1
|
Li Y, Lv Y, Zhang C, Fu B, Liu Y, Hu J. Recent advances in the development of dual ALK/ROS1 inhibitors for non-small cell lung cancer therapy. Eur J Med Chem 2023; 257:115477. [PMID: 37210839 DOI: 10.1016/j.ejmech.2023.115477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
As a member of the insulin-receptor superfamily, ALK plays an important role in regulating the growth, proliferation, and survival of cells. ROS1 is highly homologous with ALK, and can also regulate normal physiological activities of cells. The overexpression of both is closely related to the development and metastasis of tumors. Therefore, ALK and ROS1 may serve as important therapeutic targets in non-small cell lung cancer (NSCLC). Clinically, many ALK inhibitors have shown powerful therapeutic efficacy in ALK and ROS1-positive NSCLC patients. However, after some time, patients inevitably develop drug resistance, leading to treatment failure. There are no significant drug breakthroughs in solving the problem of drug-resistant mutations. In this review, we summarize the chemical structural features of several novel dual ALK/ROS1 inhibitors, their inhibitory effect on ALK and ROS1 kinases, and future treatment strategies for patients with ALK and ROS1 inhibitor-resistant mutations.
Collapse
Affiliation(s)
- Yingxue Li
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yanna Lv
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Cheng Zhang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Binyu Fu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yue Liu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
2
|
Xing P, Zhao Q, Zhang L, Wang H, Huang D, Hu P, Sun Y, Shi Y. Conteltinib (CT-707) in patients with advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, first-in-human phase 1 study. BMC Med 2022; 20:453. [PMID: 36424628 PMCID: PMC9694544 DOI: 10.1186/s12916-022-02646-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Conteltinib (CT-707) is a potent second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) showing promising anti-tumor activities in preclinical studies. This study aimed to assess the safety, pharmacokinetic (PK), and efficacy of conteltinib in patients with ALK-positive non-small cell lung cancer (NSCLC). METHODS In this multicenter, single-arm, open-label, first-in-human phase 1 study, conteltinib was taken orally at doses of 50 to 800 mg quaque die (QD) in a dose-escalation phase. If the response was observed in a dose cohort of the dose-escalation phase, dose expansion was started. The primary endpoints were maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and adverse events assessed by investigators. RESULTS Between April 13, 2016, and February 8, 2020, 64 ALK-positive NSCLC patients were enrolled, including 41 (64.1%) patients with ALK TKI-naïve and 23 (35.9%) patients who received crizotinib previously. In the dose-escalation phase, 26 patients were treated with conteltinib at doses of 50 mg, 100 mg, 200 mg, 300 mg, 450 mg, 600 mg, and 800 mg QD. One DLT event was reported at the dose of 600 mg. MTD was not reached. Overall, 58 (90.6%) patients experienced treatment-related adverse events (TRAEs) and 9 (14.1%) patients had grade ≥ 3 TRAEs. The most common TRAEs were diarrhea (46 [71.9%]), serum creatinine elevated (29 [45.3%]), aspartate aminotransferase elevated (25 [39.1%]), and nausea (24 [37.5%]). Among 39 ALK TKI-naïve patients, the overall response rate (ORR) was 64.1% (25 of 39; 95% confidence interval [CI], 47.2-78.8), median progression-free survival (PFS) was 15.9 months (95% CI, 9.26-23.3), and median duration of response (DoR) was 15.0 months (95% CI, 9.06-25.8). Among 21 patients who received crizotinib previously, the ORR was 33.3% (7 of 21; 95% CI, 14.6-57.0), median PFS was 6.73 months (95% CI, 4.73-8.54), and median DoR was 6.60 months (95% CI, 3.77-13.3). CONCLUSIONS In this study, conteltinib showed manageable safety profile, favorable PK properties, and anti-tumor activity in advanced ALK-positive NSCLC patients. The recommended phase 2 dose was determined to be 600 mg QD for ALK TKI-naïve patients and 300 mg bis in die (BID) for patients who received crizotinib previously. TRIAL REGISTRATION ClinicalTrials.gov, NCT02695550.
Collapse
Affiliation(s)
- Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Qian Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hanping Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yinghui Sun
- Department of Clinical Medicine, Shouyao Holdings (Beijing) Co., Ltd, Beijing, 100195, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
3
|
Luo YH, Liang KH, Huang HC, Shen CI, Chiang CL, Wang ML, Chiou SH, Chen YM. State-of-the-Art Molecular Oncology of Lung Cancer in Taiwan. Int J Mol Sci 2022; 23:ijms23137037. [PMID: 35806042 PMCID: PMC9266727 DOI: 10.3390/ijms23137037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancers are life-threatening malignancies that cause great healthcare burdens in Taiwan and worldwide. The 5-year survival rate for Taiwanese patients with lung cancer is approximately 29%, an unsatisfactorily low number that remains to be improved. We first reviewed the molecular epidemiology derived from a deep proteogenomic resource in Taiwan. The nuclear factor erythroid 2-related factor 2 (NRF2)antioxidant mechanism was discovered to mediate the oncogenesis and tumor progression of lung adenocarcinoma. Additionally, DNA replication, glycolysis and stress response are positively associated with tumor stages, while cell-to-cell communication, signaling, integrin, G protein coupled receptors, ion channels and adaptive immunity are negatively associated with tumor stages. Three patient subgroups were discovered based on the clustering analysis of protein abundance in tumors. The first subgroup is associated with more advanced cancer stages and visceral pleural invasion, as well as higher mutation burdens. The second subgroup is associated with EGFR L858R mutations. The third subgroup is associated with PI3K/AKT pathways and cell cycles. Both EGFR and PI3K/AKT signaling pathways have been shown to induce NRF2 activation and tumor cell proliferation. We also reviewed the clinical evidence of patient outcomes in Taiwan given various approved targeted therapies, such as EGFR-tyrosine kinase inhibitors and anaplastic lymphoma kinase (ALK)inhibitors, in accordance with the patients’ characteristics. Somatic mutations occurred in EGFR, KRAS, HER2 and BRAF genes, and these mutations have been detected in 55.7%, 5.2%, 2.0% and 0.7% patients, respectively. The EGFR mutation is the most prevalent targetable mutation in Taiwan. EML4-ALK translocations have been found in 9.8% of patients with wild-type EGFR. The molecular profiling of advanced NSCLC is critical to optimal therapeutic decision-making. The patient characteristics, such as mutation profiles, protein expression profiles, drug-resistance profiles, molecular oncogenic mechanisms and patient subgroup systems together offer new strategies for personalized treatments and patient care.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-H.L.); (H.-C.H.); (C.-I.S.); (C.-L.C.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsu-Ching Huang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-H.L.); (H.-C.H.); (C.-I.S.); (C.-L.C.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-H.L.); (H.-C.H.); (C.-I.S.); (C.-L.C.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-H.L.); (H.-C.H.); (C.-I.S.); (C.-L.C.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Mong-Lien Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (S.-H.C.); (Y.-M.C.); Tel.: +886-2-28757865 (Y.-M.C.)
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-H.L.); (H.-C.H.); (C.-I.S.); (C.-L.C.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: (S.-H.C.); (Y.-M.C.); Tel.: +886-2-28757865 (Y.-M.C.)
| |
Collapse
|
4
|
Targeting anaplastic lymphoma kinase (ALK) gene alterations in neuroblastoma by using alkylating pyrrole-imidazole polyamides. PLoS One 2021; 16:e0257718. [PMID: 34591871 PMCID: PMC8483358 DOI: 10.1371/journal.pone.0257718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) aberration is related to high-risk neuroblastomas and is an important therapeutic target. As acquired resistance to ALK tyrosine kinase inhibitors is inevitable, novel anti-ALK drug development is necessary in order to overcome potential drug resistance against ATP-competitive kinase inhibitors. In this study, to overcome ALK inhibitor resistance, we examined the growth inhibition effects of newly developed ALK-targeting pyrrole-imidazole polyamide CCC-003, which was designed to directly bind and alkylate DNA within the F1174L-mutated ALK gene. CCC-003 suppressed cell proliferation in ALK-mutated neuroblastoma cells. The expression of total and phosphorylated ALK was downregulated by CCC-003 treatment but not by treatment with a mismatch polyamide without any binding motif within the ALK gene region. CCC-003 preferentially bound to the DNA sequence with the F1174L mutation and significantly suppressed tumor progression in a human neuroblastoma xenograft mouse model. Our data suggest that the specific binding of CCC-003 to mutated DNA within the ALK gene exerts its anti-tumor activity through a mode of action that is distinct from those of other ALK inhibitors. In summary, our current study provides evidence for the potential of pyrrole-imidazole polyamide ALK inhibitor CCC-003 for the treatment of neuroblastoma thus offering a possible solution to the problem of tyrosine kinase inhibitor resistance.
Collapse
|
5
|
Rodak O, Peris-Díaz MD, Olbromski M, Podhorska-Okołów M, Dzięgiel P. Current Landscape of Non-Small Cell Lung Cancer: Epidemiology, Histological Classification, Targeted Therapies, and Immunotherapy. Cancers (Basel) 2021; 13:4705. [PMID: 34572931 PMCID: PMC8470525 DOI: 10.3390/cancers13184705] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a subtype of the most frequently diagnosed cancer in the world. Its epidemiology depends not only on tobacco exposition but also air quality. While the global trends in NSCLC incidence have started to decline, we can observe region-dependent differences related to the education and the economic level of the patients. Due to an increasing understanding of NSCLC biology, new diagnostic and therapeutic strategies have been developed, such as the reorganization of histopathological classification or tumor genotyping. Precision medicine is focused on the recognition of a genetic mutation in lung cancer cells called "driver mutation" to provide a variety of specific inhibitors of improperly functioning proteins. A rapidly growing group of approved drugs for targeted therapy in NSCLC currently allows the following mutated proteins to be treated: EGFR family (ERBB-1, ERBB-2), ALK, ROS1, MET, RET, NTRK, and RAF. Nevertheless, one of the most frequent NSCLC molecular sub-types remains without successful treatment: the K-Ras protein. In this review, we discuss the current NSCLC landscape treatment focusing on targeted therapy and immunotherapy, including first- and second-line monotherapies, immune checkpoint inhibitors with chemotherapy treatment, and approved predictive biomarkers.
Collapse
Affiliation(s)
- Olga Rodak
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.O.); (P.D.)
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.O.); (P.D.)
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
6
|
Resistance profiles of anaplastic lymphoma kinase tyrosine kinase inhibitors in advanced non-small-cell lung cancer: a multicenter study using targeted next-generation sequencing. Eur J Cancer 2021; 156:1-11. [PMID: 34392186 DOI: 10.1016/j.ejca.2021.06.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib are approved for advanced non-small-cell lung cancer (NSCLC) with ALK rearrangement. However, the mechanisms of resistance remain largely unclear. METHODS This prospective multicenter study analyzed cell-free DNA (cfDNA) and/or cancer tissues of patients with NSCLC after progression on ALK TKI(s), using targeted next-generation sequencing. Patients' clinicopathologic characteristics and treatment outcomes were analyzed. RESULTS Overall, 88 patients were enrolled; 31 cancer tissues and 90 cfDNA samples were analyzed. Five (16%) ALK mutations (L1196M ×2, I1171T, D1203N, G1269A/F1174L) and 3 possible bypass mutations (NRAS G12V, EGFR R108K, PIK3CA E545K) were found in 32 crizotinib-resistant cancers. Four (22%) ALK mutations (G1128A, G1202R, G1269A, I1171T/E1210K) and 3 possible bypass mutations (KIT D820E, MET E1012∗, EGFR P265_C291del) were found in 18 ceritinib-resistant cancers. Four (17%) ALK mutations (G1202R ×2, W1295C, G1202R/L1196M) and 1 possible bypass mutation (EGFR P753S) were found in 24 alectinib-resistant cancers. Two (11%) ALK mutations (G1202R/G1269A ×2) and 2 possible bypass mutations (BRAF V600E, MET D1246N) were found in 18 lorlatinib-resistant cancers. In patients with simultaneous paired tissue and cfDNA samples (n = 20), mutations were identified in 9 (45%) and 6 (30%) cases, respectively; the concordance rate was 45%. CONCLUSIONS The mechanisms of ALK TKI resistance were heterogeneous; ALK mutations were found in less than one-third of patients. Compound ALK mutations, which may confer lorlatinib resistance, may occur in crizotinib, ceritinib, and alectinib-resistant lung cancers.
Collapse
|
7
|
Schokrpur S, Hilburn V, Giustini N, Bazhenova L. An overview of alectinib hydrochloride as a treatment option for ALK positive non-small cell lung cancer. Expert Opin Pharmacother 2021; 22:1815-1824. [PMID: 34225542 DOI: 10.1080/14656566.2021.1948014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Alectinib is a second-generation inhibitor of anaplastic lymphoma kinase (ALK) and RET. Phase III clinical trials have established its superiority to crizotinib in the first-line ALK inhibitor-naïve setting. Studies also support its use over chemotherapy in the post-crizotinib setting. It is currently one of several FDA- and EMA-approved ALK inhibitors, and it is listed as a preferred initial therapy for treatment-naïve ALK-positive non-small cell lung cancer (NSCLC).Areas covered: Herein, the authors provide the reader with details of the chemical structure, pharmacologic properties, resistance mutations, phase I, II, and III clinical trials, and safety profile of alectinib. Furthermore, the authors provide the reader with the expert opinion and future perspectives on the drug.Expert opinion: Alectinib compares favorably to other second-generation ALK inhibitors with regards to safety, tolerability, and efficacy. Based on currently available data, it is an appropriate first-line option. Ongoing studies will better resolve the ideal sequencing of ALK inhibitors in the treatment of ALK-positive NSCLC.
Collapse
Affiliation(s)
- Shiruyeh Schokrpur
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Van Hilburn
- Division of Pharmacy, University of California San Diego, San Diego, California, USA
| | - Nicholas Giustini
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| | - Lyudmila Bazhenova
- Division of Hematology, Oncology University of California San Diego Moores Cancer Center, San Diego, California, USA
| |
Collapse
|
8
|
Yang P, Cao R, Bao H, Wu X, Yang L, Zhu D, Zhang L, Peng L, Cai Y, Zhang W, Shao Y. Identification of Novel Alectinib-Resistant ALK Mutation G1202K with Sensitization to Lorlatinib: A Case Report and in silico Structural Modelling. Onco Targets Ther 2021; 14:2131-2138. [PMID: 33790576 PMCID: PMC8007639 DOI: 10.2147/ott.s293901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background Drug resistance caused by G1202R/G1202del mutation in anaplastic lymphoma kinase (ALK) represents a great challenge in the clinic. The effect of other mutation(s) at G1202 on the available tyrosine kinase inhibitors (TKIs) in the clinic remains unknown. Case Presentation A 50-year-old Chinese male non-smoker with lung adenocarcinoma progressed with spinal metastasis after receiving chest radiation together with Pemetrexed and Cisplatin as adjuvant chemotherapy. Targeted next generation sequencing (NGS) identified EML4-ALK gene fusion in the resected left lung tissue. Local radiation followed by Crizotinib were used in the following treatment and the spinal metastasis was found to shrink, but the progression free survival (PFS) only lasted for 2 months with the appearance of brain metastasis. Afterwards, the patient benefited from the therapy of Alectinib with a PFS of 8 months. Then he progressed with metastases in right lung and pleural, and did not show response to the chemotherapy with Docetaxel plus Bevacizumab. The targeted sequencing consistently identified EML4-ALK gene fusion in both plasma and pleural effusion (PE), as well as a novel ALK G1202K mutation (c.3604_3605delGGinsAA). Given the lack of established or known drug treatment for this novel mutation, we implemented molecular dynamics (MD) simulation-guided drug sensitivity prediction, which results suggested Lorlatinib remains potent against G1202K mutant ALK. Therefore, Lorlatinib was used as the fourth-line therapy, which lead to the considerable efficacy with improved performance status (PS) score and reduced lung metastases. The structural mechanism underlying G1202K-induced drug resistance to different ALK-TKIs was also discussed. Conclusion Our case suggested the ALK-G1202K mutation may serve as a novel mechanism underlying the resistance to Alectinib, and provide direct evidence to support its sensitization to Lorlatinib. Our work represented an example of integrating in silico predictions into clinical practice.
Collapse
Affiliation(s)
- Ping Yang
- Department of Radiation Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, People's Republic of China
| | - Ran Cao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Lingling Yang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Lu Zhang
- Department of Medical Oncology, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, People's Republic of China
| | - Liming Peng
- Department of Respiratory Medicine, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, People's Republic of China
| | - Yuefei Cai
- Department of Intervention, Tungwah Hospital of Sun Yat-Sen University, Dongguan, Guangdong, People's Republic of China
| | - Weijun Zhang
- Departments of Radiation Oncology, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Kuo CHS, Tung PH, Huang ACC, Wang CC, Chang JWC, Liu CY, Chung FT, Fang YF, Guo YK, Yang CT. A retrospective study of alectinib versus ceritinib in patients with advanced non-small-cell lung cancer of anaplastic lymphoma kinase fusion in whom crizotinib treatment failed. BMC Cancer 2021; 21:309. [PMID: 33761908 PMCID: PMC7988977 DOI: 10.1186/s12885-021-08005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Crizotinib is the approved treatment for advanced non-small cell lung cancers (NSCLCs) of anaplastic lymphoma kinase (ALK) fusion. Failure of crizotinib treatment frequently involves drug intolerance or resistance. Comparison of using second-generation ALK inhibitors in this setting remains lacking. Methods Sixty-five ALK-positive advanced NSCLC patients receiving second-generation ALK inhibitors following treatment failure of crizotinib were retrospectively analyzed for the therapeutic efficacy. Results Forty-three (66.2%) and 22 (33.8%) patients received alectinib and ceritinib, respectively. Comparing alectinib to ceritinib treatment: the 12-month progression-free survival (PFS) rate (61.0% [95% confidence interval, 47.1 to 78.9%] vs. 54.5% [95% CI, 37.3 to 79.9%]); the hazard ratio (HR) for disease progression or death, 0.61 (95% CI, 0.31–1.17; p = 0.135). Multivariate Cox regression showed ECOG PS (0–1 vs. 2–3 HR 0.09 [95% CI, 0.02–0.33]; p < 0.001) and cause of crizotinib treatment failure (resistance vs. intolerance HR 2.75 [95% CI, 1.26–5.99]; p = 0.011) were the independent predictors for the PFS of second-generation ALK inhibitors. Treatment of alectinib, compared to ceritinib, was associated with a lower incidence of CNS progression (cause-specific HR, 0.10; 95% CI 0.01–0.78; p = 0.029) and a higher efficacy in patients whose cause of crizotinib treatment failure was intolerance (HR 0.29 [95% CI, 0.08–1.06]; p = 0.050). The most commonly noted adverse events were elevated AST/ALT in 10 (23.3%) patients treated with alectinib and diarrhea in 8 (36.4%) patients treated with ceritinib. Conclusion Second-generation ALK inhibitors in crizotinib-treated patients showed a satifactory efficacy. Alectinib treatment demonstrated a CNS protection activity and a higher PFS in selected patients failing crizotinib treatment.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan.,Department of Medical Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan
| | - Pi-Hung Tung
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| | - Allen Chung-Cheng Huang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| | - Chin-Chou Wang
- Department of Computing, Imperial College London, Data Science Institute, London, UK.
| | - John Wen-Cheng Chang
- Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chien-Ying Liu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| | - Fu-Tsai Chung
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| | - Yi-Ke Guo
- Department of Medical Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan City, Taiwan
| |
Collapse
|
10
|
Russo A, Cardona AF, Caglevic C, Manca P, Ruiz-Patiño A, Arrieta O, Rolfo C. Overcoming TKI resistance in fusion-driven NSCLC: new generation inhibitors and rationale for combination strategies. Transl Lung Cancer Res 2020; 9:2581-2598. [PMID: 33489820 PMCID: PMC7815353 DOI: 10.21037/tlcr-2019-cnsclc-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
During the last several years, multiple gene rearrangements with oncogenic potential have been described in NSCLC, identifying specific clinic-pathological subgroups of patients that benefit from a targeted therapeutic approach, including anaplastic lymphoma kinase (ALK), c-ros protooncogene 1 (ROS1) and, more recently, REarranged during Transfection (RET) and neurotrophic tyrosine receptor kinases (NTRK) genes. Despite initial impressive antitumor activity, the use of targeted therapies in oncogene-addicted NSCLC subgroups is invariably associated with the development of acquired resistance through multiple mechanisms that can include both on-target and off-target mechanisms. However, the process of acquired resistance is a rapidly evolving clinical scenario that constantly evolves under the selective pressure of tyrosine kinase inhibitors. The development of increasingly higher selective and potent inhibitors, traditionally used to overcome resistance to first generation inhibitors, is associated with the development of novel mechanisms of resistance that encompass complex resistance mutations, highly recalcitrant to available TKIs, and bypass track mechanisms. Herein, we provide a comprehensive overview on the therapeutic strategies for overcoming acquired resistance to tyrosine kinase inhibitors (TKIs) targeting the most well-established oncogenic gene fusions in advanced NSCLC, including ALK, ROS1, RET, and NTRK rearrangements.
Collapse
Affiliation(s)
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
- Clinical and Translational Oncology Group, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Christian Caglevic
- Head of Cancer Research Department, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago, Chile
| | - Paolo Manca
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (FOX-G), Universidad el Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Yang CY, Liao WY, Ho CC, Chen KY, Tsai TH, Hsu CL, Liu YN, Su KY, Chang YL, Wu CT, Liao BC, Hsu CC, Hsu WH, Lee JH, Lin CC, Shih JY, Yang JCH, Yu CJ. Association of Programmed Death-Ligand 1 Expression with Fusion Variants and Clinical Outcomes in Patients with Anaplastic Lymphoma Kinase-Positive Lung Adenocarcinoma Receiving Crizotinib. Oncologist 2020; 25:702-711. [PMID: 32386255 DOI: 10.1634/theoncologist.2020-0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) expression is associated with clinical outcomes of epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma (ADC) treated with tyrosine kinase inhibitors (TKIs). However, whether PD-L1 expression plays a role in anaplastic lymphoma kinase (ALK)-positive lung ADC is unknown. We aimed to evaluate the impact of PD-L1 in patients with ALK-positive lung ADC receiving crizotinib. MATERIALS AND METHODS PD-L1 expression was identified by immunohistochemistry (IHC). Reverse transcriptase-polymerase chain reaction was used for ALK variant detection, and immunofluorescence-based multiplex staining was applied for exploring immune cells in tumor microenvironments. RESULTS A total of 78 patients with ALK-positive advanced ADC were enrolled in our study, of whom 52 received crizotinib. Compared with EGFR/ALK wild-type tumors, PD-L1 expression was lower in ALK-positive ADC. ALK fusion variants were identified in 32 patients, and those with variant 3 and 5 (short variants) had higher PD-L1 expression than those with other variants. The crizotinib objective response rate (ORR) and progression-free survival (PFS) was better in tumors with negative PD-L1 expression (ORR/PFS in PD-L1 0% vs. 1%-49% vs. 50%-100%: 60.7%/11.8 months vs. 38.5%/6.5 months vs. 36.4%/4.0 months, p = .007/.022). The multivariate Cox proportional hazards model revealed that PD-L1 0% (vs. ≥1%) was an independent factor for longer PFS (adjusted hazard ratio 0.322, 95% confidence interval 0.160-0.650, p = .002). Multiplex IHC in three cases showed a varied extent of immune cell infiltrations in tumors with different PD-L1 expression. CONCLUSION Positive PD-L1 expression was associated with unfavorable clinical outcomes in patients with ALK-positive lung ADC receiving crizotinib. IMPLICATIONS FOR PRACTICE Not all lung adenocarcinoma with sensitizing driver mutations experienced durable responses to small-molecule tyrosine kinase inhibitors (TKIs). Similar to the negative impact of programmed death-ligand 1 (PD-L1) in epidermal growth factor receptor mutant tumors treated with TKIs, this study demonstrated that positive PD-L1 expression was also associated with worse response rate and shorter progression-free survival of anaplastic lymphoma kinase (ALK)-positive adenocarcinoma treated with crizotinib. Among different ALK fusion partners, tumors with short variants (V3 and V5) had higher PD-L1 compared with long variants (V1, V2, and V6). Testing PD-L1 before initiating crizotinib for ALK-positive lung cancer could be a simple method to provide important prognostic information.
Collapse
Affiliation(s)
- Ching-Yao Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Yu Liao
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hsiu Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lin Hsu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bin-Chi Liao
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chi Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hsun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jih-Hsiang Lee
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - James Chih-Hsin Yang
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
12
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|
13
|
Huang SH, Huang ACC, Wang CC, Chang WC, Liu CY, Pavlidis S, Ko HW, Chung FT, Hsu PC, Guo YK, Kuo CHS, Yang CT. Front-line treatment of ceritinib improves efficacy over crizotinib for Asian patients with anaplastic lymphoma kinase fusion NSCLC: The role of systemic progression control. Thorac Cancer 2019; 10:2274-2281. [PMID: 31613427 PMCID: PMC6885427 DOI: 10.1111/1759-7714.13221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background Approximately 3%–5% of lung adenocarcinoma is driven by anaplastic lymphoma kinase (ALK) fusion oncogene, whose activity can be suppressed by multiple ALK inhibitors. Crizotinib and ceritinib have demonstrated superior efficacy to platinum‐based chemotherapy as front‐line treatment for patients with ALK‐positive advanced non‐small cell lung cancer (NSCLC). However, the direct comparison between them in the front‐line setting remains lacking. Methods A total of 48 patients with ALK‐positive, previously untreated advanced NSCLC, who received crizotinib and ceritinib as front‐line treatment were retrospectively investigated. The efficacy and pattern of disease progression were analyzed. Results Patients receiving ceritinib treatment were significantly younger than those receiving crizotinib treatment (52.0 vs. 63.0, P = 0.016). The median progression‐free survival (PFS) was significantly longer with ceritinib than with crizotinib treatment (32.3 vs. 12.9 months; log‐rank P = 0.020); the hazard ratio for disease progression or death, 0.27 (95% CI, 0.08–0.90; P = 0.033). An objective response was noted in all patients in the ceritinib group and in 23 patients in the crizotinib group (74.2%; 95% CI, 59.0 to 88.5). The rate of systemic progression was significantly lower over time with ceritinib treatment compared to crizotinib treatment (cause‐specific hazard ratio, 0.21; 95% CI 0.06–0.73; P = 0.014). Serious adverse events were noted in one (2.9%) patient showing elevated liver function in the crizotinib group and three (23.1%) patients showing diarrhea in the ceritinib group. Dose reduction was needed in five out of 13 (38.5%) patients receiving ceritinib treatment. Conclusion Ceritinib showed higher efficacy associated with a better control of systemic progression compared to crizotinib for the front‐line treatment of ALK‐positive advanced NSCLCs.
Collapse
Affiliation(s)
- Shih-Hao Huang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Allen Chung-Cheng Huang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wen-Chen Chang
- Department of Medical Oncology, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Chien-Ying Liu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Stelios Pavlidis
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Ho-Wen Ko
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Fu-Tsai Chung
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Ping-Chih Hsu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Yi-Ke Guo
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Chih-Hsi Scott Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan.,Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| |
Collapse
|
14
|
Lin YT, Liu YN, Shih JY. The Impact of Clinical Factors, ALK Fusion Variants, and BIM Polymorphism on Crizotinib-Treated Advanced EML4-ALK Rearranged Non-small Cell Lung Cancer. Front Oncol 2019; 9:880. [PMID: 31608224 PMCID: PMC6768009 DOI: 10.3389/fonc.2019.00880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022] Open
Abstract
Patients' clinical factors and genetics factors such as anaplastic lymphoma kinase (ALK) fusion variants and BIM (Bcl-2-like 11) polymorphism were reported to be associated with clinical outcome in crizotinib-treated advanced non-small cell lung cancer (NSCLC). However, the results were still controversial. We analyzed outcome of 54 patients with known ALK fusion variants who received crizotinib for advanced NSCLC. Thirty of them had successful BIM polymorphism analysis and 6 (20%) had a BIM deletion. Multivariate Cox regression analysis found that previous anticancer therapy [adjusted hazard ratio (aHR) 1.35, 95% confidence interval (CI), 1.04–1.76 for each additional line of therapy, p = 0.025] and Eastern Cooperative Oncology Group (ECOG) performance status ≥2 (aHR 8.35, 95% CI, 1.52–45.94, p = 0.015) were independent factors for progression-free survival (PFS). Only ECOG performance status ≥2 (aHR 7.20, 95% CI, 1.27–40.79, p = 0.026) was an independent factor for overall survival (OS). Neither ALK fusion variants nor the presence of a BIM deletion was associated with crizotinib PFS or OS. After adjusting with clinical factors, different ALK variants and BIM polymorphism might not be independent factors for crizotinib PFS or OS in advanced NSCLC with ALK rearrangement.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Nan Liu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Gao W, Zhang X, Yuan H, Wang Y, Zhou H, Jin H, Jia C, Jin Q, Cong H, Zhao J. EGFR point mutation detection of single circulating tumor cells for lung cancer using a micro-well array. Biosens Bioelectron 2019; 139:111326. [PMID: 31129389 DOI: 10.1016/j.bios.2019.111326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/06/2023]
Abstract
In view of their critical function in metastasis, characterization of single circulating tumor cells (CTCs) can provide important clinical information to monitor tumor progression and guide personal therapy. Single-cell genetic analysis methods based on microfluidics have some inherent shortcomings such as complicated operation, low throughput, and expensive equipment requirements. To overcome these barriers, we developed a simple and open micro-well array containing 26,208 units for either nuclear acids or single-cell genetic analysis. Through modification of the polydimethylsiloxane surface and optimization of chip packaging, we addressed protein adsorption and solution evaporation for PCR amplification on a chip. In the detection of epidermal growth factor receptor (EGFR) exon gene 21, this micro-well array demonstrated good linear correlation at a DNA concentration from 1 × 101 to 1 × 105 copies/μL (R2 = 0.9877). We then successfully integrated cell capture, lysis, PCR amplification, and signal read-out on the micro-well array, enabling the rapid and simple genetic analysis of single cells. This device was used to detect duplex EGFR mutation genes of lung cancer cell lines (H1975 and A549 cells) and normal leukocytes, demonstrating the ability to perform high-throughput, massively parallel duplex gene analysis at the single-cell level. Different types of point mutations (EGFR-L858R mutation or EGFR-T790M mutation) were detected in single H1975 cells, further validating the significance of single-cell level gene detection. In addition, this method showed a good performance in the heterogeneity detection of individual CTCs from lung cancer patients, required for micro-invasive cancer monitoring and treatment selection.
Collapse
Affiliation(s)
- Wanlei Gao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China; State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaofen Zhang
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China
| | - Haojun Yuan
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yanmin Wang
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Zhou
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Han Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chunping Jia
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Qinghui Jin
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hui Cong
- Center of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226000, China.
| | - Jianlong Zhao
- The Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
16
|
Yoshida H, Kim YH, Ozasa H, Sakamori Y, Tsuji T, Nomizo T, Yasuda Y, Yamamoto T, Ajimizu H, Hirai T. Efficacy of Ceritinib After Alectinib for ALK-positive Non-small Cell Lung Cancer. In Vivo 2019; 32:1587-1590. [PMID: 30348720 DOI: 10.21873/invivo.11418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alectinib is a new standard treatment for treatment-naïve anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC); however, resistance ultimately develops in almost all patients, and data regarding the efficiency of ceritinib for such patients are insufficient. PATIENTS AND METHODS Patients with ALK-positive NSCLC treated at the Kyoto University Hospital from January 2012 to March 2017 were reviewed. Patients who were treated with ceritinib after alectinib were identified, and the efficacy of ceritinib after alectinib was retrospectively evaluated. RESULTS There were 35 patients with ALK-positive NSCLC, nine of whom received ceritinib after alectinib. The overall response rate to ceritinib was 44%. It was 16% in patients who received ceritinib immediately after alectinib, and 100% in patients who received chemotherapy before ceritinib. The median progression-free survival for patients treated with ceritinib was 4.4 months (95% confidence interval(CI)=1.1-6.5 months). CONCLUSION Ceritinib demonstrated a modest clinical benefit after failure of alectinib. Ceritinib may be a reasonable treatment option in this setting.
Collapse
Affiliation(s)
- Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Tsuji
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nomizo
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuto Yasuda
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Yamamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitomi Ajimizu
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Ashinuma H, Shingyoji M, Hasegawa Y, Yokoi S, Yoshida Y. Ceritinib Treatment for Carcinomatous Meningitis with a Secondary Mutation at I1171T in Anaplastic Lymphoma Kinase. Intern Med 2018; 57:3153-3155. [PMID: 29877262 PMCID: PMC6262718 DOI: 10.2169/internalmedicine.0397-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mechanisms underlying anaplastic lymphoma kinase (ALK) resistance have not been well investigated in clinical practice. We herein report the case of a lung cancer patient with carcinomatous meningitis who had an ALK I1171T resistance mutation revealed by direct DNA sequencing of the cerebrospinal fluid after treatment with cytotoxic chemotherapy, crizotinib, and alectinib. I1171T is considered to be sensitive to ceritinib. Although ceritinib was not effective initially, we chose ceritinib again after whole-brain radiotherapy and ventriculoperitoneal shunting. Although the response duration was short, spinal magnetic resonance imaging revealed a marked response. The identification of an acquired ALK resistance mutation will aid in choosing the optimum sequence therapy.
Collapse
Affiliation(s)
| | | | - Yuzo Hasegawa
- Division of Neurological Surgery, Chiba Cancer Center, Japan
| | - Sana Yokoi
- Division of Translational Genomics, Chiba Cancer Center, Japan
| | - Yasushi Yoshida
- Division of Respiratory Medicine, Chiba Cancer Center, Japan
| |
Collapse
|
18
|
Lv T, Zou Q, Song Z, Liu H, Wang Q, Song Y. The correlation between crizotinib efficacy and molecular heterogeneity by next-generation sequencing in non-small cell lung cancer. J Thorac Dis 2018; 10:2948-2959. [PMID: 29997961 DOI: 10.21037/jtd.2018.05.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) patients with EML4-ALK fusion exhibited various durations of response to crizotinib. Molecular heterogeneity is also one of the factors associated with resistance to crizotinib. This study investigated the relevance of molecular heterogeneity to the clinical efficacy of crizotinib using next-generation sequencing (NGS). Methods A total of 52 ALK-positive advanced NSCLC patients were enrolled. The genetic variation was revealed by NGS. We identified different ALK fusion types, allelic fraction (AF) and additional coexisting mutations (ACMs) and evaluated the correlation between the above three factors and clinical response to crizotinib. Results Among the group that was detected with ALK+ fusion by immunohistochemistry (IHC), patients detected as ALK- fusion by the NGS method were associated with a shorter progression-free survival (PFS) compared with ALK+ patients by NGS. Moreover, for different ALK fusion types, the median PFS of variant 1/2/3 and other uncommon variants were 305, 557, 242 and 370 days, respectively. Although there was no statistically significant difference (P=0.201), patients with ALK variant 2 appeared to display a longer PFS than other types of variants in this study. There was no significant difference in the relationship between ALK fusion AF and PFS (P=0.639). Additionally, there was no correlation between ACMs and PFS in the three groups (IHC+, IHC+/NGS-, and IHC+/NGS+, P=0.738, 0.801 and 0.550). We analysed the relationship between TP53/FAT3 and PFS in the IHC+/NGS+ group, and there was no statistically significant difference (P=0.712/0.631). Conclusions It is necessary to use multiple methods together to detect ALK fusion, and we can continue to carry out the study of the correlation between the different contents of heterogeneity of gene mutations and TKI effects using the NGS method.
Collapse
Affiliation(s)
- Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing 210002, China
| | - Qian Zou
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China.,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,Nanjing University Institute of Respiratory Medicine, Nanjing 210002, China
| | - Qiming Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
19
|
Genomic heterogeneity of ALK fusion breakpoints in non-small-cell lung cancer. Mod Pathol 2018; 31:791-808. [PMID: 29327716 DOI: 10.1038/modpathol.2017.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 01/06/2023]
Abstract
In lung adenocarcinoma, canonical EML4-ALK inversion results in a fusion protein with a constitutively active ALK kinase domain. Evidence of ALK rearrangement occurs in a minority (2-7%) of lung adenocarcinoma, and only ~60% of these patients will respond to targeted ALK inhibition by drugs such as crizotinib and ceritinib. Clinically, targeted anti-ALK therapy is often initiated based on evidence of an ALK genomic rearrangement detected by fluorescence in situ hybridization (FISH) of interphase cells in formalin-fixed, paraffin-embedded tissue sections. At the genomic level, however, ALK rearrangements are heterogeneous, with multiple potential breakpoints in EML4, and alternate fusion partners. Using next-generation sequencing of DNA and RNA together with ALK immunohistochemistry, we comprehensively characterized genomic breakpoints in 33 FISH-positive lung adenocarcinomas. Of these 33 cases, 29 (88%) had detectable DNA level ALK rearrangements involving EML4, KIF5B, or non-canonical partners including ASXL2, ATP6V1B1, PRKAR1A, and SPDYA. A subset of 12 cases had material available for RNA-Seq. Of these, eight of eight (100%) cases with DNA rearrangements showed ALK fusion transcripts from RNA-Seq; three of four cases (75%) without detectable DNA rearrangements were similarly negative by RNA-Seq, and one case was positive by RNA-Seq but negative by DNA next-generation sequencing. By immunohistochemistry, 17 of 19 (89%) tested cases were clearly positive for ALK protein expression; the remaining cases had no detectable DNA level rearrangement or had a non-canonical rearrangement not predicted to form a fusion protein. Survival analysis of patients treated with targeted ALK inhibitors demonstrates a significant difference in mean survival between patients with next-generation sequencing confirmed EML4-ALK rearrangements, and those without (20.6 months vs 5.4 months, P<0.01). Together, these data demonstrate abundant genomic heterogeneity among ALK-rearranged lung adenocarcinoma, which may account for differences in treatment response with targeted ALK inhibitors.
Collapse
|
20
|
Yang SR, Lin CY, Stehr H, Long SR, Kong CS, Berry GJ, Zehnder JL, Kunder CA. Comprehensive Genomic Profiling of Malignant Effusions in Patients with Metastatic Lung Adenocarcinoma. J Mol Diagn 2017; 20:184-194. [PMID: 29269277 DOI: 10.1016/j.jmoldx.2017.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Cytology samples are increasingly used for comprehensive molecular testing. Although fine-needle aspirates are adequate substrates for high-throughput sequencing, the suitability of malignant body fluids remains largely unexplored. We investigated the adequacy and utility of performing targeted next-generation sequencing (NGS) on malignant effusions from patients with metastatic lung adenocarcinoma. Thirty-two effusion samples submitted for hybrid capture-based NGS using a clinically validated solid tumor genotyping panel were examined. All cases showed ≥5% tumor cellularity; however, 28 (88%) provided sufficient DNA for NGS (≥1 ng/μL). The sequencing reads showed satisfactory quality control statistics, and the variant allele frequencies were correlated with tumor cellularity. Furthermore, pathogenic or likely pathogenic genomic alterations were identified in 26 of 28 samples (93%), whereas clinically actionable alterations were present in 18 (64%). Notably, nine patients had additional molecular testing performed on preceding or subsequent biopsy specimens, and the results across multiple samples were compared. In two patients, the NGS-based fluid analysis identified clinically actionable alterations that were not detected by other hotspot testing. In four patients treated with tyrosine kinase inhibitors, malignant fluid sequencing confirmed driver alterations from prior testing and revealed new resistance mechanisms. Hence, given adequate DNA input and tumor cellularity, comprehensive genomic profiling of malignant effusions may be used to establish mutational status at diagnosis and inform treatment resistance during targeted therapy.
Collapse
Affiliation(s)
- Soo-Ryum Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Steven R Long
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Christina S Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Christian A Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
21
|
Mah S, Park JH, Jung HY, Ahn K, Choi S, Tae HS, Jung KH, Rho JK, Lee JC, Hong SS, Hong S. Identification of 4-Phenoxyquinoline Based Inhibitors for L1196M Mutant of Anaplastic Lymphoma Kinase by Structure-Based Design. J Med Chem 2017; 60:9205-9221. [DOI: 10.1021/acs.jmedchem.7b01039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shinmee Mah
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Korea
| | - Jung Hee Park
- Department
of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Hoi-Yun Jung
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Korea
| | - Kukcheol Ahn
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Korea
| | - Soyeon Choi
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Korea
| | - Hyun Seop Tae
- Center
for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Korea
| | - Kyung Hee Jung
- Department
of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jin Kyung Rho
- Department
of Asan Institute for Life Sciences and Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Jae Cheol Lee
- Department
of Asan Institute for Life Sciences and Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Soon-Sun Hong
- Department
of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sungwoo Hong
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute of Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
22
|
Woo CG, Seo S, Kim SW, Jang SJ, Park KS, Song JY, Lee B, Richards MW, Bayliss R, Lee DH, Choi J. Differential protein stability and clinical responses of EML4-ALK fusion variants to various ALK inhibitors in advanced ALK-rearranged non-small cell lung cancer. Ann Oncol 2017; 28:791-797. [PMID: 28039177 DOI: 10.1093/annonc/mdw693] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
Background Anaplastic lymphoma kinase (ALK) inhibition using crizotinib has become the standard of care in advanced ALK-rearranged non-small cell lung cancer (NSCLC), but the treatment outcomes and duration of response vary widely. Echinoderm microtubule-associated protein-like 4 (EML4)-ALK is the most common translocation, and the fusion variants show different sensitivity to crizotinib in vitro. However, there are only limited data on the specific EML4-ALK variants and clinical responses of patients to various ALK inhibitors. Patients and methods By multiplex reverse-transcriptase PCR, which detects 12 variants of known EML4-ALK rearrangements, we retrospectively determined ALK fusion variants in 54 advanced ALK rearrangement-positive NSCLCs. We subdivided the patients into two groups (variants 1/2/others and variants 3a/b) by protein stability and evaluated correlations of the variant status with clinical responses to crizotinib, alectinib, or ceritinib. Moreover, we established the EML4-ALK variant-expressing system and analyzed patterns of sensitivity of the variants to ALK inhibitors. Results Of the 54 tumors analyzed, EML4-ALK variants 3a/b (44.4%) was the most common type, followed by variants 1 (33.3%) and 2 (11.1%). The 2-year progression-free survival (PFS) rate was 76.0% [95% confidence interval (CI) 56.8-100] in group EML4-ALK variants 1/2/others versus 26.4% (95% CI 10.5-66.6) in group variants 3a/b (P = 0.034) among crizotinib-treated patients. Meanwhile, the 2-year PFS rate was 69.0% (95% CI 49.9-95.4) in group variants 1/2/others versus 32.7% (95% CI 15.6-68.4) in group variants 3a/b (P = 0.108) among all crizotinib-, alectinib-, and ceritinib-treated patients. Variant 3a- or 5a-harboring cells were resistant to ALK inhibitors with >10-fold higher half maximal inhibitory concentration in vitro. Conclusion Our findings show that group EML4-ALK variants 3a/b may be a major source of ALK inhibitor resistance in the clinic. The variant-specific genotype of the EML4-ALK fusion allows for more precise stratification of patients with advanced NSCLC.
Collapse
Affiliation(s)
- C G Woo
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Gyeonggi-do, South Korea
| | - S Seo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - S W Kim
- Department of Surgery, Seoul National University College of Medicine, Daehak-ro 101, Jongno-gu, Seoul, South Korea
| | - S J Jang
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, South Korea
| | - K S Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
| | - J Y Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - B Lee
- Division of Surgical Oncology, Department of Surgery, City of Hope, Duarte, California, USA
| | - M W Richards
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - R Bayliss
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - D H Lee
- Division of Medical Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 152-703, South Korea
| | - J Choi
- epartment of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Qian M, Zhu B, Wang X, Liebman M. Drug resistance in ALK-positiveNon-small cell lungcancer patients. Semin Cell Dev Biol 2017; 64:150-157. [DOI: 10.1016/j.semcdb.2016.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
|
24
|
Avrillon V, Pérol M. Alectinib for treatment of ALK-positive non-small-cell lung cancer. Future Oncol 2016; 13:321-335. [PMID: 27780368 DOI: 10.2217/fon-2016-0386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alectinib is a highly selective second-generation ALK inhibitor that is active against most crizotinib ALK resistance mutations, with a good penetration in CNS and a good safety profile. Thanks to the positive results of Phase II trials, alectinib was approved in Japan and by the US FDA for ALK-positive non-small-cell lung cancer (NSCLC) patients pretreated with crizotinib. Recently, the Phase III J-ALEX study demonstrated superiority of alectinib over crizotinib in crizotinib naive ALK-positive NSCLC, with an impressive improvement of progression-free survival. From the results and those expected of Phase III ALEX study, alectinib might become the frontline treatment of ALK-positive NSCLC. This article summarizes the therapeutic options in ALK-positive advanced NSCLC, and the chemical, pharmacodynamics, pharmacokinetics, metabolism and clinical efficacy of alectinib.
Collapse
Affiliation(s)
- Virginie Avrillon
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| | - Maurice Pérol
- Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| |
Collapse
|
25
|
Skoulidis F, Papadimitrakopoulou VA. Personalized Medicine Tackles Clinical Resistance: Alectinib in ALK-Positive Non-Small Cell Lung Cancer Progressing on First-Generation ALK Inhibitor. Clin Cancer Res 2016; 22:5177-5182. [PMID: 27609840 DOI: 10.1158/1078-0432.ccr-16-1415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022]
Abstract
Over the last 2 years, our therapeutic armamentarium against genomically defined subgroups of non-small cell lung cancer (NSCLC) has extended to patients with acquired resistance to front-line targeted therapy. Alectinib (Alecensa; Roche/Genentech), a second-generation, orally active, potent, and highly selective inhibitor of anaplastic lymphoma kinase (ALK), is indicated for patients with metastatic, ALK rearrangement-positive NSCLC whose disease has worsened after treatment with crizotinib or who became intolerant to the drug. Alectinib received orphan drug designation, breakthrough therapy designation, priority review status, and accelerated approval by the FDA. Clin Cancer Res; 22(21); 5177-82. ©2016 AACR.
Collapse
Affiliation(s)
- Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|