1
|
Li S, Lin Y, Chen S, Zhang W, Chen YM, Lu X, Shao Y, Lu Z, Sheng H, Guan Z, Zheng R, Liang C, Chen Y, Liu L, Zeng C. Clinical characteristics and prognosis of early diagnosed Wilson's disease: A large cohort study. Liver Int 2024; 44:2424-2433. [PMID: 38847512 DOI: 10.1111/liv.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Few studies have focused on the outcomes of Wilson's disease (WD) diagnosed before age of 5 years. This study aimed to summarize the clinical features of early diagnosed WD and analyse treatment outcomes and the risk factors associated with treatment failure. METHODS A total of 139 children confirmed with WD before 5 years were enrolled in this study. Only patients with follow-up over 1 year were analysed with Kaplan-Meier survival analysis. The composite outcomes included death, progression to liver failure or acute hepatitis, development of renal or neurological symptoms and persistent elevation of alanine aminotransferase (ALT). The treatment failure was defined as occurrence of at least one of above outcomes. RESULTS Among 139 WD patients at diagnosis, two (1.4%) WD patients presented with symptomatic liver disease, whereas 137 (98.6%) were phenotypically asymptomatic, including 135 with elevated ALT and 2 with normal liver function. Median serum ceruloplasmin (Cp) was 3.1 mg/dL, and urinary copper excretion was 87.4 μg/24-h. There were 71 variants identified in the the copper-transporting ATPase beta gene, and 29 were loss of function (LOF). 51 patients with LOF variant were younger at diagnosis and had lower Cp than 88 patients without LOF. Among 93 patients with over 1 year of follow-up, 19 (20.4%) received zinc monotherapy, and 74 (79.6%) received a zinc/D-penicillamine combination therapy. 14 (15.1%) patients underwent treatment failure, and its occurrence was associated with poor compliance (p < .01). CONCLUSIONS Cp is a reliable biomarker for early diagnosis, and zinc monotherapy is an effective treatment for WD during early childhood. Good treatment compliance is critical to achieve a favourable outcome.
Collapse
Affiliation(s)
- Simin Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shehong Chen
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xinshuo Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhikun Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhihong Guan
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ruidan Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Cuili Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yaoyong Chen
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
2
|
Coni P, Pichiri G, Lachowicz JI, Ravarino A, Ledda F, Fanni D, Gerosa C, Piras M, Coghe F, Gibo Y, Cau F, Castagnola M, Van Eyken P, Saba L, Piludu M, Faa G. Zinc as a Drug for Wilson's Disease, Non-Alcoholic Liver Disease and COVID-19-Related Liver Injury. Molecules 2021; 26:6614. [PMID: 34771023 PMCID: PMC8587580 DOI: 10.3390/molecules26216614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc is the second most abundant trace element in the human body, and it plays a fundamental role in human physiology, being an integral component of hundreds of enzymes and transcription factors. The discovery that zinc atoms may compete with copper for their absorption in the gastrointestinal tract let to introduce zinc in the therapy of Wilson's disease, a congenital disorder of copper metabolism characterized by a systemic copper storage. Nowadays, zinc salts are considered one of the best therapeutic approach in patients affected by Wilson's disease. On the basis of the similarities, at histological level, between Wilson's disease and non-alcoholic liver disease, zinc has been successfully introduced in the therapy of non-alcoholic liver disease, with positive effects both on insulin resistance and oxidative stress. Recently, zinc deficiency has been indicated as a possible factor responsible for the susceptibility of elderly patients to undergo infection by SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic. Here, we present the data correlating zinc deficiency with the insurgence and progression of Covid-19 with low zinc levels associated with severe disease states. Finally, the relevance of zinc supplementation in aged people at risk for SARS-CoV-2 is underlined, with the aim that the zinc-based drug, classically used in the treatment of copper overload, might be recorded as one of the tools reducing the mortality of COVID-19, particularly in elderly people.
Collapse
Affiliation(s)
- Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Alberto Ravarino
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Francesca Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Daniela Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Clara Gerosa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Ferdinando Coghe
- Dipartimento Servizi di Diagnosi e Cura, Azienda Ospedaliero-Universitaria di Cagliari (A.O.U.), University of Cagliari, 09024 Cagliari, Italy;
| | - Yukio Gibo
- Hepatology Clinic, 1-34-20 Muraimachiminami, Matsumoto, Nagano 399-0036, Japan;
| | - Flaviana Cau
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabonomica-Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00013 Rome, Italy;
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari—Polo di Monserrato s.s. 554, 09045 Monserrato, Italy;
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
3
|
Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease. Biomedicines 2021; 9:biomedicines9030316. [PMID: 33804693 PMCID: PMC8003939 DOI: 10.3390/biomedicines9030316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Essential metals such as copper (Cu) and zinc (Zn) are important cofactors in diverse cellular processes, while metal imbalance may impact or be altered by disease state. Cu is essential for aerobic life with significant functions in oxidation-reduction catalysis. This redox reactivity requires precise intracellular handling and molecular-to-organismal levels of homeostatic control. As the central organ of Cu homeostasis in vertebrates, the liver has long been associated with Cu storage disorders including Wilson Disease (WD) (heritable human Cu toxicosis), Idiopathic Copper Toxicosis and Endemic Tyrolean Infantile Cirrhosis. Cu imbalance is also associated with chronic liver diseases that arise from hepatitis viral infection or other liver injury. The labile redox characteristic of Cu is often discussed as a primary mechanism of Cu toxicity. However, work emerging largely from the study of WD models suggests that Cu toxicity may have specific biochemical consequences that are not directly attributable to redox activity. This work reviews Cu toxicity with a focus on the liver and proposes that Cu accumulation specifically impacts Zn-dependent processes. The prospect that Cu toxicity has specific biochemical impacts that are not entirely attributable to redox may promote further inquiry into Cu toxicity in WD and other Cu-associated disorders.
Collapse
|