS, unstimulated) on LFP and electroencephalogram theta power. CONCLUSIONS Our findings challenge the presence of a consistent dose-response relationship between stimulation voltage and brain activity. SIGNIFICANCE Theta power may be investigated further as a neurophysiological marker to aid personalized DBS voltage optimization in OCD.
Collapse
Affiliation(s)
- Katrin A Bangel
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Institute of Neuroscience, The Medical School, Newcastle University, NE2 4HH, UK; Department of Medical Physics and Clinical Engineering, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Melisse Bais
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Nadine Eijsker
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - P Richard Schuurman
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn Figee
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Dirk J A Smit
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands.
| | - Damiaan Denys
- Amsterdam University Medical Centers, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Baldwin M, Palka S, Leppla D, Hollis B, Van Cott AC, Castellano JF. Unusual EEG Artifact in Patients with DBS. Clin EEG Neurosci 2022; 53:558-561. [PMID: 34859702 DOI: 10.1177/15500594211063710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maria Baldwin
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.,6595University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sydney Palka
- 6595University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna Leppla
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | | | - Anne C Van Cott
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.,6595University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
10
|
Chen P, Kim T, Dastin-van Rijn E, Provenza NR, Sheth SA, Goodman WK, Borton DA, Harrison MT, Darbon J. Periodic Artifact Removal With Applications to Deep Brain Stimulation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2692-2699. [PMID: 36121940 PMCID: PMC9553325 DOI: 10.1109/tnsre.2022.3205453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation (DBS) therapies have shown clinical success in the treatment of a number of neurological illnesses, including obsessive-compulsive disorder, epilepsy, and Parkinson's disease. An emerging strategy for increasing the efficacy of DBS therapies is to develop closed-loop, adaptive DBS systems that can sense biomarkers associated with particular symptoms and in response, adjust DBS parameters in real-time. The development of such systems requires extensive analysis of the underlying neural signals while DBS is on, so that candidate biomarkers can be identified and the effects of varying the DBS parameters can be better understood. However, DBS creates high amplitude, high frequency stimulation artifacts that prevent the underlying neural signals and thus the biological mechanisms underlying DBS from being analyzed. Additionally, DBS devices often require low sampling rates, which alias the artifact frequency, and rely on wireless data transmission methods that can create signal recordings with missing data of unknown length. Thus, traditional artifact removal methods cannot be applied to this setting. We present a novel periodic artifact removal algorithm for DBS applications that can accurately remove stimulation artifacts in the presence of missing data and in some cases where the stimulation frequency exceeds the Nyquist frequency. The numerical examples suggest that, if implemented on dedicated hardware, this algorithm has the potential to be used in embedded closed-loop DBS therapies to remove DBS stimulation artifacts and hence, to aid in the discovery of candidate biomarkers in real-time. Code for our proposed algorithm is publicly available on Github.
Collapse
|
11
|
Smith EE, Choi KS, Veerakumar A, Obatusin M, Howell B, Smith AH, Tiruvadi V, Crowell AL, Riva-Posse P, Alagapan S, Rozell CJ, Mayberg HS, Waters AC. Time-frequency signatures evoked by single-pulse deep brain stimulation to the subcallosal cingulate. Front Hum Neurosci 2022; 16:939258. [PMID: 36061500 PMCID: PMC9433578 DOI: 10.3389/fnhum.2022.939258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Precision targeting of specific white matter bundles that traverse the subcallosal cingulate (SCC) has been linked to efficacy of deep brain stimulation (DBS) for treatment resistant depression (TRD). Methods to confirm optimal target engagement in this heterogenous region are now critical to establish an objective treatment protocol. As yet unexamined are the time-frequency features of the SCC evoked potential (SCC-EP), including spectral power and phase-clustering. We examined these spectral features—evoked power and phase clustering—in a sample of TRD patients (n = 8) with implanted SCC stimulators. Electroencephalogram (EEG) was recorded during wakeful rest. Location of electrical stimulation in the SCC target region was the experimental manipulation. EEG was analyzed at the surface level with an average reference for a cluster of frontal sensors and at a time window identified by prior study (50–150 ms). Morlet wavelets generated indices of evoked power and inter-trial phase clustering. Enhanced phase clustering at theta frequency (4–7 Hz) was observed in every subject and was significantly correlated with SCC-EP magnitude, but only during left SCC stimulation. Stimulation to dorsal SCC evinced stronger phase clustering than ventral SCC. There was a weak correlation between phase clustering and white matter density. An increase in evoked delta power (2–4 Hz) was also coincident with SCC-EP, but was less consistent across participants. DBS evoked time-frequency features index mm-scale changes to the location of stimulation in the SCC target region and correlate with structural characteristics implicated in treatment optimization. Results also imply a shared generative mechanism (inter-trial phase clustering) between evoked potentials evinced by electrical stimulation and evoked potentials evinced by auditory/visual stimuli and behavioral tasks. Understanding how current injection impacts downstream cortical activity is essential to building new technologies that adapt treatment parameters to individual differences in neurophysiology.
Collapse
Affiliation(s)
| | - Ki Sueng Choi
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ashan Veerakumar
- Department of Psychiatry, Schulich School of Medicine and Dentistry, London, ON, Canada
| | - Mosadoluwa Obatusin
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bryan Howell
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Andrew H. Smith
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vineet Tiruvadi
- Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, United States
| | - Andrea L. Crowell
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Sankaraleengam Alagapan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christopher J. Rozell
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Helen S. Mayberg
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allison C. Waters
- Departments of Psychiatry, Neuroscience, Neurology, Neurosurgery and Radiology, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Allison C. Waters,
| |
Collapse
|
12
|
Intermuscular coherence as a biomarker of subthalamic nucleus deep brain stimulation efficacy in Parkinson’s disease. Clin Neurophysiol 2022; 142:36-43. [DOI: 10.1016/j.clinph.2022.07.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
|
13
|
Nie Y, Guo X, Li X, Geng X, Li Y, Quan Z, Zhu G, Yin Z, Zhang J, Wang S. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation. J Neural Eng 2021; 18. [PMID: 34818629 DOI: 10.1088/1741-2552/ac3cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xiao Li
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Gebodh N, Esmaeilpour Z, Datta A, Bikson M. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 2021; 8:274. [PMID: 34707095 PMCID: PMC8551279 DOI: 10.1038/s41597-021-01046-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
We present a dataset combining human-participant high-density electroencephalography (EEG) with physiological and continuous behavioral metrics during transcranial electrical stimulation (tES). Data include within participant application of nine High-Definition tES (HD-tES) types, targeting three cortical regions (frontal, motor, parietal) with three stimulation waveforms (DC, 5 Hz, 30 Hz); more than 783 total stimulation trials over 62 sessions with EEG, physiological (ECG, EOG), and continuous behavioral vigilance/alertness metrics. Experiment 1 and 2 consisted of participants performing a continuous vigilance/alertness task over three 70-minute and two 70.5-minute sessions, respectively. Demographic data were collected, as well as self-reported wellness questionnaires before and after each session. Participants received all 9 stimulation types in Experiment 1, with each session including three stimulation types, with 4 trials per type. Participants received two stimulation types in Experiment 2, with 20 trials of a given stimulation type per session. Within-participant reliability was tested by repeating select sessions. This unique dataset supports a range of hypothesis testing including interactions of tDCS/tACS location and frequency, brain-state, physiology, fatigue, and cognitive performance.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA.
- Soterix Medical Inc., New York, USA.
| | - Zeinab Esmaeilpour
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York, USA
| |
Collapse
|
15
|
EEG Monitoring Is Feasible and Reliable during Simultaneous Transcutaneous Electrical Spinal Cord Stimulation. SENSORS 2021; 21:s21196593. [PMID: 34640913 PMCID: PMC8512663 DOI: 10.3390/s21196593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/27/2022]
Abstract
Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive neuromodulatory technique that has in recent years been linked to improved volitional limb control in spinal-cord injured individuals. Although the technique is growing in popularity there is still uncertainty regarding the neural mechanisms underpinning sensory and motor recovery. Brain monitoring techniques such as electroencephalography (EEG) may provide further insights to the changes in coritcospinal excitability that have already been demonstrated using other techniques. It is unknown, however, whether intelligible EEG can be extracted while tSCS is being applied, owing to substantial high-amplitude artifacts associated with stimulation-based therapies. Here, for the first time, we characterise the artifacts that manifest in EEG when recorded simultaneously with tSCS. We recorded multi-channel EEG from 21 healthy volunteers as they took part in a resting state and movement task across two sessions: One with tSCS delivered to the cervical region of the neck, and one without tSCS. An offline analysis in the time and frequency domain showed that tSCS manifested as narrow, high-amplitude peaks with a spectral density contained at the stimulation frequency. We quantified the altered signals with descriptive statistics—kurtosis, root-mean-square, complexity, and zero crossings—and applied artifact-suppression techniques—superposition of moving averages, adaptive, median, and notch filtering—to explore whether the effects of tSCS could be suppressed. We found that the superposition of moving averages filter was the most successful technique at returning contaminated EEG to levels statistically similar to that of normal EEG. In the frequency domain, however, notch filtering was more effective at reducing the spectral power contribution of stimulation from frontal and central electrodes. An adaptive filter was more appropriate for channels closer to the stimulation site. Lastly, we found that tSCS posed no detriment the binary classification of upper-limb movements from sensorimotor rhythms, and that adaptive filtering resulted in poorer classification performance. Overall, we showed that, depending on the analysis, EEG monitoring during transcutaneous electrical spinal cord stimulation is feasible. This study supports future investigations using EEG to study the activity of the sensorimotor cortex during tSCS, and potentially paves the way to brain–computer interfaces operating in the presence of spinal stimulation.
Collapse
|
16
|
Arumugham SS, Srinivas D, Narayanaswamy JC, Jaisoorya TS, Kashyap H, Domenech P, Palfi S, Mallet L, Venkatasubramanian G, Reddy YJ. Identification of biomarkers that predict response to subthalamic nucleus deep brain stimulation in resistant obsessive-compulsive disorder: protocol for an open-label follow-up study. BMJ Open 2021; 11:e047492. [PMID: 34158304 PMCID: PMC8220486 DOI: 10.1136/bmjopen-2020-047492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Deep brain stimulation (DBS) of bilateral anteromedial subthalamic nucleus (amSTN) has been found to be helpful in a subset of patients with severe, chronic and treatment-refractory obsessive-compulsive disorder (OCD). Biomarkers may aid in patient selection and optimisation of this invasive treatment. In this trial, we intend to evaluate neurocognitive function related to STN and related biosignatures as potential biomarkers for STN DBS in OCD. METHODS AND ANALYSIS Twenty-four subjects with treatment-refractory OCD will undergo open-label STN DBS. Structural/functional imaging, electrophysiological recording and neurocognitive assessment would be performed at baseline. The subjects would undergo a structured clinical assessment for 12 months postsurgery. A group of 24 healthy volunteers and 24 subjects with treatment-refractory OCD who receive treatment as usual would be recruited for comparison of biomarkers and treatment response, respectively. Baseline biomarkers would be evaluated as predictors of clinical response. Neuroadaptive changes would be studied through a reassessment of neurocognitive functioning, imaging and electrophysiological activity post DBS. ETHICS AND DISSEMINATION The protocol has been approved by the National Institute of Mental Health and Neurosciences Ethics Committee. The study findings will be disseminated through peer-reviewed scientific journals and scientific meetings.
Collapse
Affiliation(s)
- Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Dwarakanath Srinivas
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - T S Jaisoorya
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Himani Kashyap
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Philippe Domenech
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Stéphane Palfi
- Univ Paris-Est Créteil, DMU CARE - Département Médical-Universitaire de Chirurgie et Anesthésie réanimation, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Creteil, France
- Univ of Paris 12 UPEC, Faculté de médecine, INSERM U955, Creteil, France
| | - Luc Mallet
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
- Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Yc Janardhan Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
17
|
De Pretto M, Mouthon M, Debove I, Pollo C, Schüpbach M, Spierer L, Accolla EA. Proactive inhibition is not modified by deep brain stimulation for Parkinson's disease: An electrical neuroimaging study. Hum Brain Mapp 2021; 42:3934-3949. [PMID: 34110074 PMCID: PMC8288097 DOI: 10.1002/hbm.25530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022] Open
Abstract
In predictable contexts, motor inhibitory control can be deployed before the actual need for response suppression. The brain functional underpinnings of proactive inhibition, and notably the role of basal ganglia, are not entirely identified. We investigated the effects of deep brain stimulation of the subthalamic nucleus or internal globus pallidus on proactive inhibition in patients with Parkinson's disease. They completed a cued go/no-go proactive inhibition task ON and (unilateral) OFF stimulation while EEG was recorded. We found no behavioural effect of either subthalamic nucleus or internal globus pallidus deep brain stimulation on proactive inhibition, despite a general improvement of motor performance with subthalamic nucleus stimulation. In the non-operated and subthalamic nucleus group, we identified periods of topographic EEG modulation by the level of proactive inhibition. In the subthalamic nucleus group, source estimation analysis suggested the initial involvement of bilateral frontal and occipital areas, followed by a right lateralized fronto-basal network, and finally of right premotor and left parietal regions. Our results confirm the overall preservation of proactive inhibition capacities in both subthalamic nucleus and internal globus pallidus deep brain stimulation, and suggest a partly segregated network for proactive inhibition, with a preferential recruitment of the indirect pathway.
Collapse
Affiliation(s)
- Michael De Pretto
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ines Debove
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital University Hospital Bern, Bern, Switzerland
| | - Michael Schüpbach
- Movement Disorders Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Ettore A Accolla
- Neurology Unit, Medicine Section, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Neurology Unit, Department of Medicine, HFR - Cantonal Hospital Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Gransier R, Guérit F, Carlyon RP, Wouters J. Frequency following responses and rate change complexes in cochlear implant users. Hear Res 2021; 404:108200. [PMID: 33647574 PMCID: PMC8052190 DOI: 10.1016/j.heares.2021.108200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Abstract
The upper limit of rate-based pitch perception and rate discrimination can differ substantially across cochlear implant (CI) users. One potential reason for this difference is the presence of a biological limitation on temporal encoding in the electrically-stimulated auditory pathway, which can be inherent to the electrical stimulation itself and/or to the degenerative processes associated with hearing loss. Electrophysiological measures, like the electrically-evoked frequency following response (eFFR) and auditory change complex (eACC), could potentially provide valuable insights in the temporal processing limitations at the level of the brainstem and cortex in the electrically-stimulated auditory pathway. Obtaining these neural responses, free from stimulation artifacts, is challenging, especially when the neural response is phase-locked to the stimulation rate, as is the case for the eFFR. In this study we investigated the feasibility of measuring eFFRs, free from stimulation artifacts, to stimulation rates ranging from 94 to 196 pulses per second (pps) and eACCs to pulse rate changes ranging from 36 to 108%, when stimulating in a monopolar configuration. A high-sampling rate EEG system was used to measure the electrophysiological responses in five CI users, and linear interpolation was applied to remove the stimulation artifacts from the EEG. With this approach, we were able to measure eFFRs for pulse rates up to 162 pps and eACCs to the different rate changes. Our results show that it is feasible to measure electrophysiological responses, free from stimulation artifacts, that could potentially be used as neural correlates for rate and pitch processing in CI users.
Collapse
Affiliation(s)
- Robin Gransier
- KU Leuven, Department of Neurosciences, ExpORL, Herestraat 49, Box 721, Leuven 3000, Belgium.
| | - Franҫois Guérit
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Jan Wouters
- KU Leuven, Department of Neurosciences, ExpORL, Herestraat 49, Box 721, Leuven 3000, Belgium
| |
Collapse
|
19
|
EEG measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy. NEUROIMAGE-CLINICAL 2021; 30:102569. [PMID: 33583764 PMCID: PMC8044718 DOI: 10.1016/j.nicl.2021.102569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
Dystonia is a disorder of sensorimotor integration associated with abnormal oscillatory activity within the basal ganglia-thalamo-cortical networks. Event-related changes in spectral EEG activity reflect cortical processing but are sparsely investigated in relation to sensorimotor processing in dystonia. This study investigates modulation of sensorimotor cortex EEG activity in response to a proprioceptive stimulus in children with dystonia and dystonic cerebral palsy (CP). Proprioceptive stimuli, comprising brief stretches of the wrist flexors, were delivered via a robotic wrist interface to 30 young people with dystonia (20 isolated genetic/idiopathic and 10 dystonic CP) and 22 controls (mean age 12.7 years). Scalp EEG was recorded using the 10-20 international system and the relative change in post-stimulus power with respect to baseline was calculated for the alpha (8-12 Hz) and beta (14-30 Hz) frequency bands. A clear developmental profile in event-related spectral changes was seen in controls. Controls showed a prominent early alpha/mu band event-related desynchronisation (ERD) followed by an event-related synchronisation (ERS) over the contralateral sensorimotor cortex following movement of either hand. The alpha ERD was significantly smaller in the dystonia groups for both dominant and non-dominant hand movement (ANCOVA across the 3 groups with age as covariate: dominant hand F(2,47) = 4.45 p = 0.017; non-dominant hand F(2,42) = 9.397 p < 0.001. Alpha ERS was significantly smaller in dystonia for the dominant hand (ANCOVA F(2,47) = 7.786 p = 0.001). There was no significant difference in ERD or ERS between genetic/idiopathic dystonia and dystonic CP. CONCLUSION: Modulation of alpha/mu activity by a proprioceptive stimulus is reduced in dystonia, demonstrating a developmental abnormality of sensorimotor processing which is common to isolated genetic/idiopathic and acquired dystonia/dystonic CP.
Collapse
|
20
|
Litvak V, Florin E, Tamás G, Groppa S, Muthuraman M. EEG and MEG primers for tracking DBS network effects. Neuroimage 2020; 224:117447. [PMID: 33059051 DOI: 10.1016/j.neuroimage.2020.117447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022] Open
Abstract
Deep brain stimulation (DBS) is an effective treatment method for a range of neurological and psychiatric disorders. It involves implantation of stimulating electrodes in a precisely guided fashion into subcortical structures and, at a later stage, chronic stimulation of these structures with an implantable pulse generator. While the DBS surgery makes it possible to both record brain activity and stimulate parts of the brain that are difficult to reach with non-invasive techniques, electroencephalography (EEG) and magnetoencephalography (MEG) provide complementary information from other brain areas, which can be used to characterize brain networks targeted through DBS. This requires, however, the careful consideration of different types of artifacts in the data acquisition and the subsequent analyses. Here, we review both the technical issues associated with EEG/MEG recordings in DBS patients and the experimental findings to date. One major line of research is simultaneous recording of local field potentials (LFPs) from DBS targets and EEG/MEG. These studies revealed a set of cortico-subcortical coherent networks functioning at distinguishable physiological frequencies. Specific network responses were linked to clinical state, task or stimulation parameters. Another experimental approach is mapping of DBS-targeted networks in chronically implanted patients by recording EEG/MEG responses during stimulation. One can track responses evoked by single stimulation pulses or bursts as well as brain state shifts caused by DBS. These studies have the potential to provide biomarkers for network responses that can be adapted to guide stereotactic implantation or optimization of stimulation parameters. This is especially important for diseases where the clinical effect of DBS is delayed or develops slowly over time. The same biomarkers could also potentially be utilized for the online control of DBS network effects in the new generation of closed-loop stimulators that are currently entering clinical use. Through future studies, the use of network biomarkers may facilitate the integration of circuit physiology into clinical decision making.
Collapse
Affiliation(s)
- Vladimir Litvak
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gertrúd Tamás
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Sergiu Groppa
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
21
|
Debarros J, Gaignon L, He S, Pogosyan A, Benjaber M, Denison T, Brown P, Tan H. Artefact-free recording of local field potentials with simultaneous stimulation for closed-loop Deep-Brain Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3367-3370. [PMID: 33018726 DOI: 10.1109/embc44109.2020.9176665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Continuous high frequency Deep Brain Stimulation (DBS) is a standard therapy for several neurological disorders. Closed-loop DBS is expected to further improve treatment by providing adaptive, on-demand therapy. Local field potentials (LFPs) recorded from the stimulation electrodes are the most often used feedback signal in closed-loop DBS. However, closed-loop DBS based on LFPs requires simultaneous recording and stimulating, which remains a challenge due to persistent stimulation artefacts that distort underlying LFP biomarkers. Here we first investigate the nature of the stimulation-induced artefacts and review several techniques that have been proposed to deal with them. Then we propose a new method to synchronize the sampling clock with the stimulation pulse so that the stimulation artefacts are never sampled, while at the same time the Nyquist-Shannon theorem is satisfied for uninterrupted LFP recording. Test results show that this method achieves true uninterrupted artefact-free LFP recording over a wide frequency band and for a wide range of stimulation frequencies.Clinical relevance-The method proposed here provides continuous and artefact-free recording of LFPs close to the stimulation target, and thereby facilitates the implementation of more advanced closed-loop DBS using LFPs as feedback.
Collapse
|
22
|
Piña-Fuentes D, Beudel M, Van Zijl J, Van Egmond M, Oterdoom D, Van Dijk J, Tijssen M. Low-frequency oscillation suppression in dystonia: Implications for adaptive deep brain stimulation. Parkinsonism Relat Disord 2020; 79:105-109. [DOI: 10.1016/j.parkreldis.2020.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
|
23
|
Buentjen L, Vicheva P, Chander BS, Beccard SA, Coutts C, Azañón E, Stenner MP, Deliano M. Spatial Filtering of Electroencephalography Reduces Artifacts and Enhances Signals Related to Spinal Cord Stimulation (SCS). Neuromodulation 2020; 24:1317-1326. [PMID: 32969569 DOI: 10.1111/ner.13266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES How spinal cord stimulation (SCS) in its different modes suppresses pain is poorly understood. Mechanisms of action may reside locally in the spinal cord, but also involve a larger network including subcortical and cortical brain structures. Tonic, burst, and high-frequency modes of SCS can, in principle, entrain distinct temporal activity patterns in this network, but finally have to yield specific effects on pain suppression. Here, we employ high-density electroencephalography (EEG) and recently developed spatial filtering techniques to reduce SCS artifacts and to enhance EEG signals specifically related to neuromodulation by SCS. MATERIALS AND METHODS We recorded high-density resting-state EEGs in patients suffering from pain of various etiologies under different modes of SCS. We established a pipeline for the robust spectral analysis of oscillatory brain activity during SCS, which includes spatial filtering for attenuation of pulse artifacts and enhancement of brain activity potentially modulated by SCS. RESULTS In sensor regions responsive to SCS, neuromodulation strongly reduced activity in the theta and low alpha range (6-10 Hz) in all SCS modes. Results were consistent in all patients, and in accordance with thalamocortical dysrhythmia hypothesis of pain. Only in the tonic mode showing paresthesia as side effect, SCS also consistently and strongly reduced high-gamma activity (>84 Hz). CONCLUSIONS EEG spectral analysis combined with spatial filtering allows for a spatially and temporally specific assessment of SCS-related, neuromodulatory EEG activity, and may help to disentangle therapeutic and side effects of SCS.
Collapse
Affiliation(s)
- Lars Buentjen
- Department of Stereotactic Neurosurgery, University Hospital, Magdeburg, Germany
| | - Petya Vicheva
- Translational Behavioral Physiology Group, Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - B S Chander
- AG Physiology of Motor Control, Department of Behavioral Neurology, LIN, Magdeburg, Germany
| | | | - Christopher Coutts
- Department of Stereotactic Neurosurgery, University Hospital, Magdeburg, Germany
| | - Elena Azañón
- Somatosensory & Body Lab, Department of Psychology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Max-Philipp Stenner
- AG Physiology of Motor Control, Department of Behavioral Neurology, LIN, Magdeburg, Germany
| | - Matthias Deliano
- Translational Behavioral Physiology Group, Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| |
Collapse
|
24
|
Gransier R, Carlyon RP, Wouters J. Electrophysiological assessment of temporal envelope processing in cochlear implant users. Sci Rep 2020; 10:15406. [PMID: 32958791 PMCID: PMC7506023 DOI: 10.1038/s41598-020-72235-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
Cochlear-implant (CI) users rely on temporal envelope modulations (TEMs) to understand speech, and clinical outcomes depend on the accuracy with which these TEMs are encoded by the electrically-stimulated neural ensembles. Non-invasive EEG measures of this encoding could help clinicians identify and disable electrodes that evoke poor neural responses so as to improve CI outcomes. However, recording EEG during CI stimulation reveals huge stimulation artifacts that are up to orders of magnitude larger than the neural response. Here we used a custom-built EEG system having an exceptionally high sample rate to accurately measure the artefact, which we then removed using linear interpolation so as to reveal the neural response during continuous electrical stimulation. In ten adult CI users, we measured the 40-Hz electrically evoked auditory steady-state response (eASSR) and electrically evoked auditory change complex (eACC) to amplitude-modulated 900-pulses-per-second pulse trains, stimulated in monopolar mode (i.e. the clinical default), and at different modulation depths. We successfully measured artifact-free 40-Hz eASSRs and eACCs. Moreover, we found that the 40-Hz eASSR, in contrast to the eACC, showed substantial responses even at shallow modulation depths. We argue that the 40-Hz eASSR is a clinically feasible objective measure to assess TEM encoding in CI users.
Collapse
Affiliation(s)
- Robin Gransier
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium.
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium
| |
Collapse
|
25
|
Smith EE, Schüller T, Huys D, Baldermann JC, Andrade P, Allen JJ, Visser-Vandewalle V, Ullsperger M, Gruendler TOJ, Kuhn J. A brief demonstration of frontostriatal connectivity in OCD patients with intracranial electrodes. Neuroimage 2020; 220:117138. [PMID: 32634597 DOI: 10.1016/j.neuroimage.2020.117138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Closed-loop neuromodulation is presumed to be the logical evolution for improving the effectiveness of deep brain stimulation (DBS) treatment protocols (Widge et al., 2018). Identifying symptom-relevant biomarkers that provide meaningful feedback to stimulator devices is an important initial step in this direction. This report demonstrates a technique for assaying neural circuitry hypothesized to contribute to OCD and DBS treatment outcomes. We computed phase-lag connectivity between LFPs and EEGs in thirteen treatment-refractory OCD patients. Simultaneous recordings from scalp EEG and externalized DBS electrodes in the ventral capsule/ventral striatum (VC/VS) were collected at rest during the perioperative treatment stage. Connectivity strength between midfrontal EEG sensors and VC/VS electrodes correlated with baseline OCD symptoms and 12-month posttreatment OCD symptoms. Results are qualified by a relatively small sample size, and limitations regarding the conclusiveness of VS and mPFC as neural generators given some concerns about volume conduction. Nonetheless, findings are consistent with treatment-relevant tractography findings and theories that link frontostriatal hyperconnectivity to the etiopathogenesis of OCD. Findings support the continued investigation of connectivity-based assays for aiding in determination of optimal stimulation location, and are an initial step towards the identification of biomarkers that can guide closed-loop neuromodulation systems.
Collapse
Affiliation(s)
- Ezra E Smith
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychology, University of Arizona, Tucson, AZ, USA.
| | - Thomas Schüller
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Daniel Huys
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Pablo Andrade
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
| | - John Jb Allen
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Veerle Visser-Vandewalle
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Stereotactic and Functional Neurosurgery, Cologne, Germany
| | - Markus Ullsperger
- Otto von Guericke University, Institute of Psychology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Theo O J Gruendler
- Center for Military Mental Health, Military Hospital Berlin, Berlin, Germany
| | - Jens Kuhn
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Johanniter Hospital Oberhausen, Oberhausen, Germany
| |
Collapse
|
26
|
Kandemir AL, Litvak V, Florin E. The comparative performance of DBS artefact rejection methods for MEG recordings. Neuroimage 2020; 219:117057. [PMID: 32540355 PMCID: PMC7443703 DOI: 10.1016/j.neuroimage.2020.117057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 01/01/2023] Open
Abstract
Deep brain stimulation (DBS) can be a very efficient treatment option for movement disorders and psychiatric diseases. To better understand DBS mechanisms, brain activity can be recorded using magnetoencephalography (MEG) with the stimulator turned on. However, DBS produces large artefacts compromising MEG data quality due to both the applied current and the movement of wires connecting the stimulator with the electrode. To filter out these artefacts, several methods to suppress the DBS artefact have been proposed in the literature. A comparative study evaluating each method’s effectiveness, however, is missing so far. In this study, we evaluate the performance of four artefact rejection methods on MEG data from phantom recordings with DBS acquired with an Elekta Neuromag and a CTF system: (i) Hampel-filter, (ii) spectral signal space projection (S3P), (iii) independent component analysis with mutual information (ICA-MI), and (iv) temporal signal space separation (tSSS). In the sensor space, the largest increase in signal-to-noise (SNR) ratio was achieved by ICA-MI, while the best correspondence in terms of source activations was obtained by tSSS. LCMV beamforming alone was not sufficient to suppress the DBS-induced artefacts. Phantom MEG measurement with Elekta Neuromag and CTF MEG system with DBS. Systematic comparison of cleaning algorithms to remove DBS artefact from MEG data. Sensor level ICA-MI yielded the best results. Source level: tSSS provided the best correspondence to recording without DBS.
Collapse
Affiliation(s)
- Ahmet Levent Kandemir
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London, UK
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany.
| |
Collapse
|
27
|
Caldwell DJ, Cronin JA, Rao RPN, Collins KL, Weaver KE, Ko AL, Ojemann JG, Kutz JN, Brunton BW. Signal recovery from stimulation artifacts in intracranial recordings with dictionary learning. J Neural Eng 2020; 17:026023. [PMID: 32103828 PMCID: PMC7333778 DOI: 10.1088/1741-2552/ab7a4f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Electrical stimulation of the human brain is commonly used for eliciting and inhibiting neural activity for clinical diagnostics, modifying abnormal neural circuit function for therapeutics, and interrogating cortical connectivity. However, recording electrical signals with concurrent stimulation results in dominant electrical artifacts that mask the neural signals of interest. Here we develop a method to reproducibly and robustly recover neural activity during concurrent stimulation. We concentrate on signal recovery across an array of electrodes without channel-wise fine-tuning of the algorithm. Our goal includes signal recovery with trains of stimulation pulses, since repeated, high-frequency pulses are often required to induce desired effects in both therapeutic and research domains. We have made all of our code and data publicly available. APPROACH We developed an algorithm that automatically detects templates of artifacts across many channels of recording, creating a dictionary of learned templates using unsupervised clustering. The artifact template that best matches each individual artifact pulse is subtracted to recover the underlying activity. To assess the success of our method, we focus on whether it extracts physiologically interpretable signals from real recordings. MAIN RESULTS We demonstrate our signal recovery approach on invasive electrophysiologic recordings from human subjects during stimulation. We show the recovery of meaningful neural signatures in both electrocorticographic (ECoG) arrays and deep brain stimulation (DBS) recordings. In addition, we compared cortical responses induced by the stimulation of primary somatosensory (S1) by natural peripheral touch, as well as motor cortex activity with and without concurrent S1 stimulation. SIGNIFICANCE Our work will enable future advances in neural engineering with simultaneous stimulation and recording.
Collapse
Affiliation(s)
- D J Caldwell
- Department of Bioengineering, University of Washington, Seattle, WA, United States of America. Medical Scientist Training Program, University of Washington, Seattle, WA, United States of America. Center for Neurotechnology, Seattle, WA, United States of America. University of Washington Institute for Neuroengineering, Seattle, WA, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hatz F, Meyer A, Roesch A, Taub E, Gschwandtner U, Fuhr P. Quantitative EEG and Verbal Fluency in DBS Patients: Comparison of Stimulator-On and -Off Conditions. Front Neurol 2019; 9:1152. [PMID: 30687215 PMCID: PMC6333686 DOI: 10.3389/fneur.2018.01152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) ameliorates motor function in patients with Parkinson's disease and allows reducing dopaminergic therapy. Beside effects on motor function STN-DBS influences many non-motor symptoms, among which decline of verbal fluency test performance is most consistently reported. The surgical procedure itself is the likely cause of this decline, while the influence of the electrical stimulation is still controversial. STN-DBS also produces widespread changes of cortical activity as visualized by quantitative EEG. The present study aims to link an alteration in verbal fluency performance by electrical stimulation of the STN to alterations in quantitative EEG. Methods: Sixteen patients with STN-DBS were included. All patients had a high density EEG recording (256 channels) while testing verbal fluency in the stimulator on/off situation. The phonemic, semantic, alternating phonemic and semantic fluency was tested (Regensburger Wortflüssigkeits-Test). Results: On the group level, stimulation of STN did not alter verbal fluency performance. EEG frequency analysis showed an increase of relative alpha2 (10–13 Hz) and beta (13–30 Hz) power in the parieto-occipital region (p ≤ 0.01). On the individual level, changes of verbal fluency induced by stimulation of the STN were disparate and correlated inversely with delta power in the left temporal lobe (p < 0.05). Conclusion: STN stimulation does not alter verbal fluency performance in a systematic way at group level. However, when in individual patients an alteration of verbal fluency performance is produced by electrical stimulation of the STN, it correlates inversely with left temporal delta power.
Collapse
Affiliation(s)
- Florian Hatz
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Antonia Meyer
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Anne Roesch
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Ethan Taub
- Department of Neurosurgery, Hospitals of University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| | - Peter Fuhr
- Department of Neurology, Hospitals of University of Basel, Basel, Switzerland
| |
Collapse
|