1
|
Ly KI, Richardson LG, Liu M, Muzikansky A, Cardona J, Lou K, Beers AL, Chang K, Brown JM, Ma X, Reardon DA, Arrillaga-Romany IC, Forst DA, Jordan JT, Lee EQ, Dietrich J, Nayak L, Wen PY, Chukwueke U, Giobbie-Hurder A, Choi BD, Batchelor TT, Kalpathy-Cramer J, Curry WT, Gerstner ER. Bavituximab Decreases Immunosuppressive Myeloid-Derived Suppressor Cells in Newly Diagnosed Glioblastoma Patients. Clin Cancer Res 2023; 29:3017-3025. [PMID: 37327319 DOI: 10.1158/1078-0432.ccr-23-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE We evaluated the efficacy of bavituximab-a mAb with anti-angiogenic and immunomodulatory properties-in newly diagnosed patients with glioblastoma (GBM) who also received radiotherapy and temozolomide. Perfusion MRI and myeloid-related gene transcription and inflammatory infiltrates in pre-and post-treatment tumor specimens were studied to evaluate on-target effects (NCT03139916). PATIENTS AND METHODS Thirty-three adults with IDH--wild-type GBM received 6 weeks of concurrent chemoradiotherapy, followed by 6 cycles of temozolomide (C1-C6). Bavituximab was given weekly, starting week 1 of chemoradiotherapy, for at least 18 weeks. The primary endpoint was proportion of patients alive at 12 months (OS-12). The null hypothesis would be rejected if OS-12 was ≥72%. Relative cerebral blood flow (rCBF) and vascular permeability (Ktrans) were calculated from perfusion MRIs. Peripheral blood mononuclear cells and tumor tissue were analyzed pre-treatment and at disease progression using RNA transcriptomics and multispectral immunofluorescence for myeloid-derived suppressor cells (MDSC) and macrophages. RESULTS The study met its primary endpoint with an OS-12 of 73% (95% confidence interval, 59%-90%). Decreased pre-C1 rCBF (HR, 4.63; P = 0.029) and increased pre-C1 Ktrans were associated with improved overall survival (HR, 0.09; P = 0.005). Pre-treatment overexpression of myeloid-related genes in tumor tissue was associated with longer survival. Post-treatment tumor specimens contained fewer immunosuppressive MDSCs (P = 0.01). CONCLUSIONS Bavituximab has activity in newly diagnosed GBM and resulted in on-target depletion of intratumoral immunosuppressive MDSCs. Elevated pre-treatment expression of myeloid-related transcripts in GBM may predict response to bavituximab.
Collapse
Affiliation(s)
- K Ina Ly
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Leland G Richardson
- Department of Neurosurgery Massachusetts General Hospital, Boston, Massachusetts
| | - Mofei Liu
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alona Muzikansky
- Department of Biostatistics Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jonathan Cardona
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Lou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew L Beers
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James M Brown
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Xiaoyue Ma
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Isabel C Arrillaga-Romany
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Deborah A Forst
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Justin T Jordan
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jorg Dietrich
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bryan D Choi
- Department of Neurosurgery Massachusetts General Hospital, Boston, Massachusetts
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Stephen E. and Catherine Pappas Center for Neuro-Oncology Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
2
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
3
|
Chen YY, Lo CF, Chiu TY, Hsu CY, Yeh TK, Chen CP, Huang CL, Huang CY, Wang MH, Huang YC, Ho HH, Chao YS, Shih JC, Tsou LK, Chen CT. BPRDP056, a novel small molecule drug conjugate specifically targeting phosphatidylserine for cancer therapy. Transl Oncol 2020; 14:100897. [PMID: 33069101 PMCID: PMC7569237 DOI: 10.1016/j.tranon.2020.100897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Zinc(II)-dipicolylamine (Zn-DPA) has been shown to specifically identify and bind to phosphatidylserine (PS), which exists in bulk in the tumor microenvironment. BPRDP056, a Zn-DPA-SN38 conjugate was designed to provide PS-targeted drug delivery of a cytotoxic SN38 to the tumor microenvironment, thereby allowing a lower dosage of SN38 that induces apoptosis in cancer cells. Micro-Western assay showed that BPRDP056 exhibited apoptotic signal levels similar to those of CPT-11 in the treated tumors growing in mice. Pharmacokinetic study showed that BPRDP056 has excellent systemic stability in circulation in mice and rats. BPRDP056 is accumulated in tumors and thus increases the cytotoxic effects of SN38. The in vivo antitumor activities of BPRDP056 have been shown to be significant in subcutaneous pancreas, prostate, colon, liver, breast, and glioblastoma tumors, included an orthotopic pancreatic tumor, in mice. BPRDP056 shrunk tumors at a lower (~20% only) dosing intensity of SN38 compared to that of SN38 conjugated in CPT-11 in all tumor models tested. A wide spectrum of antitumor activities is expected to treat all cancer types of PS-rich tumor microenvironments. BPRDP056 is a first-in-class small molecule drug conjugate for cancer therapy.
Collapse
Affiliation(s)
- Yun-Yu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chen-Fu Lo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Tai-Yu Chiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chia-Yu Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Chung-Yu Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Min-Hsien Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Yu-Chen Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Hsuan-Hui Ho
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Joe C Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
4
|
Chang W, Fa H, Xiao D, Wang J. Targeting phosphatidylserine for Cancer therapy: prospects and challenges. Theranostics 2020; 10:9214-9229. [PMID: 32802188 PMCID: PMC7415799 DOI: 10.7150/thno.45125] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Despite major improvements in current therapeutic methods, ideal therapeutic strategies for improved tumor elimination are still lacking. Recently, immunotherapy has attracted much attention, and many immune-active agents have been approved for clinical use alone or in combination with other cancer drugs. However, some patients have a poor response to these agents. New agents and strategies are needed to overcome such deficiencies. Phosphatidylserine (PS) is an essential component of bilayer cell membranes and is normally present in the inner leaflet. In the physiological state, PS exposure on the external leaflet not only acts as an engulfment signal for phagocytosis in apoptotic cells but also participates in blood coagulation, myoblast fusion and immune regulation in nonapoptotic cells. In the tumor microenvironment, PS exposure is significantly increased on the surface of tumor cells or tumor cell-derived microvesicles, which have innate immunosuppressive properties and facilitate tumor growth and metastasis. To date, agents targeting PS have been developed, some of which are under investigation in clinical trials as combination drugs for various cancers. However, controversial results are emerging in laboratory research as well as in clinical trials, and the efficiency of PS-targeting agents remains uncertain. In this review, we summarize recent progress in our understanding of the physiological and pathological roles of PS, with a focus on immune suppressive features. In addition, we discuss current drug developments that are based on PS-targeting strategies in both experimental and clinical studies. We hope to provide a future research direction for the development of new agents for cancer therapy.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
| | - Hongge Fa
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of medicine, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of medicine, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Zhou Y, Yao Y, Deng Y, Shao A. Regulation of efferocytosis as a novel cancer therapy. Cell Commun Signal 2020; 18:71. [PMID: 32370748 PMCID: PMC7199874 DOI: 10.1186/s12964-020-00542-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor development and progression. Efferocytosis is an equilibrium formed by perfect coordination among “find-me”, “eat-me” and “don’t-eat-me” signals. These signaling pathways not only affect the proliferation, invasion, metastasis, and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies. Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides, supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome. Video abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Glassman FY, Dingman R, Yau HC, Balu-Iyer SV. Biological Function and Immunotherapy Utilizing Phosphatidylserine-based Nanoparticles. Immunol Invest 2020; 49:858-874. [PMID: 32204629 DOI: 10.1080/08820139.2020.1738456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatidylserine (PS) is a naturally occurring anionic phospholipid that is primarily located in the inner leaflet of eukaryotic cell membranes. The role of PS during apoptosis is one of the most studied biological functions of PS. Externalization of PS during apoptosis mediates an "eat me" signal for phagocytic uptake, leading to clearance of apoptotic cells and thus maintain self-tolerance by immunological ignorance. However, an emerging view is that PS exposure-mediated cellular uptake is not an immunologically silent event, but rather promoting an active tolerance towards self and foreign proteins. This biological property of PS has been exploited by parasites and viruses in order to evade immune surveillance of the host immune system. Further, this novel immune regulatory property of PS that results in tolerance induction can be harnessed for clinical applications, such as to treat autoimmune conditions and to reduce immunogenicity of therapeutic proteins. This review attempts to provide an overview of the biological functions of PS in the immune response and its potential therapeutic applications.
Collapse
Affiliation(s)
- Fiona Y Glassman
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA.,Clinical Pharmacology and Pharmacometrics, Currently at CSL Behring , King of Prussia, Pennsylvania, USA
| | - Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA
| | - Helena C Yau
- Department of Film and Media Studies, Washington University in St. Louis , St. Louis, Missouri, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York , Buffalo, New York, USA
| |
Collapse
|
7
|
Dayoub AS, Brekken RA. TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commun Signal 2020; 18:29. [PMID: 32087708 PMCID: PMC7036251 DOI: 10.1186/s12964-020-0521-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy for cancer is making impressive strides at improving survival of a subset of cancer patients. To increase the breadth of patients that benefit from immunotherapy, new strategies that combat the immunosuppressive microenvironment of tumors are needed. Phosphatidylserine (PS) signaling is exploited by tumors to enhance tumor immune evasion and thus strategies to inhibit PS-mediated immune suppression have potential to increase the efficacy of immunotherapy. PS is a membrane lipid that flips to the outer surface of the cell membrane during apoptosis and/or cell stress. Externalized PS can drive efferocytosis or engage PS receptors (PSRs) to promote local immune suppression. In the tumor microenvironment (TME) PS-mediated immune suppression is often termed apoptotic mimicry. Monoclonal antibodies (mAbs) targeting PS or PSRs have been developed and are in preclinical and clinical testing. The TIM (T-cell/transmembrane, immunoglobulin, and mucin) and TAM (Tyro3, AXL, and MerTK) family of receptors are PSRs that have been shown to drive PS-mediated immune suppression in tumors. This review will highlight the development of mAbs targeting PS, TIM-3 and the TAM receptors. Video Abstract
Collapse
Affiliation(s)
- Adam S Dayoub
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-8593, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Hu Z, Li M, Chen Z, Zhan C, Lin Z, Wang Q. Advances in clinical trials of targeted therapy and immunotherapy of lung cancer in 2018. Transl Lung Cancer Res 2019; 8:1091-1106. [PMID: 32010587 DOI: 10.21037/tlcr.2019.10.17] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There were many clinical studies on lung cancer in 2018. In particular, significant progress has been made in immunotherapy and targeted therapy. Whether in small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) have shown good results. For patients with specific gene mutations, the new generation inhibitors also showed good results in clinical trials. In this review, we summarize the clinical trials in lung cancer in 2018 and describe the progress and prospects for lung cancer therapies.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Gerber DE, Horn L, Boyer M, Sanborn R, Natale R, Palmero R, Bidoli P, Bondarenko I, Germonpre P, Ghizdavescu D, Kotsakis A, Lena H, Losonczy G, Park K, Su WC, Tang M, Lai J, Kallinteris NL, Shan JS, Reck M, Spigel DR. Randomized phase III study of docetaxel plus bavituximab in previously treated advanced non-squamous non-small-cell lung cancer. Ann Oncol 2019; 29:1548-1553. [PMID: 29767677 DOI: 10.1093/annonc/mdy177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Bavituximab is a monoclonal antibody that targets phosphatidylserine in the presence of β2 glycoprotein 1 (β2GP1) to exert an antitumor immune response. This phase III trial determined the efficacy of bavituximab combined with docetaxel in patients with previously treated advanced non-small-cell lung cancer (NSCLC). Patients and methods Key eligibility criteria included advanced non-squamous NSCLC with disease progression after treatment with platinum-based doublet chemotherapy, evidence of disease control after at least two cycles of first-line therapy, presence of measurable disease, ECOG performance status 0 or 1, adequate bone marrow and organ function, and no recent history of clinically significant bleeding. Eligible patients were randomized 1 : 1 to receive up to six 21-day cycles of docetaxel plus either weekly bavituximab 3 mg/kg or placebo until progression or toxicity. The primary end point was overall survival (OS). Results A total of 597 patients were enrolled. Median OS was 10.5 months in the docetaxel + bavituximab arm and was 10.9 months in the docetaxel + placebo arm (HR 1.06; 95% CI 0.88-1.29; P = 0.533). There was no difference in progression-free survival (HR 1.00; 95% CI 0.82-1.22; P = 0.990). Toxicities were manageable and similar between arms. In subset analysis, among patients with high baseline serum β2GP1 levels ≥200 µg/ml, a nonsignificant OS trend favored the bavituximab arm (HR 0.82; 95% CI 0.63-1.06; P = 0.134). Among patients who received post-study immune checkpoint inhibitor therapy, OS favored the bavituximab arm (HR 0.46; 95% CI 0.26-0.81; P = 0.006). Conclusions The combination of bavituximab plus docetaxel is not superior to docetaxel in patients with previously treated advanced NSCLC. The addition of bavituximab to docetaxel does not meaningfully increase toxicity. The potential benefit of bavituximab observed in patients with high β2GP1 levels and in patients subsequently treated with immune checkpoint inhibitors requires further investigation. Clinical trial number NCT01999673.
Collapse
Affiliation(s)
- D E Gerber
- Division of Hematology-Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA.
| | - L Horn
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt-Ingram Cancer Center, Nashville, USA
| | - M Boyer
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - R Sanborn
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland; USA
| | - R Natale
- Department of Internal Medicine (Hematology-Oncology), Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - R Palmero
- Medical Oncology Service, Institut Català d'Oncologia -L'Hospitalet, Barcelona, Spain
| | - P Bidoli
- Department of Oncology, ASST di Monza - Azienda Ospedaliera San Gerardo, Monza, Italy
| | - I Bondarenko
- State Institution Dnipropetrovsk Medical, Academy of the Ministry of Health of Ukraine, Communal Institution Dnipropetrovsk City Multifield Clinical Hospital No. 4 of Dnipropetrovsk Regional Council, Dnipropetrovsk, Ukraine
| | - P Germonpre
- Department of Pneumology, AZ Maria Middelares, Gent, Belgium
| | - D Ghizdavescu
- Department of Oncology, Ploiesti Municipal Hospital, Ploiesti, Romania
| | - A Kotsakis
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | - H Lena
- Pneumology Service, Hôspital Pontchaillou, Rennes, France
| | - G Losonczy
- Pulmonology Clinic, Semmelweis Egyetem, Budapest, Hungary
| | - K Park
- Division of Hematology-Oncology, Samsung Medical Center, Seoul, Korea
| | - W-C Su
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - M Tang
- Peregrine Pharmaceuticals, Inc., Tustin, USA
| | - J Lai
- Peregrine Pharmaceuticals, Inc., Tustin, USA
| | | | - J S Shan
- Peregrine Pharmaceuticals, Inc., Tustin, USA
| | - M Reck
- Department of Thoracic Oncology, German Center for Lung research (DZL), Lungen Clinic Grosshansdorf, Grosshansdorf, Germany
| | - D R Spigel
- Lung Cancer Clinical Research Program, Sarah Canon Research Institute, Nashville, USA
| |
Collapse
|
10
|
Zohar DN, Shoenfeld Y. Antibody targeting of phosphatidylserine for detection and immunotherapy of cancer. Immunotargets Ther 2018; 7:51-53. [PMID: 29951450 PMCID: PMC6018927 DOI: 10.2147/itt.s169383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Daniela Noa Zohar
- Zabludowitz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Zabludowitz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel
| |
Collapse
|
11
|
Grilley-Olson JE, Weiss J, Ivanova A, Villaruz LC, Moore DT, Stinchcombe TE, Lee C, Shan JS, Socinski MA. Phase Ib Study of Bavituximab With Carboplatin and Pemetrexed in Chemotherapy-Naive Advanced Nonsquamous Non-Small-Cell Lung Cancer. Clin Lung Cancer 2018; 19:e481-e487. [PMID: 29631965 DOI: 10.1016/j.cllc.2018.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Bavituximab is an immunomodulatory chimeric monoclonal antibody that inhibits phosphatidylserine signaling, which promotes innate and adaptive immune responses. In this phase Ib trial we evaluated the safety, tolerability, and preliminary antitumor activity of pemetrexed, carboplatin, bavituximab in advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with advanced nonsquamous NSCLC and performance status 0 or 1 were treated with pemetrexed 500 mg/m2 and carboplatin area under the curve 6 once every 3 weeks for up to 6 cycles, with concurrent bavituximab (0.3, 1, or 3 mg/kg) intravenously weekly, using a standard 3+3 design. At the maximum identified dose, additional patients were enrolled to further characterize the safety profile. The primary objective was to characterize the safety, determine the dose-limiting toxicities (DLTs), and establish the recommended phase II dose of bavituximab in combination with pemetrexed and carboplatin in incurable stage IV nonsquamous NSCLC. RESULTS Between March 29, 2011 and December 30, 2013, 26 patients were enrolled. Three patients each were enrolled into dose escalation cohorts of bavituximab (0.3, 1, and 3 mg/kg). Therapy was well tolerated with no DLTs, and toxicities were consistent with those expected from pemetrexed/carboplatin. Overall response was 28%, with a median progression-free and overall survival of 4.8 months and 12.2 months, respectively. CONCLUSION The combination of pemetrexed, carboplatin, bavituximab is well tolerated. However, with toxicities and preliminary efficacy signal similar to pemetrexed/carboplatin alone, further studies of bavituximab should focus on ways to enhance its immunomodulatory role.
Collapse
Affiliation(s)
- Juneko E Grilley-Olson
- Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, NC; Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC.
| | - Jared Weiss
- Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, NC; Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Anastasia Ivanova
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC; Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | | | - Dominic T Moore
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC; Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | - Thomas E Stinchcombe
- Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, NC; Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Carrie Lee
- Department of Medicine, Division of Hematology-Oncology, University of North Carolina, Chapel Hill, NC; Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC
| | | | | |
Collapse
|
12
|
Niyongere S, Saltos A, Gray JE. Immunotherapy combination strategies (non-chemotherapy) in non-small cell lung cancer. J Thorac Dis 2018; 10:S433-S450. [PMID: 29593889 DOI: 10.21037/jtd.2017.12.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immune checkpoint inhibitors enhance the activation and antitumor activity of the immune system, resulting in durable response rates in a select group of patients. Cytotoxic T lymphocyte antigen 4 (CTLA4) inhibitors target the inhibitory interaction between CTLA4 and CD80 or CD86. Programmed death 1 (PD1) inhibitors target the interaction between PD1 receptors on T-cells and PD-ligand 1 (PD-L1) and PD-ligand 2, blocking the inhibitory signaling and resulting in activation of T-cell effector function. These therapeutic drugs were originally evaluated in patients with metastatic melanoma before expansion to all tumor types, including non-small cell lung cancer (NSCLC) with promising results. The PD1 inhibitors such as pembrolizumab have now received FDA approval in the first-line setting for patients with positive PD-L1 expression tumor types; however, only a portion of patients have shown objective and sustainable responses. To expand the number of patients with observed response to immunotherapeutic agents including patients with negative PD-L1 expression tumors, clinical trials are ongoing to assess the safety and efficacy of combination immune checkpoint inhibitors and combination immune checkpoint inhibitors with targeted therapy. Immune checkpoint inhibitors have been found to be a promising therapeutic drug class with sustainable response rates and a tolerable safety profile, and efforts continue to improve these drugs in patients with NSCLC.
Collapse
Affiliation(s)
- Sandrine Niyongere
- Moffitt Cancer Center, Tampa, FL; University of South Florida, Tampa, FL, USA
| | - Andreas Saltos
- Moffitt Cancer Center, Tampa, FL; University of South Florida, Tampa, FL, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
13
|
A Phase I Clinical Trial of the Phosphatidylserine-targeting Antibody Bavituximab in Combination With Radiation Therapy and Capecitabine in the Preoperative Treatment of Rectal Adenocarcinoma. Am J Clin Oncol 2017; 41:972-976. [PMID: 28763330 DOI: 10.1097/coc.0000000000000401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES There is interest in improving the tumoricidal effects of preoperative radiotherapy for rectal carcinoma by studying new radiosensitizers. The safety and toxicity profile of these combination regimens needs rigorous clinical evaluation. The primary objective of this study was to evaluate the toxicity of combining bavituximab, an antibody that targets exposed phosphatidylserine, with capecitabine and radiation therapy. MATERIALS AND METHODS Patients with stage II or III rectal adenocarcinoma were enrolled on a phase I study combining radiation therapy, capecitabine, and bavituximab. A standard 3+3 trial designed was used. RESULTS In general, bavituximab was safe and well tolerated in combination with radiation therapy and capecitabine in the treatment of rectal adenocarcinoma. One patient at the highest dose level experienced a grade III infusion reaction related to the bavituximab. One tumor demonstrated a complete pathologic response to the combination treatment. CONCLUSIONS Bavituximab is safe in combination with capecitabine and radiation therapy at the doses selected for the study. Further clinical investigation would be necessary to better define the efficacy of this combination.
Collapse
|
14
|
Oyler-Yaniv J, Oyler-Yaniv A, Shakiba M, Min NK, Chen YH, Cheng SY, Krichevsky O, Altan-Bonnet N, Altan-Bonnet G. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation. Mol Cell 2017; 66:635-647.e7. [PMID: 28575659 PMCID: PMC6611463 DOI: 10.1016/j.molcel.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways.
Collapse
MESH Headings
- Animals
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Computational Biology
- Computer Simulation
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Janus Kinases/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphatidylserines/immunology
- Phosphatidylserines/metabolism
- Phosphorylation
- RAW 264.7 Cells
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Time Factors
- Transcription, Genetic
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alon Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mojdeh Shakiba
- Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nina K Min
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ying-Han Chen
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel; Ilse Kats Center for Nanoscience, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
15
|
Connor J, Kobinger G, Olinger G. Therapeutics Against Filovirus Infection. Curr Top Microbiol Immunol 2017; 411:263-290. [PMID: 28653190 DOI: 10.1007/82_2017_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Therapies for filovirus infections are urgently needed. The paradoxical issue facing therapies is the need for rigorous safety and efficacy testing, adhering to the principle tenant of medicine to do no harm, while responding to the extreme for a treatment option during an outbreak. Supportive care remains a primary goal for infected patients. Years of research into filoviruses has provided possible medical interventions ranging from direct antivirals, host-factor supportive approaches, and passive immunity. As more basic research is directed toward understanding these pathogens and their impact on the host, effective approaches to treat patients during infection will be identified. The ability to manage outbreaks with medical interventions beyond supportive care will require clinical trial design that will balance the benefits of the patient and scientific community.
Collapse
Affiliation(s)
- John Connor
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, Boston, MA, 02118, USA.
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, Universite Laval, 2705 Boulevard Laurier, RC-709, Ville de Québec, QC G1V 4G2, Canada
| | - Gene Olinger
- Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albaney Street, Boston, MA, 02118, USA
| |
Collapse
|
16
|
Bansal P, Osman D, Gan GN, Simon GR, Boumber Y. Recent Advances in Immunotherapy in Metastatic NSCLC. Front Oncol 2016; 6:239. [PMID: 27896216 PMCID: PMC5107578 DOI: 10.3389/fonc.2016.00239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of most common malignancies and the leading cause of cancer deaths worldwide. Despite advances in targeted therapies, majority of NSCLC patients do not have targetable genomic alterations. Nevertheless, recent discovery that NSCLC is an immunogenic tumor type, and several breakthroughs in immunotherapies have led to rapid expansion of this new treatment modality in NSCLC with recent FDA approvals of programed death receptor-1 inhibitors, such as nivolumab and pembrolizumab. Here, we review promising immunotherapeutic approaches in metastatic NSCLC, including checkpoint inhibitors, agents with other mechanisms of action, and immunotherapy combinations with other drugs. With advent of immunotherapy, therapeutic options in metastatic NSCLC are rapidly expanding with the hope to further expand life expectancy in metastatic lung cancer.
Collapse
Affiliation(s)
- Pranshu Bansal
- Department of Internal Medicine, Division of Hematology/Oncology, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA; Hematology/Oncology Fellowship Program, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Diaa Osman
- Department of Internal Medicine, Division of Hematology/Oncology, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA; Hematology/Oncology Fellowship Program, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Gregory N Gan
- Department of Internal Medicine, Division of Hematology/Oncology, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA; Section of Radiation Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - George R Simon
- Department of Thoracic and Head/Neck Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Yanis Boumber
- Department of Internal Medicine, Division of Hematology/Oncology, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA; Molecular Therapeutics Program, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|