1
|
Andrade Machado R, Narayan SL, Norton NB, Javarayee P, Kim I, Lew SM. Temporal lobe epilepsy page: Role of temporal lobe structures and subjacent pathology in the intracranial ictal onset pattern in pediatric patients with temporal lobe epilepsy: A stereo-electroencephalogram analysis. Epilepsy Behav 2024; 159:109967. [PMID: 39068855 DOI: 10.1016/j.yebeh.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To determine the intracranial ictal onset and early spread patterns in pediatric patients with Temporal lobe epilepsy and its possible association with histopathology, temporal structure involved, mesial structural pathology, and possible implication in postsurgical outcome. METHODS A descriptive, retrospective, cross-sectional study was carried out in a group of children from Children's Wisconsin between 2016 and 2022. RESULTS This study showed a strong association between ictal onset patterns and underlying histology (p < 0.05). Low-Frequency High Amplitude periodic spikes were seen only in patients with HS (20.6 %). A strong statistically significant association was found between different ictal onset patterns and the temporal lobe structure involved in the ictal onset (p < 0.001). Seizures with ictal onset consisting of Slow Potential Shift with superimposed Low Voltage Fast Activity arise from the Inferior Temporal Lobe or Middle Temporal Gyrus in a more significant proportion of seizures than those that originated from mesial temporal structures (Difference of proportion; p < 0.05). Low Voltage Fast Activity periodic spikes as an ictal pattern were seen in a patient with seizures arising outside the mesial temporal structure. The most frequent early spread pattern observed was Low Voltage Fast Activity (89.4 %); this pattern did not depend on the type of mesial structure pathology. Ictal onset patterns were associated with postsurgical outcomes (p < 0.001). The ictal onset pattern depends on the histopathology in the ictal onset zone and the temporal lobe structure involved in the ictal onset (p = 0.001). CONCLUSIONS Intracranial ictal onset patterns in TEMPORAL LOBE EPILEPSY depend on underlying histology and the temporal lobe structure involved in its onset.
Collapse
Affiliation(s)
- Rene Andrade Machado
- Children's Wisconsin, Neurology Department, Division of Pediatric Neurology. Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Shruti L Narayan
- Case Western Reserve University, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Natalie B Norton
- St. Norbert College, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pradeep Javarayee
- Children's Wisconsin, Neurology Department, Division of Pediatric Neurology. Medical College of Wisconsin, Milwaukee, WI, United States
| | - Irene Kim
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Andrade-Machado R, Abushanab E, Patel ND, Singh A. Differentiating rhythmic high-amplitude delta with superimposed (poly) spikes from extreme delta brushes: limitations of standardized nomenclature and implications for patient management. World J Pediatr 2024; 20:764-773. [PMID: 38997604 DOI: 10.1007/s12519-024-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Following the standardized nomenclature proposed by the American Clinical Neurophysiology Society (ACNS), rhythmic high-amplitude delta activity with superimposed spikes (RHADS) can be reported as an extreme delta brush (EDB). The clinical implications of similar electrographic patterns being reported as RHADS versus EDB are important to highlight. We aim to review the electrographic characteristics of RHADS, evaluate whether RHADS is seen in other neurological disorders, and identify the similar and unique characteristics between RHADS and EDB to ultimately determine the most accurate way to differentiate and report these patterns. We believe that the differentiation of RHADS and EDB is important as there is a vast difference in the diagnostic approach and the medical management of associated underlying etiologies. DATA SOURCE We conducted an extensive search on MEDLINE and Pubmed utilizing various combinations of keywords. Searching for "gamma polymerase and EEG", or "RHADS" or "Alpers syndrome and EEG" or "EEG" AND "Alpers-Huttenlocher syndrome". RESULTS Three articles were found to be focused on the description of "RHADS" pattern in Alpers Syndrome. No publication to date were found when searching for the terms "EDB" AND "children", AND "infant" AND "adolescent" excluding "encephalitis" and "neonate". Although RHADS and EDB appear as similar EEG patterns, meticulous analysis can differentiate them. RHADS is not exclusive to patients with Alpers-Huttenlocher syndrome and may manifest in regions beyond the posterior head region. Reactivity to eye-opening and response to anesthesia can be two other elements that help in the differentiation of these patterns. CONCLUSION RHADS is not exclusive to patients with AHS and may manifest in regions beyond the posterior head region. Reactivity to eye-opening and response to anesthesia are features that help in the differentiation of these patterns.
Collapse
Affiliation(s)
- Rene Andrade-Machado
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA.
| | - Elham Abushanab
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA
| | - Namrata D Patel
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA
| | - Avantika Singh
- Children's Hospital of Wisconsin Wauwatosa: Milwaukee, 8915 W Connell Ct, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Frauscher B, Mansilla D, Abdallah C, Astner-Rohracher A, Beniczky S, Brazdil M, Gnatkovsky V, Jacobs J, Kalamangalam G, Perucca P, Ryvlin P, Schuele S, Tao J, Wang Y, Zijlmans M, McGonigal A. Learn how to interpret and use intracranial EEG findings. Epileptic Disord 2024; 26:1-59. [PMID: 38116690 DOI: 10.1002/epd2.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epilepsy surgery is the therapy of choice for many patients with drug-resistant focal epilepsy. Recognizing and describing ictal and interictal patterns with intracranial electroencephalography (EEG) recordings is important in order to most efficiently leverage advantages of this technique to accurately delineate the seizure-onset zone before undergoing surgery. In this seminar in epileptology, we address learning objective "1.4.11 Recognize and describe ictal and interictal patterns with intracranial recordings" of the International League against Epilepsy curriculum for epileptologists. We will review principal considerations of the implantation planning, summarize the literature for the most relevant ictal and interictal EEG patterns within and beyond the Berger frequency spectrum, review invasive stimulation for seizure and functional mapping, discuss caveats in the interpretation of intracranial EEG findings, provide an overview on special considerations in children and in subdural grids/strips, and review available quantitative/signal analysis approaches. To be as practically oriented as possible, we will provide a mini atlas of the most frequent EEG patterns, highlight pearls for its not infrequently challenging interpretation, and conclude with two illustrative case examples. This article shall serve as a useful learning resource for trainees in clinical neurophysiology/epileptology by providing a basic understanding on the concepts of invasive intracranial EEG.
Collapse
Affiliation(s)
- B Frauscher
- Department of Neurology, Duke University Medical Center and Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - D Mansilla
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
- Neurophysiology Unit, Institute of Neurosurgery Dr. Asenjo, Santiago, Chile
| | - C Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - A Astner-Rohracher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark
- Aarhus University, Aarhus, Denmark
| | - M Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Member of the ERN-EpiCARE, Brno, Czechia
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - V Gnatkovsky
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - J Jacobs
- Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Kalamangalam
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - P Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - P Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - J Tao
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Y Wang
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - M Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - A McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
- Mater Research Institute, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Paulk AC, Salami P, Zelmann R, Cash SS. Electrode Development for Epilepsy Diagnosis and Treatment. Neurosurg Clin N Am 2024; 35:135-149. [PMID: 38000837 DOI: 10.1016/j.nec.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Recording neural activity has been a critical aspect in the diagnosis and treatment of patients with epilepsy. For those with intractable epilepsy, intracranial neural monitoring has been of substantial importance. Clinically, however, methods for recording neural information have remained essentially unchanged for decades. Over the last decade or so, rapid advances in electrode technology have begun to change this landscape. New systems allow for the observation of neural activity with high spatial resolution and, in some cases, at the level of the activity of individual neurons. These new tools have contributed greatly to our understanding of brain function and dysfunction. Here, the authors review the primary technologies currently in use in humans. The authors discuss other possible systems, some of the challenges which come along with these devices, and how they will become incorporated into the clinical workflow. Ultimately, the expectation is that these new, high-density, high-spatial-resolution recording systems will become a valuable part of the clinical arsenal used in the diagnosis and surgical management of epilepsy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Rina Zelmann
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
6
|
Lainscsek C, Salami P, Carvalho VR, Mendes EMAM, Fan M, Cash SS, Sejnowski TJ. Network-motif delay differential analysis of brain activity during seizures. CHAOS (WOODBURY, N.Y.) 2023; 33:123136. [PMID: 38156987 PMCID: PMC10757649 DOI: 10.1063/5.0165904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.
Collapse
Affiliation(s)
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | - Eduardo M. A. M. Mendes
- Laboratório de Modelagem, Análise e Controle de Sistemas Não Lineares, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Miaolin Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
7
|
Schroeder GM, Karoly PJ, Maturana M, Panagiotopoulou M, Taylor PN, Cook MJ, Wang Y. Chronic intracranial EEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states. Brain Commun 2023; 5:fcad205. [PMID: 37693811 PMCID: PMC10484289 DOI: 10.1093/braincomms/fcad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterized the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states. We then compared seizure network state occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. In most patients, the occurrence or duration of at least one seizure network state was associated with the time since implantation. Some patients had one or more seizure network states that were associated with phases of circadian and/or multidien spike rate cycles. A given seizure network state's occurrence and duration were usually not associated with the same timescale. Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a seizure network state's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures and similar principles likely apply to other neurological conditions.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matias Maturana
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- Research Department, Seer Medical Pty Ltd., Melbourne, Victoria 3000, Australia
| | - Mariella Panagiotopoulou
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
8
|
Abbaszadeh B, Teixeira CAD, Yagoub MC. Online Seizure Prediction System: A Novel Probabilistic Approach for Efficient Prediction of Epileptic Seizure with iEEG Signal. Open Biomed Eng J 2022. [DOI: 10.2174/18741207-v16-e2208300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background:
1% of people around the world are suffering from epilepsy. It is, therefore crucial to propose an efficient automated seizure prediction tool implemented in a portable device that uses the electroencephalogram (EEG) signal to enhance epileptic patients’ life quality.
Methods:
In this study, we focused on time-domain features to achieve discriminative information at a low CPU cost extracted from the intracranial electroencephalogram (iEEG) signals of six patients. The probabilistic framework based on XGBoost classifier requires the mean and maximum probability of the non-seizure and the seizure occurrence period segments. Once all these parameters are set for each patient, the medical decision maker can send alarm based on well-defined thresholds.
Results:
While finding a unique model for all patients is really challenging, and our modelling results demonstrated that the proposed algorithm can be an efficient tool for reliable and clinically relevant seizure forecasting. Using iEEG signals, the proposed algorithm can forecast seizures, informing a patient about 75 minutes before a seizure would occur, a period large enough for patients to take practical actions to minimize the potential impacts of the seizure.
Conclusion:
We posit that the ability to distinguish interictal intracranial EEG from pre-ictal signals at some low computational cost may be the first step towards an implanted portable semi-automatic seizure suppression system in the near future. It is believed that our seizure prediction technique can conceivably be coupled with treatment techniques aimed at interrupting the process even prior to a seizure initiates to develop.
Collapse
|
9
|
Patient-specific solution of the electrocorticography forward problem in deforming brain. Neuroimage 2022; 263:119649. [PMID: 36167268 DOI: 10.1016/j.neuroimage.2022.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Invasive intracranial electroencephalography (iEEG), or electrocorticography (ECoG), measures electric potential directly on the surface of the brain and can be used to inform treatment planning for epilepsy surgery. Combined with numerical modeling it can further improve accuracy of epilepsy surgery planning. Accurate solution of the iEEG forward problem, which is a crucial prerequisite for solving the iEEG inverse problemin epilepsy seizure onset zone localization, requires accurate representation of the patient's brain geometry and tissue electrical conductivity after implantation of electrodes. However, implantation of subdural grid electrodes causes the brain to deform, which invalidates preoperatively acquired image data. Moreover, postoperative magnetic resonance imaging (MRI) is incompatible with implanted electrodes and computed tomography (CT) has insufficient range of soft tissue contrast, which precludes both MRI and CT from being used to obtain the deformed postoperative geometry. In this paper, we present a biomechanics-based image warping procedure using preoperative MRI for tissue classification and postoperative CT for locating implanted electrodes to perform non-rigid registration of the preoperative image data to the postoperative configuration. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. Results for the simulation of a current source in the brain show large differences in electric potential predicted by the models based on the original images and the deformed images corresponding to the brain geometry deformed by placement of invasive electrodes. Computation of the lead field matrix (useful for solution of the iEEG inverse problem) also showed significant differences between the different models. The results suggest that rapid and accurate solution of the forward problem in a deformed brain for a given patient is achievable.
Collapse
|
10
|
Schroeder GM, Chowdhury FA, Cook MJ, Diehl B, Duncan JS, Karoly PJ, Taylor PN, Wang Y. Multiple mechanisms shape the relationship between pathway and duration of focal seizures. Brain Commun 2022; 4:fcac173. [PMID: 35855481 PMCID: PMC9280328 DOI: 10.1093/braincomms/fcac173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022] Open
Abstract
A seizure's electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical 'pathway', and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were 'truncated' versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations ('elasticity'), or had similar durations, but followed different pathways ('semblance'). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
11
|
Salami P, Borzello M, Kramer MA, Westover MB, Cash SS. Quantifying seizure termination patterns reveals limited pathways to seizure end. Neurobiol Dis 2022; 165:105645. [PMID: 35104646 PMCID: PMC8860887 DOI: 10.1016/j.nbd.2022.105645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Despite their possible importance in the design of novel neuromodulatory approaches and in understanding status epilepticus, the dynamics and mechanisms of seizure termination are not well studied. We examined intracranial recordings from patients with epilepsy to differentiate seizure termination patterns and investigated whether these patterns are indicative of different underlying mechanisms. METHODS Seizures were classified into one of two termination patterns: (a) those that end simultaneously across the brain (synchronous), and (b) those whose termination is piecemeal across the cortex (asynchronous). Both types ended with either a burst suppression pattern, or continuous seizure activity. These patterns were quantified and compared using burst suppression ratio, absolute energy, and network connectivity. RESULTS Seizures with electrographic generalization showed burst suppression patterns in 90% of cases, compared with only 60% of seizures which remained focal. Interestingly, we found similar absolute energy and burst suppression ratios in seizures with synchronous and asynchronous termination, while seizures with continuous seizure activity were found to be different from seizures with burst suppression, showing lower energy during seizure and lower burst suppression ratio at the start and end of seizure. Finally, network density was observed to increase with seizure progression, with significantly lower densities in seizures with continuous seizure activity compared to seizures with burst suppression. SIGNIFICANCE Based on this spatiotemporal classification scheme, we suggest that there are a limited number of seizure termination patterns and dynamics. If this bears out, it would imply that the number of mechanisms underlying seizure termination is also constrained. Seizures with different termination patterns exhibit different dynamics even before their start. This may provide useful clues about how seizures may be managed, which in turn may lead to more targeted modes of therapy for seizure control.
Collapse
Affiliation(s)
- Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Mia Borzello
- Department of Cognitive Science, University of California, San Diego, CA, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Weiss SA, Staba RJ, Sharan A, Wu C, Rubinstein D, Das S, Waldman Z, Orosz I, Worrell G, Engel J, Sperling MR. Accuracy of high-frequency oscillations recorded intraoperatively for classification of epileptogenic regions. Sci Rep 2021; 11:21388. [PMID: 34725412 PMCID: PMC8560764 DOI: 10.1038/s41598-021-00894-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
To see whether acute intraoperative recordings using stereo EEG (SEEG) electrodes can replace prolonged interictal intracranial EEG (iEEG) recording, making the process more efficient and safer, 10 min of iEEG were recorded following electrode implantation in 16 anesthetized patients, and 1-2 days later during non-rapid eye movement (REM) sleep. Ripples on oscillations (RonO, 80-250 Hz), ripples on spikes (RonS), sharp-spikes, fast RonO (fRonO, 250-600 Hz), and fast RonS (fRonS) were semi-automatically detected. HFO power and frequency were compared between the conditions using a generalized linear mixed-effects model. HFO rates were compared using a two-way repeated measures ANOVA with anesthesia type and SOZ as factors. A receiver-operating characteristic (ROC) curve analysis quantified seizure onset zone (SOZ) classification accuracy, and the scalar product was used to assess spatial reliability. Resection of contacts with the highest rate of events was compared with outcome. During sleep, all HFOs, except fRonO, were larger in amplitude compared to intraoperatively (p < 0.01). HFO frequency was also affected (p < 0.01). Anesthesia selection affected HFO and sharp-spike rates. In both conditions combined, sharp-spikes and all HFO subtypes were increased in the SOZ (p < 0.01). However, the increases were larger during the sleep recordings (p < 0.05). The area under the ROC curves for SOZ classification were significantly smaller for intraoperative sharp-spikes, fRonO, and fRonS rates (p < 0.05). HFOs and spikes were only significantly spatially reliable for a subset of the patients (p < 0.05). A failure to resect fRonO areas in the sleep recordings trended the most sensitive and accurate for predicting failure. In summary, HFO morphology is altered by anesthesia. Intraoperative SEEG recordings exhibit increased rates of HFOs in the SOZ, but their spatial distribution can differ from sleep recordings. Recording these biomarkers during non-REM sleep offers a more accurate delineation of the SOZ and possibly the epileptogenic zone.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY, 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY, 11203, USA.,Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Daniel Rubinstein
- Department of Neurology and Neuroscience, Thomas Jefferson University, 901 Walnut St. Suite 400, Philadelphia, PA, 19107, USA
| | - Sandhitsu Das
- Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA, 19143, USA
| | - Zachary Waldman
- Department of Neurology and Neuroscience, Thomas Jefferson University, 901 Walnut St. Suite 400, Philadelphia, PA, 19107, USA
| | - Iren Orosz
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL), Rochester, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sperling
- Department of Neurology and Neuroscience, Thomas Jefferson University, 901 Walnut St. Suite 400, Philadelphia, PA, 19107, USA.
| |
Collapse
|
13
|
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, Chu CJ, Cash SS, Paulk AC. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 2021; 237:118094. [PMID: 33940142 DOI: 10.1016/j.neuroimage.2021.118094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Measuring connectivity in the human brain involves innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation. To examine how different measures of connectivity correlate with one another, we compared 'passive' measures of connectivity during resting state conditions to the more 'active' probing measures of connectivity with single pulse electrical stimulation (SPES). We measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 out of 104 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8). The CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network. These results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.
Collapse
Affiliation(s)
- Britni Crocker
- Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren Ostrowski
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M Williams
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129; Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02124; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Baier G, Zhang L, Wang Q, Moeller F. Extracting the transition network of epileptic seizure onset. CHAOS (WOODBURY, N.Y.) 2021; 31:023143. [PMID: 33653074 DOI: 10.1063/5.0026074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
In presurgical monitoring, focal seizure onset is visually assessed from intracranial electroencephalogram (EEG), typically based on the selection of channels that show the strongest changes in amplitude and frequency. As epileptic seizure dynamics is increasingly considered to reflect changes in potentially distributed neural networks, it becomes important to also assess the interrelationships between channels. We propose a workflow to quantitatively extract the nodes and edges contributing to the seizure onset using an across-seizure scoring. We propose a quantification of the consistency of EEG channel contributions to seizure onset within a patient. The workflow is exemplified using recordings from patients with different degrees of seizure-onset consistency.
Collapse
Affiliation(s)
- Gerold Baier
- Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Friederike Moeller
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London WC1 N 3JH, United Kingdom
| |
Collapse
|
15
|
Li Z, Li S, Yu T, Li X. Measuring the Coupling Direction between Neural Oscillations with Weighted Symbolic Transfer Entropy. ENTROPY (BASEL, SWITZERLAND) 2020; 22:e22121442. [PMID: 33371251 PMCID: PMC7767336 DOI: 10.3390/e22121442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 05/30/2023]
Abstract
Neural oscillations reflect rhythmic fluctuations in the synchronization of neuronal populations and play a significant role in neural processing. To further understand the dynamic interactions between different regions in the brain, it is necessary to estimate the coupling direction between neural oscillations. Here, we developed a novel method, termed weighted symbolic transfer entropy (WSTE), that combines symbolic transfer entropy (STE) and weighted probability distribution to measure the directionality between two neuronal populations. The traditional STE ignores the degree of difference between the amplitude values of a time series. In our proposed WSTE method, this information is picked up by utilizing a weighted probability distribution. The simulation analysis shows that the WSTE method can effectively estimate the coupling direction between two neural oscillations. In comparison with STE, the new method is more sensitive to the coupling strength and is more robust against noise. When applied to epileptic electrocorticography data, a significant coupling direction from the anterior nucleus of thalamus (ANT) to the seizure onset zone (SOZ) was detected during seizures. Considering the superiorities of the WSTE method, it is greatly advantageous to measure the coupling direction between neural oscillations and consequently characterize the information flow between different brain regions.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering (School of Software), Yanshan University, Qinhuangdao 066004, China; (Z.L.); (S.L.)
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004, China
| | - Shuaifei Li
- School of Information Science and Engineering (School of Software), Yanshan University, Qinhuangdao 066004, China; (Z.L.); (S.L.)
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Capital Medical University, Beijing 100053, China;
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|