1
|
Sadeghzadeh P, Freibauer A, RamachandranNair R, Whitney R, Al Nassar M, Jain P, Donner E, Ochi A, Jones KC. Low-density scalp electrical source imaging of the ictal onset zone network using source coherence maps. Front Neurol 2024; 15:1483977. [PMID: 39748857 PMCID: PMC11693594 DOI: 10.3389/fneur.2024.1483977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction This study investigated low-density scalp electrical source imaging of the ictal onset zone and interictal spike ripple high-frequency oscillation networks using source coherence maps in the pediatric epilepsy surgical workup. Intracranial monitoring, the gold standard for determining epileptogenic zones, has limited spatial sampling. Source coherence analysis presents a promising new non-invasive technique. Methods This was a retrospective review of 12 patients who underwent focal resections. Source coherence maps were generated using standardized low-resolution electromagnetic tomography and concordance to resection margins was assessed, noting outcomes at 3 years post-surgery. Results Ictal source coherence maps were performed in 7/12 patients. Six of seven included the surgical resection. Five of seven cases were seizure free post-resection. Interictal spike ripple electrical source imaging and interictal spike ripple high-frequency oscillation networks using source coherence maps were performed for three cases, with two of three included in the resection and all three were seizure free. Discussion These findings may provide proof of principle supporting low-density scalp electrical source imaging of the ictal onset zone and spike ripple network using source coherence maps. This promising method is complementary to ictal and interictal electrical source imaging in the pediatric epilepsy surgical workup, guiding electrode placement for intracranial monitoring to identify the epileptogenic zone.
Collapse
Affiliation(s)
- Parnia Sadeghzadeh
- Division of Neurology, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| | - Alexander Freibauer
- Division of Neurology, Department of Pediatrics, BC Children’s Hospital, Vancouver, BC, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| | - Mutaz Al Nassar
- Division of Neuroimaging, Department of Diagnostic Imaging, McMaster Children’s Hospital, Hamilton, ON, Canada
| | - Puneet Jain
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Donner
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ayako Ochi
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin C. Jones
- Division of Neurology, Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, Canada
| |
Collapse
|
2
|
Hirano R, Asai M, Nakasato N, Kanno A, Uda T, Tsuyuguchi N, Yoshimura M, Shigihara Y, Okada T, Hirata M. Deep learning based automatic detection and dipole estimation of epileptic discharges in MEG: a multi-center study. Sci Rep 2024; 14:24574. [PMID: 39427024 PMCID: PMC11490499 DOI: 10.1038/s41598-024-75370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Magnetoencephalography (MEG) provides crucial information in diagnosing focal epilepsy. However, dipole estimation, a commonly used analysis method for MEG, can be time-consuming since it necessitates neurophysiologists to manually identify epileptic spikes. To reduce this burden, we developed the automatic detection of spikes using deep learning in single center. In this study, we performed a multi-center study using six MEG centers to improve the performance of the automated detection of neuromagnetically recorded epileptic spikes, which we previously developed using deep learning. Data from four centers were used for training and evaluation (internal data), and the remaining two centers were used for evaluation only (external data). We used a five-fold subject-wise cross-validation technique to train and evaluate the models. A comparison showed that the multi-center model outperformed the single-center model in terms of performance. The multi-center model achieved an average ROC-AUC of 0.9929 and 0.9426 for the internal and external data, respectively. The median distance between the neurophysiologist-analyzed and automatically analyzed dipoles was 4.36 and 7.23 mm for the multi-center model for internal and external data, respectively, indicating accurate detection of epileptic spikes. By training data from multiple centers, automated analysis can improve spike detection and reduce the analysis workload for neurophysiologists. This study suggests that the multi-center model has the potential to detect spikes within 1 cm of a neurophysiologist's analysis. This multi-center model can significantly reduce the number of hours required by neurophysiologists to detect spikes.
Collapse
Affiliation(s)
- Ryoji Hirano
- Digital Strategy Division, Ricoh, Ebina, 243-0460, Japan.
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.
| | - Miyako Asai
- Digital Strategy Division, Ricoh, Ebina, 243-0460, Japan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Akitake Kanno
- Department of Epileptology, Tohoku University School of Medicine, Sendai, 980-8575, Japan
| | - Takehiro Uda
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, 545-8586, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, 545-8586, Japan
| | - Masaki Yoshimura
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, 420-8688, Japan
| | - Yoshihito Shigihara
- Precision Medicine Centre, Kumagaya General Hospital, Kumagaya, 360-8567, Japan
- Department of Clinical Laboratory, Hokuto Hospital, Obihiro, 080-0833, Japan
| | - Toyoji Okada
- Department of Clinical Laboratory, Hokuto Hospital, Obihiro, 080-0833, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| |
Collapse
|
3
|
Kreidenhuber R, Poppert KN, Mauritz M, Hamer HM, Delev D, Schnell O, Rampp S. MEG in MRI-Negative Patients with Focal Epilepsy. J Clin Med 2024; 13:5746. [PMID: 39407806 PMCID: PMC11476570 DOI: 10.3390/jcm13195746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
OBJECTIVES To review the evidence on the clinical value of magnetic source imaging (MSI) in patients with refractory focal epilepsy without evidence for an epileptogenic lesion on magnetic resonance imaging ("MRI-negative" or "non-lesional MRI"). METHODS We conducted a systematic literature search on PUBMED, which was extended by researchrabbit.ai using predefined criteria to identify studies that applied MSI in MRI-negative patients with epilepsy. We extracted data on patient characteristics, MSI methods, localization results, surgical outcomes, and correlation with other modalities. RESULTS We included 23 studies with a total of 512 non-lesional epilepsy patients who underwent MSI. Most studies used equivalent current dipole (ECD) models to estimate the sources of interictal epileptic discharges (IEDs). MEG detected IEDs in 32-100% of patients. MSI results were concordant with other modalities, such as EEG, PET, and SPECT, in 3892% of cases. If MSI concordant surgery was performed, 52-89% of patients achieved seizure freedom. MSI contributed to the decision-making process in 28-75% of cases and altered the surgical plan in 5-33% of cases. CONCLUSIONS MSI is a valuable diagnostic tool for MRI-negative patients with epilepsy, as it can detect and localize IEDs with high accuracy and sensitivity, and provides useful information for surgical planning and predicts outcomes. MSI can also complement and refine the results of other modalities, such as EEG and PET, and optimize the use of invasive recordings. MSI should be considered as part of the presurgical evaluation, especially in patients with non-lesional refractory epilepsy.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Radiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Kai-Nicolas Poppert
- Christian-Doppler Medical Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Matthias Mauritz
- Christian-Doppler Medical Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Hajo M. Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Oliver Schnell
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Corona L, Rijal S, Tanritanir O, Shahdadian S, Keator CG, Tran L, Malik SI, Bosemani M, Hansen D, Shahani D, Perry MS, Papadelis C. Electromagnetic Source Imaging in Presurgical Evaluation of Children with Drug-Resistant Epilepsy. J Vis Exp 2024:10.3791/66494. [PMID: 39373494 PMCID: PMC11512582 DOI: 10.3791/66494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
For children with drug-resistant epilepsy (DRE), seizure freedom relies on the delineation and resection (or ablation/disconnection) of the epileptogenic zone (EZ) while preserving the eloquent brain areas. The development of a reliable and noninvasive localization method that provides clinically useful information for the localization of the EZ is, therefore, crucial to achieving successful surgical outcomes. Electric and magnetic source imaging (ESI and MSI) have been increasingly utilized in the presurgical evaluation of these patients showing promising findings in the delineation of epileptogenic as well as eloquent brain areas. Moreover, the combination of ESI and MSI into a single solution, namely electromagnetic source imaging (EMSI), performed on simultaneous high-density electroencephalography (HD-EEG) and magnetoencephalography (MEG) recordings has shown higher source localization accuracy than either modality alone. Despite these encouraging findings, such techniques are performed in only a few tertiary epilepsy centers, are rarely recorded simultaneously, and are underutilized in pediatric cohorts. This study illustrates the experimental setup for recording simultaneous MEG and HD-EEG data as well as the methodological framework for analyzing these data aiming to localize the irritative zone, the seizure onset zone, and eloquent brain areas in children with DRE. More specifically, the experimental setups are presented for (i) recording and localizing interictal and ictal epileptiform activity during sleep and (ii) recording visual-, motor-, auditory-, and somatosensory-evoked responses and mapping relevant eloquent brain areas (i.e., visual, motor, auditory, and somatosensory) during visuomotor task, as well as auditory and somatosensory stimulations. Detailed steps of the data analysis pipeline are further presented for performing EMSI as well as individual ESI and MSI using equivalent current dipole (ECD) and dynamic statistical parametric mapping (dSPM).
Collapse
Affiliation(s)
- Ludovica Corona
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System; Department of Bioengineering, University of Texas at Arlington
| | - Sakar Rijal
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System; Department of Bioengineering, University of Texas at Arlington
| | - Omer Tanritanir
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Sadra Shahdadian
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System; Department of Bioengineering, University of Texas at Arlington
| | - Cynthia G Keator
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Linh Tran
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Saleem I Malik
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Madhan Bosemani
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Daniel Hansen
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Dave Shahani
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - M Scott Perry
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System
| | - Christos Papadelis
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System; Department of Bioengineering, University of Texas at Arlington; Burnett School of Medicine, Texas Christian University;
| |
Collapse
|
5
|
Asranna A, Abdulhak A, Viswanathan LG, Mundlamuri RC, Kenchaiah R, Narayanan M, Gautham B, Jayabal V, Bharath RD, Saini J, Nagaraj C, Mangalore S, Kulanthaivelu K, Sadashiva N, Mahadevan A, Rajeswaran J, Arimappamagan A, Malla BR, Sinha S. Magnetoencephalography Profile of Patients with Drug-Resistant Focal Epilepsy and Normal MRI. Ann Indian Acad Neurol 2024; 27:500-505. [PMID: 39344266 PMCID: PMC11575886 DOI: 10.4103/aian.aian_251_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/28/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Magnetoencephalography (MEG) could be a valuable tool in the presurgical evaluation of drug-resistant epilepsy (DRE), especially when the initial evaluation is inconclusive. In this retrospective study, we describe the profile of MEG in patients with DRE and normal magnetic resonance imaging (MRI). METHODS We included patients with focal epilepsy and normal MRI who underwent presurgical evaluation for DRE. MEG profiles of these patients, including the frequency of spikes, density of clusters, number of clusters, and concordance with video electroencephalography (VEEG), were analyzed. RESULTS Of the 73 patients included, magnetic source imaging (MSI) provided localizing information in 51 (69.9%) patients. Among patients with localizing MEG findings, localizing information on VEEG too was noted in 42 (57.5% of the whole cohort). Thirty-one (42.5%) patients had concordant findings with region-specific localization, six (8.2%) patients had partial concordance, and five (6.8%) subjects showed discordant findings. There was a moderate agreement for the presumed epileptogenic zone in comparing findings derived from MEG and VEEG (kappa value of 0.451, P < 0.001). The agreement was lower when MEG localized to the frontal lobe (kappa value of 0.379, P = 0.001) than the temporal lobe (kappa value 0.442, P = 0.002). CONCLUSIONS MEG can provide localizing information in most patients with a normal MRI. A moderate degree of agreement between localization by MEG and VEEG was noted. These findings highlight the usefulness of MSI in the presurgical evaluation of MRI-negative DRE.
Collapse
Affiliation(s)
- Ajay Asranna
- Department of Neurology, NIMHANS, Bengaluru, Karnataka, India
| | - Asheeb Abdulhak
- Department of Neurology, NIMHANS, Bengaluru, Karnataka, India
| | | | | | | | | | - Bhargava Gautham
- Department of MEG Research Centre, NIMHANS, Bengaluru, Karnataka, India
| | | | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), NIMHANS, Bengaluru, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology (NIIR), NIMHANS, Bengaluru, Karnataka, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), NIMHANS, Bengaluru, Karnataka, India
| | - Sandhya Mangalore
- Department of Neuroimaging and Interventional Radiology (NIIR), NIMHANS, Bengaluru, Karnataka, India
| | - Karthik Kulanthaivelu
- Department of Neuroimaging and Interventional Radiology (NIIR), NIMHANS, Bengaluru, Karnataka, India
| | | | - A Mahadevan
- Department of Neuropathology, NIMHANS, Bengaluru, Karnataka, India
| | | | | | | | - Sanjib Sinha
- Department of Neurology, NIMHANS, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Dmytriw AA, Hadjinicolaou A, Ntolkeras G, Tamilia E, Pesce M, Berto LF, Grant PE, Pang E, Ahtam B. Magnetoencephalography for the pediatric population, indications, acquisition and interpretation for the clinician. Neuroradiol J 2024:19714009241260801. [PMID: 38864180 PMCID: PMC11571317 DOI: 10.1177/19714009241260801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Magnetoencephalography (MEG) is an imaging technique that enables the assessment of cortical activity via direct measures of neurophysiology. It is a non-invasive and passive technique that is completely painless. MEG has gained increasing prominence in the field of pediatric neuroimaging. This dedicated review article for the pediatric population summarizes the fundamental technical and clinical aspects of MEG for the clinician. We discuss methods tailored for children to improve data quality, including child-friendly MEG facility environments and strategies to mitigate motion artifacts. We provide an in-depth overview on accurate localization of neural sources and different analysis methods, as well as data interpretation. The contemporary platforms and approaches of two quaternary pediatric referral centers are illustrated, shedding light on practical implementations in clinical settings. Finally, we describe the expanding clinical applications of MEG, including its pivotal role in presurgical evaluation of epilepsy patients, presurgical mapping of eloquent cortices (somatosensory and motor cortices, visual and auditory cortices, lateralization of language), its emerging relevance in autism spectrum disorder research and potential future clinical applications, and its utility in assessing mild traumatic brain injury. In conclusion, this review serves as a comprehensive resource of clinicians as well as researchers, offering insights into the evolving landscape of pediatric MEG. It discusses the importance of technical advancements, data acquisition strategies, and expanding clinical applications in harnessing the full potential of MEG to study neurological conditions in the pediatric population.
Collapse
Affiliation(s)
- Adam A. Dmytriw
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Boston, MA, USA
| | - Georgios Ntolkeras
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Eleonora Tamilia
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Matthew Pesce
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Laura F. Berto
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - P. Ellen Grant
- Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Pang
- Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Banu Ahtam
- Department of Pediatrics, Division of Newborn Medicine, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Ntolkeras G, Makaram N, Bernabei M, De La Vega AC, Bolton J, Madsen JR, Stone SSD, Pearl PL, Papadelis C, Grant EP, Tamilia E. Interictal EEG source connectivity to localize the epileptogenic zone in patients with drug-resistant epilepsy: A machine learning approach. Epilepsia 2024; 65:944-960. [PMID: 38318986 PMCID: PMC11018464 DOI: 10.1111/epi.17898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To deconstruct the epileptogenic networks of patients with drug-resistant epilepsy (DRE) using source functional connectivity (FC) analysis; unveil the FC biomarkers of the epileptogenic zone (EZ); and develop machine learning (ML) models to estimate the EZ using brief interictal electroencephalography (EEG) data. METHODS We analyzed scalp EEG from 50 patients with DRE who had surgery. We reconstructed the activity (electrical source imaging [ESI]) of virtual sensors (VSs) across the whole cortex and computed FC separately for epileptiform and non-epileptiform EEG epochs (with or without spikes). In patients with good outcome (Engel 1a), four cortical regions were defined: EZ (resection) and three non-epileptogenic zones (NEZs) in the same and opposite hemispheres. Region-specific FC features in six frequency bands and three spatial ranges (long, short, inner) were compared between regions (Wilcoxon sign-rank). We developed ML classifiers to identify the VSs in the EZ using VS-specific FC features. Cross-validation was performed using good outcome data. Performance was compared with poor outcomes and interictal spike localization. RESULTS FC differed between EZ and NEZs (p < .05) during non-epileptiform and epileptiform epochs, showing higher FC in the EZ than its homotopic contralateral NEZ. During epileptiform epochs, the NEZ in the epileptogenic hemisphere showed higher FC than its contralateral NEZ. In good outcome patients, the ML classifiers reached 75% accuracy to the resection (91% sensitivity; 74% specificity; distance from EZ: 38 mm) using epileptiform epochs (gamma and beta frequency bands) and 62% accuracy using broadband non-epileptiform epochs, both outperforming spike localization (accuracy = 47%; p < .05; distance from EZ: 57 mm). Lower performance was seen in poor outcomes. SIGNIFICANCE We present an FC approach to extract EZ biomarkers from brief EEG data. Increased FC in various frequencies characterized the EZ during epileptiform and non-epileptiform epochs. FC-based ML models identified the resection better in good than poor outcome patients, demonstrating their potential for presurgical use in pediatric DRE.
Collapse
Affiliation(s)
- Georgios Ntolkeras
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Navaneethakrishna Makaram
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matteo Bernabei
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aime Cristina De La Vega
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scellig S D Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Cook Children's Health Care System, Fort Worth, Texas, USA
| | - Ellen P Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Hao G, Yan H, Wang X, Gao R, Xue Y, Zhang X, Ni D, Shu W, Qiao L, He L, Yu T. The role of magnetoencephalography in preoperative localization and postoperative outcome prediction in patients with posterior cortical epilepsy. CNS Neurosci Ther 2024; 30:e14602. [PMID: 38332652 PMCID: PMC10853654 DOI: 10.1111/cns.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE We aimed to explore the value of magnetoencephalography in the presurgical evaluation of patients with posterior cortex epilepsy. METHODS A total of 39 patients with posterior cortex epilepsy (PCE) and intact magnetoencephalography (MEG) images were reviewed from August 2019 to July 2022. MEG dipole clusters were classified into single clusters, multiple clusters, and scatter dipoles based on tightness criteria. The association of the surgical outcome with MEG dipole classifications was evaluated using Fisher's exact tests. RESULTS Among the 39 cases, there were 24 cases of single clusters (61.5%), nine cases of multiple clusters (23.1%), and six cases of scattered dipoles (15.4%). Patients with single dipole clusters were more likely to become seizure-free. Among single dipole cluster cases (n = 24), complete MEG dipole resection yielded a more favorable surgical outcome than incomplete resection (83.3% vs. 16.7%, p = 0.007). Patients with concordant MRI and MEG findings achieved a significantly more favorable surgical outcome than discordant patients (66.7% vs. 33.3%, p = 0.044), especially in single dipole cluster patients (87.5% vs. 25.0%, p = 0.005). SIGNIFICANCE MEG can provide additional valuable information regarding surgical candidate selection, epileptogenic zone localization, electrode implantation schedule, and final surgical planning in patients with posterior cortex epilepsy.
Collapse
Affiliation(s)
- Guiliang Hao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xueyuan Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Runshi Gao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yansong Xue
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xiating Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Duanyu Ni
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wei Shu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Liang Qiao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Liu He
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Geller AS, Teale P, Kronberg E, Ebersole JS. Magnetoencephalography for Epilepsy Presurgical Evaluation. Curr Neurol Neurosci Rep 2024; 24:35-46. [PMID: 38148387 DOI: 10.1007/s11910-023-01328-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF THE REVIEW Magnetoencephalography (MEG) is a functional neuroimaging technique that records neurophysiology data with millisecond temporal resolution and localizes it with subcentimeter accuracy. Its capability to provide high resolution in both of these domains makes it a powerful tool both in basic neuroscience as well as clinical applications. In neurology, it has proven useful in its ability to record and localize epileptiform activity. Epilepsy workup typically begins with scalp electroencephalography (EEG), but in many situations, EEG-based localization of the epileptogenic zone is inadequate. The complementary sensitivity of MEG can be crucial in such cases, and MEG has been adopted at many centers as an important resource in building a surgical hypothesis. In this paper, we review recent work evaluating the extent of MEG influence of presurgical evaluations, novel analyses of MEG data employed in surgical workup, and new MEG instrumentation that will likely affect the field of clinical MEG. RECENT FINDINGS MEG consistently contributes to presurgical evaluation and these contributions often change the plan for epilepsy surgery. Extensive work has been done to develop new analytic methods for localizing the source of epileptiform activity with MEG. Systems using optically pumped magnetometry (OPM) have been successfully deployed to record and localize epileptiform activity. MEG remains an important noninvasive tool for epilepsy presurgical evaluation. Continued improvements in analytic methodology will likely increase the diagnostic yield of the test. Novel instrumentation with OPM may contribute to this as well, and may increase accessibility of MEG by decreasing cost.
Collapse
Affiliation(s)
- Aaron S Geller
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA.
| | - Peter Teale
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA
| | - Eugene Kronberg
- Department of Neurology, CU Anschutz Medical School, Aurora, CO, USA
| | - John S Ebersole
- Department of Neurology, Atlantic Neuroscience Institute, Summit, NJ, USA
| |
Collapse
|
10
|
Vogrin SJ, Plummer C. EEG Source Imaging-Clinical Considerations for EEG Acquisition and Signal Processing for Improved Temporo-Spatial Resolution. J Clin Neurophysiol 2024; 41:8-18. [PMID: 38181383 DOI: 10.1097/wnp.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
SUMMARY EEG source imaging (ESI) has gained traction in recent years as a useful clinical tool for the noninvasive surgical work-up of patients with drug-resistant focal epilepsy. Despite its proven benefits for the temporo-spatial modeling of spike and seizure sources, ESI remains widely underused in clinical practice. This partly relates to a lack of clarity around an optimal approach to the acquisition and processing of scalp EEG data for the purpose of ESI. Here, we describe some of the practical considerations for the clinical application of ESI. We focus on patient preparation, the impact of electrode number and distribution across the scalp, the benefit of averaging raw data for signal analysis, and the relevance of modeling different phases of the interictal discharge as it evolves from take-off to peak. We emphasize the importance of recording high signal-to-noise ratio data for reliable source analysis. We argue that the accuracy of modeling cortical sources can be improved using higher electrode counts that include an inferior temporal array, by averaging interictal waveforms rather than limiting ESI to single spike analysis, and by careful interrogation of earlier phase components of these waveforms. No amount of postacquisition signal processing or source modeling sophistication, however, can make up for suboptimally recorded scalp EEG data in a poorly prepared patient.
Collapse
Affiliation(s)
- Simon J Vogrin
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia; and
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris Plummer
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia; and
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Rampp S, Müller-Voggel N, Hamer H, Doerfler A, Brandner S, Buchfelder M. Interictal Electrical Source Imaging. J Clin Neurophysiol 2024; 41:19-26. [PMID: 38181384 DOI: 10.1097/wnp.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
SUMMARY Interictal electrical source imaging (ESI) determines the neuronal generators of epileptic activity in EEG occurring outside of seizures. It uses computational models to take anatomic and neuronal characteristics of the individual patient into account. The presented article provides an overview of application and clinical value of interictal ESI in patients with pharmacoresistant focal epilepsies undergoing evaluation for surgery. Neurophysiological constraints of interictal data are discussed and technical considerations are summarized. Typical indications are covered as well as issues of integration into clinical routine. Finally, an outlook on novel markers of epilepsy for interictal source analysis is presented. Interictal ESI provides diagnostic performance on par with other established methods, such as MRI, PET, or SPECT. Although its accuracy benefits from high-density recordings, it provides valuable information already when applied to EEG with only a limited number of electrodes with complete coverage. Novel oscillatory markers and the integration of frequency coupling and connectivity may further improve accuracy and efficiency.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), Germany
| | | | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, Germany; and
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Germany
| | | | | |
Collapse
|
12
|
Zhang H, Zhou QQ, Chen H, Hu XQ, Li WG, Bai Y, Han JX, Wang Y, Liang ZH, Chen D, Cong FY, Yan JQ, Li XL. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil Med Res 2023; 10:67. [PMID: 38115158 PMCID: PMC10729551 DOI: 10.1186/s40779-023-00502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Electroencephalography (EEG) is a non-invasive measurement method for brain activity. Due to its safety, high resolution, and hypersensitivity to dynamic changes in brain neural signals, EEG has aroused much interest in scientific research and medical fields. This article reviews the types of EEG signals, multiple EEG signal analysis methods, and the application of relevant methods in the neuroscience field and for diagnosing neurological diseases. First, three types of EEG signals, including time-invariant EEG, accurate event-related EEG, and random event-related EEG, are introduced. Second, five main directions for the methods of EEG analysis, including power spectrum analysis, time-frequency analysis, connectivity analysis, source localization methods, and machine learning methods, are described in the main section, along with different sub-methods and effect evaluations for solving the same problem. Finally, the application scenarios of different EEG analysis methods are emphasized, and the advantages and disadvantages of similar methods are distinguished. This article is expected to assist researchers in selecting suitable EEG analysis methods based on their research objectives, provide references for subsequent research, and summarize current issues and prospects for the future.
Collapse
Affiliation(s)
- Hao Zhang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Qing-Qi Zhou
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China
| | - He Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Qing Hu
- Department of Psychology, the State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, 518057, Guangdong, China
| | - Wei-Guang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yang Bai
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, 330006, China
| | - Jun-Xia Han
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Yao Wang
- School of Communication Science, Beijing Language and Culture University, Beijing, 100083, China
| | - Zhen-Hu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, Hebei, China.
| | - Dan Chen
- School of Computer Science, Wuhan University, Wuhan, 430072, China.
| | - Feng-Yu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116081, Liaoning, China.
| | - Jia-Qing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing, 100041, China.
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, China.
| |
Collapse
|
13
|
Makaram N, Gupta S, Pesce M, Bolton J, Stone S, Haehn D, Pomplun M, Papadelis C, Pearl P, Rotenberg A, Grant PE, Tamilia E. Deep Learning-Based Visual Complexity Analysis of Electroencephalography Time-Frequency Images: Can It Localize the Epileptogenic Zone in the Brain? ALGORITHMS 2023; 16:567. [PMID: 39712322 PMCID: PMC11661830 DOI: 10.3390/a16120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In drug-resistant epilepsy, a visual inspection of intracranial electroencephalography (iEEG) signals is often needed to localize the epileptogenic zone (EZ) and guide neurosurgery. The visual assessment of iEEG time-frequency (TF) images is an alternative to signal inspection, but subtle variations may escape the human eye. Here, we propose a deep learning-based metric of visual complexity to interpret TF images extracted from iEEG data and aim to assess its ability to identify the EZ in the brain. We analyzed interictal iEEG data from 1928 contacts recorded from 20 children with drug-resistant epilepsy who became seizure-free after neurosurgery. We localized each iEEG contact in the MRI, created TF images (1-70 Hz) for each contact, and used a pre-trained VGG16 network to measure their visual complexity by extracting unsupervised activation energy (UAE) from 13 convolutional layers. We identified points of interest in the brain using the UAE values via patient- and layer-specific thresholds (based on extreme value distribution) and using a support vector machine classifier. Results show that contacts inside the seizure onset zone exhibit lower UAE than outside, with larger differences in deep layers (L10, L12, and L13: p < 0.001). Furthermore, the points of interest identified using the support vector machine, localized the EZ with 7 mm accuracy. In conclusion, we presented a pre-surgical computerized tool that facilitates the EZ localization in the patient's MRI without requiring long-term iEEG inspection.
Collapse
Affiliation(s)
- Navaneethakrishna Makaram
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarvagya Gupta
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Pesce
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Bolton
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scellig Stone
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Haehn
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02115, USA
| | - Marc Pomplun
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02115, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Phillip Pearl
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Owen TW, Janiukstyte V, Hall GR, Chowdhury FA, Diehl B, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg-Gunn F, Wang Y, Taylor PN. Interictal magnetoencephalography abnormalities to guide intracranial electrode implantation and predict surgical outcome. Brain Commun 2023; 5:fcad292. [PMID: 37953844 PMCID: PMC10636564 DOI: 10.1093/braincomms/fcad292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/24/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Intracranial EEG is the gold standard technique for epileptogenic zone localization but requires a preconceived hypothesis of the location of the epileptogenic tissue. This placement is guided by qualitative interpretations of seizure semiology, MRI, EEG and other imaging modalities, such as magnetoencephalography. Quantitative abnormality mapping using magnetoencephalography has recently been shown to have potential clinical value. We hypothesized that if quantifiable magnetoencephalography abnormalities were sampled by intracranial EEG, then patients' post-resection seizure outcome may be better. Thirty-two individuals with refractory neocortical epilepsy underwent magnetoencephalography and subsequent intracranial EEG recordings as part of presurgical evaluation. Eyes-closed resting-state interictal magnetoencephalography band power abnormality maps were derived from 70 healthy controls as a normative baseline. Magnetoencephalography abnormality maps were compared to intracranial EEG electrode implantation, with the spatial overlap of intracranial EEG electrode placement and cerebral magnetoencephalography abnormalities recorded. Finally, we assessed if the implantation of electrodes in abnormal tissue and subsequent resection of the strongest abnormalities determined by magnetoencephalography and intracranial EEG corresponded to surgical success. We used the area under the receiver operating characteristic curve as a measure of effect size. Intracranial electrodes were implanted in brain tissue with the most abnormal magnetoencephalography findings-in individuals that were seizure-free postoperatively (T = 3.9, P = 0.001) but not in those who did not become seizure-free. The overlap between magnetoencephalography abnormalities and electrode placement distinguished surgical outcome groups moderately well (area under the receiver operating characteristic curve = 0.68). In isolation, the resection of the strongest abnormalities as defined by magnetoencephalography and intracranial EEG separated surgical outcome groups well, area under the receiver operating characteristic curve = 0.71 and area under the receiver operating characteristic curve = 0.74, respectively. A model incorporating all three features separated surgical outcome groups best (area under the receiver operating characteristic curve = 0.80). Intracranial EEG is a key tool to delineate the epileptogenic zone and help render individuals seizure-free postoperatively. We showed that data-driven abnormality maps derived from resting-state magnetoencephalography recordings demonstrate clinical value and may help guide electrode placement in individuals with neocortical epilepsy. Additionally, our predictive model of postoperative seizure freedom, which leverages both magnetoencephalography and intracranial EEG recordings, could aid patient counselling of expected outcome.
Collapse
Affiliation(s)
- Thomas W Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Gerard R Hall
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Andrew McEvoy
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John S Duncan
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Fergus Rugg-Gunn
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
15
|
Chikara RK, Jahromi S, Tamilia E, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Electromagnetic source imaging predicts surgical outcome in children with focal cortical dysplasia. Clin Neurophysiol 2023; 153:88-101. [PMID: 37473485 PMCID: PMC10528204 DOI: 10.1016/j.clinph.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of electromagnetic source imaging (EMSI) in localizing spikes and predict surgical outcome in children with drug resistant epilepsy (DRE) due to focal cortical dysplasia (FCD). METHODS We retrospectively analyzed magnetoencephalography (MEG) and high-density (HD-EEG) data from 23 children with FCD-associated DRE who underwent intracranial EEG and surgery. We localized spikes using equivalent current dipole (ECD) fitting, dipole clustering, and dynamical statistical parametric mapping (dSPM) on EMSI, electric source imaging (ESI), and magnetic source imaging (MSI). We calculated the distance from the seizure onset zone (DSOZ) and resection (DRES). We estimated receiver operating characteristic (ROC) curves with Youden's index (J) to predict outcome. RESULTS EMSI presented shorter DSOZ (15.18 ± 9.06 mm) and DRES (8.56 ± 6.24 mm) compared to ESI (DSOZ: 25.04 ± 16.20 mm, p < 0.009; DRES: 18.88 ± 17.30 mm, p < 0.03) and MSI (DSOZ: 23.37 ± 8.98 mm, p < 0.03; DRES: 15.51 ± 10.11 mm, p < 0.02) for clustering in patients with good outcome. Clustering showed shorter DSOZ and DRES compared to ECD fitting and dSPM (p < 0.05). EMSI had higher performance as outcome predictor (J = 70.63%) compared to ESI (J = 41.27%) and MSI (J = 33.33%) for clustering. CONCLUSIONS EMSI provides superior localization and improved predictive performance than individual modalities. SIGNIFICANCE EMSI can help the surgical planning and facilitate the localization of epileptogenic foci.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Saeed Jahromi
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve M Stufflebeam
- Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
16
|
Owen T, Janiukstyte V, Hall GR, Chowdhury FA, Diehl B, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg-Gunn F, Wang Y, Taylor PN. Interictal MEG abnormalities to guide intracranial electrode implantation and predict surgical outcome. ARXIV 2023:arXiv:2304.05199v1. [PMID: 37090233 PMCID: PMC10120748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Intracranial EEG (iEEG) is the gold standard technique for epileptogenic zone (EZ) localisation, but requires a preconceived hypothesis of the location of the epileptogenic tissue. This placement is guided by qualitative interpretations of seizure semiology, MRI, EEG and other imaging modalities, such as magnetoencephalography (MEG). Quantitative abnormality mapping using MEG has recently been shown to have potential clinical value. We hypothesised that if quantifiable MEG abnormalities were sampled by iEEG, then patients' post-resection seizure outcome may be better. Thirty-two individuals with refractory neocortical epilepsy underwent MEG and subsequent iEEG recordings as part of pre-surgical evaluation. Eyes-closed resting-state interictal MEG band power abnormality maps were derived from 70 healthy controls as a normative baseline. MEG abnormality maps were compared to iEEG electrode implantation, with the spatial overlap of iEEG electrode placement and cerebral MEG abnormalities recorded. Finally, we assessed if the implantation of electrodes in abnormal tissue, and subsequent resection of the strongest abnormalities determined by MEG and iEEG corresponded to surgical success. Intracranial electrodes were implanted in brain tissue with the most abnormal MEG findings - in individuals that were seizure-free post-operatively (T=3.9, p=0.003), but not in those who did not become seizure free. The overlap between MEG abnormalities and electrode placement distinguished surgical outcome groups moderately well (AUC=0.68). In isolation, the resection of the strongest abnormalities as defined by MEG and iEEG separated surgical outcome groups well, AUC=0.71, AUC=0.74 respectively. A model incorporating all three features separated surgical outcome groups best (AUC=0.80). Intracranial EEG is a key tool to delineate the EZ and help render individuals seizure-free post-operatively. We showed that data-driven abnormality maps derived from resting-state MEG recordings demonstrate clinical value and may help guide electrode placement in individuals with neocortical epilepsy. Additionally, our predictive model of post-operative seizure-freedom, which leverages both MEG and iEEG recordings, could aid patient counselling of expected outcome.
Collapse
Affiliation(s)
- Tom Owen
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vytene Janiukstyte
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gerard R Hall
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Andrew McEvoy
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Fergus Rugg-Gunn
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Peter Neal Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| |
Collapse
|
17
|
Banerjee A, Kamboj P, Wyckoff SN, Sussman BL, Gupta SKS, Boerwinkle VL. Automated seizure onset zone locator from resting-state functional MRI in drug-resistant epilepsy. FRONTIERS IN NEUROIMAGING 2023; 1:1007668. [PMID: 37555141 PMCID: PMC10406253 DOI: 10.3389/fnimg.2022.1007668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Accurate localization of a seizure onset zone (SOZ) from independent components (IC) of resting-state functional magnetic resonance imaging (rs-fMRI) improves surgical outcomes in children with drug-resistant epilepsy (DRE). Automated IC sorting has limited success in identifying SOZ localizing ICs in adult normal rs-fMRI or uncategorized epilepsy. Children face unique challenges due to the developing brain and its associated surgical risks. This study proposes a novel SOZ localization algorithm (EPIK) for children with DRE. METHODS EPIK is developed in a phased approach, where fMRI noise-related biomarkers are used through high-fidelity image processing techniques to eliminate noise ICs. Then, the SOZ markers are used through a maximum likelihood-based classifier to determine SOZ localizing ICs. The performance of EPIK was evaluated on a unique pediatric DRE dataset (n = 52). A total of 24 children underwent surgical resection or ablation of an rs-fMRI identified SOZ, concurrently evaluated with an EEG and anatomical MRI. Two state-of-art techniques were used for comparison: (a) least squares support-vector machine and (b) convolutional neural networks. The performance was benchmarked against expert IC sorting and Engel outcomes for surgical SOZ resection or ablation. The analysis was stratified across age and sex. RESULTS EPIK outperformed state-of-art techniques for SOZ localizing IC identification with a mean accuracy of 84.7% (4% higher), a precision of 74.1% (22% higher), a specificity of 81.9% (3.2% higher), and a sensitivity of 88.6% (16.5% higher). EPIK showed consistent performance across age and sex with the best performance in those < 5 years of age. It helped achieve a ~5-fold reduction in the number of ICs to be potentially analyzed during pre-surgical screening. SIGNIFICANCE Automated SOZ localization from rs-fMRI, validated against surgical outcomes, indicates the potential for clinical feasibility. It eliminates the need for expert sorting, outperforms prior automated methods, and is consistent across age and sex.
Collapse
Affiliation(s)
- Ayan Banerjee
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Payal Kamboj
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Sarah N. Wyckoff
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Bethany L. Sussman
- Division of Neuroscience, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Sandeep K. S. Gupta
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Varina L. Boerwinkle
- Division of Child Neurology, University of North Carolina Department of Neurology, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Satzer D, Esengul YT, Warnke PC, Issa NP, Nordli DR. Source localization of ictal SEEG to predict postoperative seizure outcome. Clin Neurophysiol 2022; 144:142-150. [PMID: 36088217 DOI: 10.1016/j.clinph.2022.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Stereo-electroencephalography (SEEG) is inherently-three-dimensional and can be modeled using source localization. This study aimed to assess the validity of ictal SEEG source localization. METHODS The dominant frequency at ictal onset was used for source localization in the time and frequency domains using rotating dipoles and current density maps. Validity was assessed by concordance with the epileptologist-defined seizure onset zone (conventional SOZ) and the surgical treatment volume (TV) of seizure-free versus non-seizure-free patients. RESULTS Source localization was performed on 68 seizures from 27 patients. Median distance to nearest contact in the conventional SOZ was 7 (IQR 6-12) mm for time-domain dipoles. Current density predicted ictal activity with up to 86 % (60-87 %) accuracy. Distance from time-domain dipoles to the TV was smaller (P = 0.045) in seizure-free (2 [0-4] mm) versus non-seizure-free (12 [2-17] mm) patients, and predicted surgical outcome with 91 % sensitivity and 63 % specificity. Removing near-field data from contacts within the TV negated outcome prediction (P = 0.51). CONCLUSIONS Source localization of SEEG accurately mapped ictal onset compared with conventional interpretation. Proximity of dipoles to the TV predicted seizure outcome when near-field recordings were analyzed. SIGNIFICANCE Ictal SEEG source localization is useful in corroborating the epileptogenic zone, assuming near-field recordings are obtained.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA.
| | - Yasar T Esengul
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Peter C Warnke
- Department of Neurological Surgery, University of Chicago, Chicago, IL, USA
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Papadelis C, Ricci L, Matarrese MAG, Peters JM, Tamilia E, Madsen J, Pearl PL. Reply to "Added value of high-resolution electrical source imaging of ictal activity in children with structural focal epilepsy". Clin Neurophysiol 2022; 140:254-255. [PMID: 35728995 DOI: 10.1016/j.clinph.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, 1500 Cooper St., Fort Worth, TX 76104, USA.
| | - Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, Rome 128, Italy.
| | - Margherita A G Matarrese
- Laboratory of Nonlinear Physics and Mathematical Modeling, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, Rome 128, Italy.
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Eleonora Tamilia
- Department of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Drive, BCH3146, Boston, MA 02115, USA.
| | - Joseph Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Billardello R, Ntolkeras G, Chericoni A, Madsen JR, Papadelis C, Pearl PL, Grant PE, Taffoni F, Tamilia E. Novel User-Friendly Application for MRI Segmentation of Brain Resection following Epilepsy Surgery. Diagnostics (Basel) 2022; 12:diagnostics12041017. [PMID: 35454065 PMCID: PMC9032020 DOI: 10.3390/diagnostics12041017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Delineation of resected brain cavities on magnetic resonance images (MRIs) of epilepsy surgery patients is essential for neuroimaging/neurophysiology studies investigating biomarkers of the epileptogenic zone. The gold standard to delineate the resection on MRI remains manual slice-by-slice tracing by experts. Here, we proposed and validated a semiautomated MRI segmentation pipeline, generating an accurate model of the resection and its anatomical labeling, and developed a graphical user interface (GUI) for user-friendly usage. We retrieved pre- and postoperative MRIs from 35 patients who had focal epilepsy surgery, implemented a region-growing algorithm to delineate the resection on postoperative MRIs and tested its performance while varying different tuning parameters. Similarity between our output and hand-drawn gold standards was evaluated via dice similarity coefficient (DSC; range: 0-1). Additionally, the best segmentation pipeline was trained to provide an automated anatomical report of the resection (based on presurgical brain atlas). We found that the best-performing set of parameters presented DSC of 0.83 (0.72-0.85), high robustness to seed-selection variability and anatomical accuracy of 90% to the clinical postoperative MRI report. We presented a novel user-friendly open-source GUI that implements a semiautomated segmentation pipeline specifically optimized to generate resection models and their anatomical reports from epilepsy surgery patients, while minimizing user interaction.
Collapse
Affiliation(s)
- Roberto Billardello
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Correspondence: (R.B.); (E.T.)
| | - Georgios Ntolkeras
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Baystate Children’s Hospital, Springfield, MA 01199, USA
| | - Assia Chericoni
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Joseph R. Madsen
- Epilepsy Surgery Program, Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX 76104, USA;
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Patricia Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
| | - Fabrizio Taffoni
- Advanced Robotics and Human-Centered Technologies-CREO Lab, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Eleonora Tamilia
- Fetal Neonatal Neuroimaging and Developmental Science Center (FNNDSC), Newborn Medicine Division, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (G.N.); (A.C.); (P.E.G.)
- Correspondence: (R.B.); (E.T.)
| |
Collapse
|
21
|
Zhang C, Liu W, Zhang J, Zhang X, Huang P, Sun B, Zhan S, Cao C. Utility of magnetoencephalography combined with stereo-electroencephalography in resective epilepsy surgery: a 2-year follow-up. Seizure 2022; 97:94-101. [DOI: 10.1016/j.seizure.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
|
22
|
Satzer D, Esengul YT, Warnke PC, Issa NP, Nordli DR. SEEG in 3D: Interictal Source Localization From Intracerebral Recordings. Front Neurol 2022; 13:782880. [PMID: 35211078 PMCID: PMC8861202 DOI: 10.3389/fneur.2022.782880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereo-electroencephalography (SEEG) uses a three-dimensional configuration of depth electrodes to localize epileptiform activity, but traditional analysis of SEEG is spatially restricted to the point locations of the electrode contacts. Interpolation of brain activity between contacts might allow for three-dimensional representation of epileptiform activity and avoid pitfalls of SEEG interpretation. OBJECTIVE The goal of this study was to validate SEEG-based interictal source localization and assess the ability of this technique to monitor far-field activity in non-implanted brain regions. METHODS Interictal epileptiform discharges were identified on SEEG in 26 patients who underwent resection, ablation, or disconnection of the suspected epileptogenic zone. Dipoles without (free) and with (scan) gray matter restriction, and current density (sLORETA and SWARM methods), were calculated using a finite element head model. Source localization results were compared to the conventional irritative zone (IZ) and the surgical treatment volumes (TV) of seizure-free vs. non-seizure-free patients. RESULTS The median distance from dipole solutions to the nearest contact in the conventional IZ was 7 mm (interquartile range 4-15 mm for free dipoles and 4-14 mm for scan dipoles). The IZ modeled with SWARM predicted contacts within the conventional IZ with 83% (75-100%) sensitivity and 94% (88-100%) specificity. The proportion of current within the TV was greater in seizure-free patients (P = 0.04) and predicted surgical outcome with 45% sensitivity and 93% specificity. Dipole solutions and sLORETA results did not correlate with seizure outcome. Addition of scalp EEG led to more superficial modeled sources (P = 0.03) and negated the ability to predict seizure outcome (P = 0.23). Removal of near-field data from contacts within the TV resulted in smearing of the current distribution (P = 0.007) and precluded prediction of seizure freedom (P = 0.20). CONCLUSIONS Source localization accurately represented interictal discharges from SEEG. The proportion of current within the TV distinguished between seizure-free and non-seizure-free patients when near-field recordings were obtained from the surgical target. The high prevalence of deep sources in this cohort likely obscured any benefit of concurrent scalp EEG. SEEG-based interictal source localization is useful in illustrating and corroborating the epileptogenic zone. Additional techniques are needed to localize far-field epileptiform activity from non-implanted brain regions.
Collapse
Affiliation(s)
- David Satzer
- Department of Neurosurgery, University of Chicago, Chicago, IL, United States
| | - Yasar T Esengul
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Peter C Warnke
- Department of Neurosurgery, University of Chicago, Chicago, IL, United States
| | - Naoum P Issa
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Douglas R Nordli
- Section of Child Neurology, Department of Pediatrics, University of Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Papadelis C, Conrad SE, Song Y, Shandley S, Hansen D, Bosemani M, Malik S, Keator C, Perry MS. Case Report: Laser Ablation Guided by State of the Art Source Imaging Ends an Adolescent's 16-Year Quest for Seizure Freedom. Front Hum Neurosci 2022; 16:826139. [PMID: 35145387 PMCID: PMC8821813 DOI: 10.3389/fnhum.2022.826139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 01/14/2023] Open
Abstract
Epilepsy surgery is the most effective therapeutic approach for children with drug resistant epilepsy (DRE). Recent advances in neurosurgery, such as the Laser Interstitial Thermal Therapy (LITT), improved the safety and non-invasiveness of this method. Electric and magnetic source imaging (ESI/MSI) plays critical role in the delineation of the epileptogenic focus during the presurgical evaluation of children with DRE. Yet, they are currently underutilized even in tertiary epilepsy centers. Here, we present a case of an adolescent who suffered from DRE for 16 years and underwent surgery at Cook Children's Medical Center (CCMC). The patient was previously evaluated in a level 4 epilepsy center and treated with multiple antiseizure medications for several years. Presurgical evaluation at CCMC included long-term video electroencephalography (EEG), magnetoencephalography (MEG) with simultaneous conventional EEG (19 channels) and high-density EEG (256 channels) in two consecutive sessions, MRI, and fluorodeoxyglucose - positron emission tomography (FDG-PET). Video long-term EEG captured nine focal-onset clinical seizures with a maximal evolution over the right frontal/frontal midline areas. MRI was initially interpreted as non-lesional. FDG-PET revealed a small region of hypometabolism at the anterior right superior temporal gyrus. ESI and MSI performed with dipole clustering showed a tight cluster of dipoles in the right anterior insula. The patient underwent intracranial EEG which indicated the right anterior insular as seizure onset zone. Eventually LITT rendered the patient seizure free (Engel 1; 12 months after surgery). Retrospective analysis of ESI and MSI clustered dipoles found a mean distance of dipoles from the ablated volume ranging from 10 to 25 mm. Our findings highlight the importance of recent technological advances in the presurgical evaluation and surgical treatment of children with DRE, and the underutilization of epilepsy surgery in children with DRE.
Collapse
Affiliation(s)
- Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
- School of Medicine, Texas Christian University, University of North Texas Health Science Center, Fort Worth, TX, United States
- *Correspondence: Christos Papadelis orcid.org/0000-0001-6125-9217
| | - Shannon E. Conrad
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
| | - Yanlong Song
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Sabrina Shandley
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
| | - Daniel Hansen
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
| | - Madhan Bosemani
- Department of Radiology, Cook Children's Medical Center, Fort Worth, TX, United States
| | - Saleem Malik
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
| | - Cynthia Keator
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
| | - M. Scott Perry
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States
| |
Collapse
|
24
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
25
|
Papadelis C, Perry MS. Localizing the Epileptogenic Zone with Novel Biomarkers. Semin Pediatr Neurol 2021; 39:100919. [PMID: 34620466 PMCID: PMC8501232 DOI: 10.1016/j.spen.2021.100919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
Several noninvasive methods, such as high-density EEG or magnetoencephalography, are currently used to delineate the epileptogenic zone (EZ) during the presurgical evaluation of patients with drug resistant epilepsy (DRE). Yet, none of these methods can reliably identify the EZ by their own. In most cases a multimodal approach is needed. Challenging cases often require the implantation of intracranial electrodes, either through stereo-taxic EEG or electro-corticography. Recently, a growing body of literature introduces novel biomarkers of epilepsy that can be used for analyzing both invasive as well as noninvasive electrophysiological data. Some of these biomarkers are able to delineate the EZ with high precision, augment the presurgical evaluation, and predict the surgical outcome of patients with DRE undergoing surgery. However, the use of these epilepsy biomarkers in clinical practice is limited. Here, we summarize and discuss the latest technological advances in the presurgical neurophysiological evaluation of children with DRE with emphasis on electric and magnetic source imaging, high frequency oscillations, and functional connectivity.
Collapse
Affiliation(s)
- Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX; School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX; Department of Bioengineering, University of Texas at Arlington, Arlington, TX; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - M Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, Fort Worth, TX, USA
| |
Collapse
|
26
|
Jeong H, Ntolkeras G, Grant PE, Bonmassar G. Numerical simulation of the radiofrequency safety of 128-channel hd-EEG nets on a 29-month-old whole-body model in a 3 Tesla MRI. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY 2021; 63:1748-1756. [PMID: 34675444 PMCID: PMC8522907 DOI: 10.1109/temc.2021.3097732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study investigates the radiofrequency (RF) induced heating in a pediatric whole-body voxel model with a high-density electroencephalogram (hd-EEG) net during magnetic resonance imaging (MRI) at 3 Tesla. A total of three cases were studied: no net (NoNet), a resistive hd-EEG (NeoNet), and a copper (CuNet) net. The maximum values of specific absorption rate averaged over 10g-mass (10gSAR) in the head were calculated with the NeoNet was 12.51 W/kg and in the case of the NoNet was 12.40 W/kg. In contrast, the CuNet case was 17.04 W/Kg. Temperature simulations were conducted to determine the RF-induced heating without and with hd-EEG nets (NeoNet and CuNet) during an MRI scan using an age-corrected and thermoregulated perfusion for the child model. The results showed that the maximum temperature estimated in the child's head was 38.38 °C for the NoNet, 38.43 °C for the NeoNet, and 43.05 °C for the CuNet. In the case of NeoNet, the maximum temperature estimated in the child's head remained compliant with IEC 60601 for the MRI RF safety limit. However, the case of CuNet estimated to exceed the RF safety limit, which may require an appropriate cooling period or a hardware design to suppress the RF-induced heating.
Collapse
Affiliation(s)
- Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Med-ical School, Charlestown, MA 02129 USA
| | - Georgios Ntolkeras
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - P Ellen Grant
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Med-ical School, Charlestown, MA 02129 USA
| |
Collapse
|
27
|
Changes in the Functional Brain Network of Children Undergoing Repeated Epilepsy Surgery: An EEG Source Connectivity Study. Diagnostics (Basel) 2021; 11:diagnostics11071234. [PMID: 34359317 PMCID: PMC8306224 DOI: 10.3390/diagnostics11071234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
About 30% of children with drug-resistant epilepsy (DRE) continue to have seizures after epilepsy surgery. Since epilepsy is increasingly conceptualized as a network disorder, understanding how brain regions interact may be critical for planning re-operation in these patients. We aimed to estimate functional brain connectivity using scalp EEG and its evolution over time in patients who had repeated surgery (RS-group, n = 9) and patients who had one successful surgery (seizure-free, SF-group, n = 12). We analyzed EEGs without epileptiform activity at varying time points (before and after each surgery). We estimated functional connectivity between cortical regions and their relative centrality within the network. We compared the pre- and post-surgical centrality of all the non-resected (untouched) regions (far or adjacent to resection) for each group (using the Wilcoxon signed rank test). In alpha, theta, and beta frequency bands, the post-surgical centrality of the untouched cortical regions increased in the SF group (p < 0.001) whereas they decreased (p < 0.05) or did not change (p > 0.05) in the RS group after failed surgeries; when re-operation was successful, the post-surgical centrality of far regions increased (p < 0.05). Our data suggest that removal of the epileptogenic focus in children with DRE leads to a gain in the network centrality of the untouched areas. In contrast, unaltered or decreased connectivity is seen when seizures persist after surgery.
Collapse
|