1
|
Goodman MS, Trevizol AP, Konstantinou GN, Boivin-Lafleur D, Brender R, Downar J, Kaster TS, Knyahnytska Y, Vila-Rodriguez F, Voineskos D, Daskalakis ZJ, Blumberger DM. Extended course accelerated intermittent theta burst stimulation as a substitute for depressed patients needing electroconvulsive therapy. Neuropsychopharmacology 2024:10.1038/s41386-024-02007-w. [PMID: 39443721 DOI: 10.1038/s41386-024-02007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
In response to restrictions on electroconvulsive therapy (ECT) access during COVID-19, we designed a trial to assess the clinical outcomes service impacts, employing an extended course of accelerated intermittent theta burst stimulation (aiTBS), in patients with moderate to severe depression in need of ECT. This open label clinical trial was comprised of 3 phases: (i) an acute phase, where iTBS treatments were administered 8 times daily, for up to 10 days; (ii) a tapering phase of 2 treatment days per week for 2 weeks, followed by 1 treatment day per week for 2 weeks; and (iii) a symptom-based relapse prevention phase, whereby treatments were scheduled based on symptom re-emergence, for up to 6 months. Of the 155 patients who completed the acute phase of the study, the remission rate was 16.1%. The mean reduction from baseline on the HRSD-24 was 29.4% (p < 0.001) and the response rate was 25.2%. Of the 110 patients who completed the tapering phase, the mean reduction from baseline was 42.6% (p < 0.001) and response and remission rates were 49.6% and 34.8%, respectively. Of the 61 patients who were eligible for the relapse prevention phase, 43 completed, with a mean reduction from baseline of 60.1% (p < 0.001); 7 patients relapsed during this phase. This study demonstrated that an extended aiTBS protocol safely led to meaningful clinical outcomes in patients with severe depression, who otherwise would have received ECT, and thus reduced pressure on ECT services during the pandemic. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04384965 ( https://clinicaltrials.gov/study/NCT04384965?term=NCT04384965&rank=1 ).
Collapse
Affiliation(s)
- Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alisson P Trevizol
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gerasimos N Konstantinou
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Ram Brender
- Royal Ottawa Mental Health Centre and Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan Downar
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tyler S Kaster
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | | | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Salimi M, Nazari M, Mishler J, Mishra J, Ramanathan DS. Intermittent Theta Burst Stimulation Drives Bi-Directional Changes in Excitability in Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608693. [PMID: 39229174 PMCID: PMC11370367 DOI: 10.1101/2024.08.19.608693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Theta burst stimulation (TBS), an FDA-cleared treatment for depression, is hypothesized to modulate excitability in the prefrontal cortex, though this has not definitively been shown in vivo. We performed calcium imaging on glutamatergic neurons in awake rodents to understand the effects of theta burst stimulation at a cellular level. Our findings provide the first direct evidence that TBS bidirectionally modulates glutamatergic activity when delivered in vivo and directly links calcium activity changes during stimulation with post-stimulation plasticity.
Collapse
|
3
|
Donati FL, Mayeli A, Nascimento Couto BA, Sharma K, Janssen S, Krafty RJ, Casali AG, Ferrarelli F. Prefrontal Oscillatory Slowing in Early-Course Schizophrenia Is Associated With Worse Cognitive Performance and Negative Symptoms: A Transcranial Magnetic Stimulation-Electroencephalography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00201-5. [PMID: 39059465 DOI: 10.1016/j.bpsc.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Abnormalities in dorsolateral prefrontal cortex (DLPFC) oscillations are neurophysiological signatures of schizophrenia thought to underlie its cognitive deficits. Transcranial magnetic stimulation with electroencephalography (TMS-EEG) provides a measure of cortical oscillations unaffected by sensory relay functionality and/or patients' level of engagement, which are important confounding factors in schizophrenia. Previous TMS-EEG work showed reduced fast, gamma-range oscillations and a slowing of the main DLPFC oscillatory frequency, or natural frequency, in chronic schizophrenia. However, it is unclear whether this DLPFC natural frequency slowing is present in early-course schizophrenia (EC-SCZ) and is associated with symptom severity and cognitive dysfunction. METHODS We applied TMS-EEG to the left DLPFC in 30 individuals with EC-SCZ and 28 healthy control participants. Goal-directed working memory performance was assessed using the AX-Continuous Performance Task. The EEG frequency with the highest cumulative power at the stimulation site, or natural frequency, was extracted. We also calculated the local relative spectral power as the average power in each frequency band divided by the broadband power. RESULTS Compared with the healthy control group, the EC-SCZ group had reduced DLPFC natural frequency (p = .0000002, Cohen's d = -2.32) and higher DLPFC beta-range relative spectral power (p = .0003, Cohen's d = 0.77). In the EC-SCZ group, the DLPFC natural frequency was inversely associated with negative symptoms. Across all participants, the beta band relative spectral power negatively correlated with AX-Continuous Performance Task performance. CONCLUSIONS DLPFC oscillatory slowing is an early pathophysiological biomarker of schizophrenia that is associated with its symptom severity and cognitive impairments. Future work should assess whether noninvasive neurostimulation, including repetitive TMS, can ameliorate prefrontal oscillatory deficits and related clinical functions in patients with EC-SCZ.
Collapse
Affiliation(s)
- Francesco L Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Health Science, University of Milan, Milan, Italy
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kamakashi Sharma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sabine Janssen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert J Krafty
- Department of Biostatistics & Bioinformatics, Emory University, Atlanta, Georgia
| | - Adenauer G Casali
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Pellegrino G, Schuler AL, Cai Z, Marinazzo D, Tecchio F, Ricci L, Tombini M, Di Lazzaro V, Assenza G. Assessing cortical excitability with electroencephalography: A pilot study with EEG-iTBS. Brain Stimul 2024; 17:176-183. [PMID: 38286400 DOI: 10.1016/j.brs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cortical excitability measures neural reactivity to stimuli, usually delivered via Transcranial Magnetic Stimulation (TMS). Excitation/inhibition balance (E/I) is the ongoing equilibrium between excitatory and inhibitory activity of neural circuits. According to some studies, E/I could be estimated in-vivo and non-invasively through the modeling of electroencephalography (EEG) signals and termed 'intrinsic excitability' measures. Several measures have been proposed (phase consistency in the gamma band, sample entropy, exponent of the power spectral density 1/f curve, E/I index extracted from detrend fluctuation analysis, and alpha power). Intermittent theta burst stimulation (iTBS) of the primary motor cortex (M1) is a non-invasive neuromodulation technique allowing controlled and focal enhancement of TMS cortical excitability and E/I of the stimulated hemisphere. OBJECTIVE Investigating to what extent E/I estimates scale with TMS excitability and how they relate to each other. METHODS M1 excitability (TMS) and several E/I estimates extracted from resting state EEG recordings were assessed before and after iTBS in a cohort of healthy subjects. RESULTS Enhancement of TMS M1 excitability, as measured through motor-evoked potentials (MEPs), and phase consistency of the cortex in high gamma band correlated with each other. Other measures of E/I showed some expected results, but no correlation with TMS excitability measures or strong consistency with each other. CONCLUSIONS EEG E/I estimates offer an intriguing opportunity to map cortical excitability non-invasively, with high spatio-temporal resolution and with a stimulus independent approach. While different EEG E/I estimates may reflect the activity of diverse excitatory-inhibitory circuits, spatial phase synchrony in the gamma band is the measure that best captures excitability changes in the primary motor cortex.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Anna-Lisa Schuler
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies (ISTC) - Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Lorenzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Mario Tombini
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Vincenzo Di Lazzaro
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Giovanni Assenza
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy.
| |
Collapse
|
5
|
Lee KZ, Vinit S. Modulatory effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity following cervical spinal cord contusion in the rat. Spine J 2024; 24:352-372. [PMID: 37774983 DOI: 10.1016/j.spinee.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND CONTEXT Magnetic stimulation can noninvasively modulate the neuronal excitability through different stimulatory patterns. PURPOSE The present study hypothesized that trans-spinal magnetic stimulation with intermittent theta burst stimulatory pattern can modulate respiratory motor outputs in a pre-clinical rat model of cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS The effect of trans-spinal magnetic intermittent theta burst stimulation on diaphragmatic activity was assessed in adult rats with unilateral cervical spinal cord contusion at 2 weeks postinjury. RESULTS The results demonstrated that unilateral cervical spinal cord contusion significantly attenuated the inspiratory activity and motor evoked potential of the diaphragm. Trans-spinal magnetic intermittent theta burst stimulation significantly increased the inspiratory activity of the diaphragm in cervical spinal cord contused rats. Inspiratory bursting was also recruited by trans-spinal magnetic intermittent theta burst stimulation in the rats without diaphragmatic activity after cervical spinal cord injury. In addition, trans-spinal magnetic intermittent theta burst stimulation is associated with increases in oxygen consumption and carbon dioxide production. CONCLUSIONS These results suggest that trans-spinal magnetic intermittent theta burst stimulation can induce respiratory neuroplasticity. CLINICAL SIGNIFICANCE We propose that trans-spinal theta burst magnetic stimulation may be considered a potential rehabilitative strategy for improving the respiratory activity after cervical spinal cord injury. This will require future clinical study.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 804 Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 9F, First Teaching Building, 100, Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan.
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
6
|
Tan X, Goh SE, Lee JJ, Vanniasingham SD, Brunelin J, Lee J, Tor PC. Efficacy of Using Intermittent Theta Burst Stimulation to Treat Negative Symptoms in Patients with Schizophrenia-A Systematic Review and Meta-Analysis. Brain Sci 2023; 14:18. [PMID: 38248233 PMCID: PMC10813174 DOI: 10.3390/brainsci14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Negative symptoms in schizophrenia impose a significant burden with limited effective pharmacological treatment options. Recent trials have shown preliminary evidence for the efficacy of using intermittent theta burst stimulation (iTBS) in treating negative symptoms in schizophrenia. We aim to systematically review the current evidence of iTBS in the treatment of the negative symptoms of schizophrenia as an augmentation therapy. The study protocol was developed and registered on Prospero (registration ID: 323381). MEDLINE, EMBASE, Web of Science (Scopus), PsycINFO and Wan Fang databases were searched for sham-controlled, randomized trials of iTBS among patients with schizophrenia. The mean difference in major outcome assessments for negative symptoms was calculated. The quality of evidence was assessed using the Cochrane Risk of Bias Tool (version 1) and the GRADE system. Moreover, 12 studies including a total of 637 participants were included. Compared to sham treatment, the pooled analysis was in favor of iTBS treatment for negative symptoms (mean weight effect size: 0.59, p = 0.03) but not for positive symptoms (mean weight effect size: 0.01, p = 0.91) and depressive symptoms (mean weight effect size: 0.35, p = 0.16). A significant treatment effect was also observed on the iTBS target site left dorsal prefrontal cortex (mean weight effect size: 0.86, p = 0.007) and for stimulation with 80% motor threshold (mean weight effect size: 0.86, p = 0.02). Thus, our synthesized data support iTBS as a potential treatment for negative symptoms among patients with schizophrenia. However, the long-term efficacy and safety issues of iTBS in a larger population have yet to be examined.
Collapse
Affiliation(s)
- Xiaowei Tan
- Department of Mood and Anxiety, Institute of Mental Health, Singapore 539747, Singapore; (X.T.); (S.E.G.); (J.J.L.)
| | - Shih Ee Goh
- Department of Mood and Anxiety, Institute of Mental Health, Singapore 539747, Singapore; (X.T.); (S.E.G.); (J.J.L.)
| | - Jonathan Jie Lee
- Department of Mood and Anxiety, Institute of Mental Health, Singapore 539747, Singapore; (X.T.); (S.E.G.); (J.J.L.)
| | | | - Jérôme Brunelin
- PSYR2 Team, Lyon Neuroscience Research Center, University Lyon 1, INSERM U1028, CNRS UMR5292, 69000 Lyon, France;
- Centre Hospitalier Le Vinatier, 69500 Bron, France
| | - Jimmy Lee
- Department of Psychosis, Institute of Mental Health, Singapore 539747, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Phern Chern Tor
- Department of Mood and Anxiety, Institute of Mental Health, Singapore 539747, Singapore; (X.T.); (S.E.G.); (J.J.L.)
- Department of Psychiatric Medicine, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
7
|
Mancuso M, Cruciani A, Sveva V, Casula EP, Brown K, Rothwell JC, Di Lazzaro V, Koch G, Rocchi L. Somatosensory input in the context of transcranial magnetic stimulation coupled with electroencephalography: An evidence-based overview. Neurosci Biobehav Rev 2023; 155:105434. [PMID: 37890602 DOI: 10.1016/j.neubiorev.2023.105434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region. Among these, only contraction of craniofacial muscle and stimulation of free cutaneous nerve endings may be able to induce EEG responses, but direct evidence is lacking due to experimental difficulties in isolating these inputs. Notably, EEG evoked activity in this context is represented by a N100/P200 complex, reflecting a saliency-related multimodal response, rather than specific activation of the primary somatosensory cortex. Strategies to minimize or remove these responses by EEG processing still yield uncertain results; therefore, data inspection is of paramount importance to judge a possible contamination of the TEP by multimodal potentials caused by somatosensory input.
Collapse
Affiliation(s)
- M Mancuso
- Department of Human Neurosciences, University of Rome "Sapienza", Viale dell'Università 30, 00185 Rome, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - V Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - K Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G5 Waterloo, ON, Canada
| | - J C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - G Koch
- Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - L Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato Blocco I S.S, 554 bivio per Sestu 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
8
|
Yuan H, Liu B, Li F, Jin Y, Zheng S, Ma Z, Wu Z, Chen C, Zhang L, Gu Y, Gao X, Yang Q. Effects of intermittent theta-burst transcranial magnetic stimulation on post-traumatic stress disorder symptoms: A randomized controlled trial. Psychiatry Res 2023; 329:115533. [PMID: 37826976 DOI: 10.1016/j.psychres.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a prevalent and debilitating illness, which can be alleviated by transcranial magnetic stimulation (TMS). Intermittent theta burst stimulation (iTBS), a newer form of repetitive transcranial magnetic stimulation (rTMS), offers the advantage of shorter treatment sessions compared to the standard 10 Hz rTMS treatment. In order to compare the two forms of TMS, we enrolled 75 participants aged between 18 and 55 years who presented with (PCL-C) scale score of at least 50. Participants were randomly assigned to groups in a ratio of 1:1:1, receiving either 10 Hz rTMS, iTBS, or sham-controlled iTBS. Participants in the two treatment groups underwent 15 therapies which consisted of 1800 pulses and targeted the right dorsolateral prefrontal cortex (DLPFC). The main outcomes included changes in scores on the PCL-C and the Post-Traumatic Growth Inventory (PTGI). After intervention, the PCL-C and PTGI scores in iTBS and rTMS groups were significantly different from those in sham-controlled iTBS group. No significant differences in PCL-C and PTGI were found between the two active treatment groups. ITBS, with a shorter treatment duration, can effectively improve the symptoms of PTSD, with no significant difference in effect from that of rTMS. Future studies need to further elucidate the mechanisms, optimize the parameters and investigate the therapeutic potential and efficacy of iTBS in PTSD.
Collapse
Affiliation(s)
- Huiling Yuan
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China; Department of Psychiatry, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Bin Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Fengzhan Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yinchuan Jin
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Shi Zheng
- State key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Zhujing Ma
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Zhongying Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Chen Chen
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Liang Zhang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yanan Gu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xing Gao
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Qun Yang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Krile L, Ensafi E, Cole J, Noor M, Protzner AB, McGirr A. A dose-response characterization of transcranial magnetic stimulation intensity and evoked potential amplitude in the dorsolateral prefrontal cortex. Sci Rep 2023; 13:18650. [PMID: 37903906 PMCID: PMC10616119 DOI: 10.1038/s41598-023-45730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
By combining transcranial magnetic stimulation (TMS) with electroencephalography, human cortical circuits can be directly interrogated. The resulting electrical trace contains TMS-evoked potential (TEP) components, and it is not known whether the amplitudes of these components are stimulus intensity dependent. We examined this in the left dorsolateral prefrontal cortex in nineteen healthy adult participants and extracted TEP amplitudes for the N40, P60, N120, and P200 components at 110%, 120%, and 130% of resting motor threshold (RMT). To probe plasticity of putative stimulus intensity dose-response relationships, this was repeated after participants received intermittent theta burst stimulation (iTBS; 600 pulses, 80% RMT). The amplitude of the N120 and P200 components exhibited a stimulus intensity dose-response relationship, however the N40 and P60 components did not. After iTBS, the N40 and P60 components continued to exhibit a lack of stimulus intensity dose-dependency, and the P200 dose-response was unchanged. In the N120 component, however, we saw evidence of change within the stimulus intensity dose-dependent relationship characterized by a decrease in absolute peak amplitudes at lower stimulus intensities. These data suggest that TEP components have heterogeneous dose-response relationships, with implications for standardizing and harmonizing methods across experiments. Moreover, the selective modification of the N120 dose-response relationship may provide a novel marker for iTBS plasticity in health and disease.
Collapse
Affiliation(s)
- Louisa Krile
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Elnaz Ensafi
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Jaeden Cole
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Mah Noor
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
10
|
De Martino E, Casali A, Casarotto S, Hassan G, Rosanova M, Graven-Nielsen T, Ciampi de Andrade D. Acute pain drives different effects on local and global cortical excitability in motor and prefrontal areas: insights into interregional and interpersonal differences in pain processing. Cereb Cortex 2023; 33:9986-9996. [PMID: 37522261 DOI: 10.1093/cercor/bhad259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Pain-related depression of corticomotor excitability has been explored using transcranial magnetic stimulation-elicited motor-evoked potentials. Transcranial magnetic stimulation-electroencephalography now enables non-motor area cortical excitability assessments, offering novel insights into cortical excitability changes during pain states. Here, pain-related cortical excitability changes were explored in the dorsolateral prefrontal cortex and primary motor cortex (M1). Cortical excitability was recorded in 24 healthy participants before (Baseline), during painful heat (Acute Pain), and non-noxious warm (Warm) stimulation at the right forearm in a randomized sequence, followed by a pain-free stimulation measurement. Local cortical excitability was assessed as the peak-to-peak amplitude of early transcranial magnetic stimulation evoked potential, whereas global-mean field power measured the global excitability. Relative to the Baseline, Acute Pain decreased the peak-to-peak amplitude in M1 and dorsolateral prefrontal cortex compared with Warm (both P < 0.05). A reduced global-mean field power was only found in M1 during Acute Pain compared with Warm (P = 0.003). Participants with the largest reduction in local cortical excitability under Acute Pain showed a negative correlation between dorsolateral prefrontal cortex and M1 local cortical excitability (P = 0.006). Acute experimental pain drove differential pain-related effects on local and global cortical excitability changes in motor and non-motor areas at a group level while also revealing different interindividual patterns of cortical excitability changes, which can be explored when designing personalized treatment plans.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| | - Adenauer Casali
- Institute of Science and Technology, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 50143, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
11
|
Cruciani A, Mancuso M, Sveva V, Maccarrone D, Todisco A, Motolese F, Santoro F, Pilato F, Spampinato DA, Rocchi L, Di Lazzaro V, Capone F. Using TMS-EEG to assess the effects of neuromodulation techniques: a narrative review. Front Hum Neurosci 2023; 17:1247104. [PMID: 37645690 PMCID: PMC10461063 DOI: 10.3389/fnhum.2023.1247104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
12
|
Mosayebi-Samani M, Agboada D, Mutanen TP, Haueisen J, Kuo MF, Nitsche MA. Transferability of cathodal tDCS effects from the primary motor to the prefrontal cortex: A multimodal TMS-EEG study. Brain Stimul 2023; 16:515-539. [PMID: 36828302 DOI: 10.1016/j.brs.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Desmond Agboada
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Psychology, Federal Armed Forces University Munich, Neubiberg, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076, Aalto, Espoo, Finland
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany.
| |
Collapse
|
13
|
Lum JAG, Clark GM, Barhoun P, Hill AT, Hyde C, Wilson PH. Neural basis of implicit motor sequence learning: Modulation of cortical power. Psychophysiology 2023; 60:e14179. [PMID: 36087042 PMCID: PMC10078012 DOI: 10.1111/psyp.14179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
Implicit sequence learning describes the acquisition of serially ordered movements and sequentially structured cognitive information, that occurs without awareness. Theta, alpha and beta cortical oscillations are present during implicit motor sequence learning, but their role in this process is unclear. The current study addressed this gap in the literature. A total of 50 healthy adults aged between 19 and 37 years participated in the study. Implicit motor sequence learning was examined using the Serial Reaction Time task where participants unknowingly repeat a sequence of finger movements in response to a visual stimulus. Sequence learning was examined by comparing reaction times and oscillatory power between sequence trials and a set of control trials comprising random stimulus presentations. Electroencephalography was recorded as participants completed the task. Analyses of the behavioral data revealed participants learnt the sequence. Analyses of oscillatory activity, using permutation testing, revealed sequence learning was associated with a decrease in theta band (4-7 Hz) power recorded over frontal and central electrode sites. Sequence learning effects were not observed in the alpha (7-12 Hz) or beta bands (12-20 Hz). Even though alpha and beta power modulations have long been associated with executing a motor response, it seems theta power is a correlate of sequence learning in the manual domain. Theta power modulations on the serial reaction time task may reflect disengagement of attentional resources, either promoting or occurring as a consequence of implicit motor sequence learning.
Collapse
Affiliation(s)
- Jarrad A G Lum
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Burwood, Victoria, Australia
| | - Gillian M Clark
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Burwood, Victoria, Australia
| | - Pamela Barhoun
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Burwood, Victoria, Australia
| | - Aron T Hill
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Burwood, Victoria, Australia
| | - Christian Hyde
- School of Psychology, Cognitive Neuroscience Unit, Deakin University, Burwood, Victoria, Australia
| | - Peter H Wilson
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia.,Healthy Brain and Mind Research Centre, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Griff JR, Langlie J, Bencie NB, Cromar ZJ, Mittal J, Memis I, Wallace S, Marcillo AE, Mittal R, Eshraghi AA. Recent advancements in noninvasive brain modulation for individuals with autism spectrum disorder. Neural Regen Res 2022; 18:1191-1195. [PMID: 36453393 PMCID: PMC9838164 DOI: 10.4103/1673-5374.360163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Autism spectrum disorder is classified as a spectrum of neurodevelopmental disorders with an unknown definitive etiology. Individuals with autism spectrum disorder show deficits in a variety of areas including cognition, memory, attention, emotion recognition, and social skills. With no definitive treatment or cure, the main interventions for individuals with autism spectrum disorder are based on behavioral modulations. Recently, noninvasive brain modulation techniques including repetitive transcranial magnetic stimulation, intermittent theta burst stimulation, continuous theta burst stimulation, and transcranial direct current stimulation have been studied for their therapeutic properties of modifying neuroplasticity, particularly in individuals with autism spectrum disorder. Preliminary evidence from small cohort studies, pilot studies, and clinical trials suggests that the various noninvasive brain stimulation techniques have therapeutic benefits for treating both behavioral and cognitive manifestations of autism spectrum disorder. However, little data is available for quantifying the clinical significance of these findings as well as the long-term outcomes of individuals with autism spectrum disorder who underwent transcranial stimulation. The objective of this review is to highlight the most recent advancements in the application of noninvasive brain modulation technology in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Jessica R. Griff
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jake Langlie
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B. Bencie
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zachary J. Cromar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Idil Memis
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven Wallace
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander E. Marcillo
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA,Correspondence to: Adrien A. Eshraghi, .
| |
Collapse
|
15
|
Caulfield KA, Brown JC. The Problem and Potential of TMS' Infinite Parameter Space: A Targeted Review and Road Map Forward. Front Psychiatry 2022; 13:867091. [PMID: 35619619 PMCID: PMC9127062 DOI: 10.3389/fpsyt.2022.867091] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, effective, and FDA-approved brain stimulation method. However, rTMS parameter selection remains largely unexplored, with great potential for optimization. In this review, we highlight key studies underlying next generation rTMS therapies, particularly focusing on: (1) rTMS Parameters, (2) rTMS Target Engagement, (3) rTMS Interactions with Endogenous Brain Activity, and (4) Heritable Predisposition to Brain Stimulation Treatments. METHODS We performed a targeted review of pre-clinical and clinical rTMS studies. RESULTS Current evidence suggests that rTMS pattern, intensity, frequency, train duration, intertrain interval, intersession interval, pulse and session number, pulse width, and pulse shape can alter motor excitability, long term potentiation (LTP)-like facilitation, and clinical antidepressant response. Additionally, an emerging theme is how endogenous brain state impacts rTMS response. Researchers have used resting state functional magnetic resonance imaging (rsfMRI) analyses to identify personalized rTMS targets. Electroencephalography (EEG) may measure endogenous alpha rhythms that preferentially respond to personalized stimulation frequencies, or in closed-loop EEG, may be synchronized with endogenous oscillations and even phase to optimize response. Lastly, neuroimaging and genotyping have identified individual predispositions that may underlie rTMS efficacy. CONCLUSIONS We envision next generation rTMS will be delivered using optimized stimulation parameters to rsfMRI-determined targets at intensities determined by energy delivered to the cortex, and frequency personalized and synchronized to endogenous alpha-rhythms. Further research is needed to define the dose-response curve of each parameter on plasticity and clinical response at the group level, to determine how these parameters interact, and to ultimately personalize these parameters.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Joshua C Brown
- Departments of Psychiatry and Neurology, Brown University Medical School, Providence, RI, United States
| |
Collapse
|