1
|
Jiang Y, Xie J, Cheng Q, Cai Z, Xu K, Lu W, Wang F, Wu X, Song Y, Lv T, Zhan P. Comprehensive genomic and spatial immune infiltration analysis of survival outliers in extensive-stage small cell lung cancer receiving first-line chemoimmunotherapy. Int Immunopharmacol 2024; 141:112901. [PMID: 39151386 DOI: 10.1016/j.intimp.2024.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND A minority of patients with extensive-stage small cell lung cancer (ES-SCLC) exhibit prolonged survival following first-line chemoimmunotherapy, which warrants the use of reliable biomarkers. Here, we investigated the disparities in genomics and immune cell spatial distribution between long- and short-term survival of patients with ES-SCLC. METHODS We retrospectively recruited 11 long-term (>2 years) and 13 short-term (<9 months) ES-SCLC survivors receiving first-line chemoimmunotherapy. The samples were processed using targeted next-generation sequencing (tNGS), programmed death ligand-1 staining, multiplex immunohistochemical staining for immune cells (mIHC), tumor mutation burden (TMB), and chromosomal instability score measurements. The expression of putative genes in SCLC at the bulk and single-cell RNA-sequencing levels, as well as the role of putative genes in pan-cancer immunotherapy cohorts, were analyzed. RESULTS At the genomic level, a greater proportion of the smoking signature and higher TMB (>3.1) were associated with favorable survival. At the single-gene and pathway levels, tNGS revealed that MCL1 and STMN1 amplification and alterations in the apoptosis pathway were more common in short-term survivors, whereas alterations in the DLL3, KMT2B, HGF, EPHA3, ADGRB3, lysine deprivation, and HGF-cMET pathways were observed more frequently in long-term survivors. mIHC analysis of immune cells with different spatial distributions revealed that long-term survivors presented increased numbers of M1-like macrophages in all locations and decreased numbers of CD8+ T cells in the tumor stroma. Bulk transcriptomic analysis demonstrated that high levels of STMN1 and DLL3 represented an immune-suppressive tumor immune microenvironment (TIME), whereas HGF indicated an immune-responsive TIME. The expression levels of our putative genes were comparative in both TP53/RB1 mutant-type and TP53/RB1 wild-type. At the single-cell level, STMN1, MCL1, and DLL3 were highly expressed among all molecular subtypes (SCLC-A, SCLC-N, and SCLC-P), with STMN1 being enriched in cell division and G2M checkpoint pathways. CONCLUSIONS For ES-SCLC patients receiving first-line chemoimmunotherapy, alterations in DLL3, KMT2B, HGF, EPHA3, and ADGRB3 and a greater proportion of M1-like macrophages infiltration in all locations were predictors of favorable survival, while MCL1 and STMN1 amplification, as well as a greater proportion of CD8+ T cells infiltrating the tumor stroma, predicted worse survival.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Medicine, Southeast University, Nanjing 210000, China
| | - Jingyuan Xie
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Zijing Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Wanjun Lu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Fufeng Wang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xiaoying Wu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yong Song
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| | - Tangfeng Lv
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| | - Ping Zhan
- School of Medicine, Southeast University, Nanjing 210000, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Nanjing Medical School, Nanjing 210002, China; Department of Respiratory and Critical Care Medicine, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, China.
| |
Collapse
|
2
|
Gutiérrez M, Zamora I, Freeman MR, Encío IJ, Rotinen M. Actionable Driver Events in Small Cell Lung Cancer. Int J Mol Sci 2023; 25:105. [PMID: 38203275 PMCID: PMC10778712 DOI: 10.3390/ijms25010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.
Collapse
Affiliation(s)
- Mirian Gutiérrez
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Irene Zamora
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, 31008 Pamplona, Spain; (M.G.); (I.Z.)
- IdiSNA, Navarre Institute for Health Research, 31006 Pamplona, Spain
| |
Collapse
|
3
|
Khurshid H, Ismaila N, Bian J, Dabney R, Das M, Ellis P, Feldman J, Hann C, Kulkarni S, Laskin J, Manochakian R, Mishra DR, Preeshagul I, Reddy P, Saxena A, Weinberg F, Kalemkerian GP. Systemic Therapy for Small-Cell Lung Cancer: ASCO-Ontario Health (Cancer Care Ontario) Guideline. J Clin Oncol 2023; 41:5448-5472. [PMID: 37820295 DOI: 10.1200/jco.23.01435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 10/13/2023] Open
Abstract
PURPOSE To provide evidence-based recommendations to practicing clinicians on the management of patients with small-cell lung cancer. METHODS An Expert Panel of medical oncology, thoracic surgery, radiation oncology, pulmonary, community oncology, research methodology, and advocacy experts were convened to conduct a literature search, which included systematic reviews, meta-analyses, and randomized controlled trials published from 1990 through 2022. Outcomes of interest included response rates, overall survival, disease-free survival or recurrence-free survival, and quality of life. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. RESULTS The literature search identified 95 relevant studies to inform the evidence base for this guideline. RECOMMENDATIONS Evidence-based recommendations were developed to address systemic therapy options, timing of therapy, treatment in patients who are older or with poor performance status, role of biomarkers, and use of myeloid-supporting agents in patients with small-cell lung cancer.Additional information is available at www.asco.org/thoracic-cancer-guidelines.
Collapse
Affiliation(s)
| | - Nofisat Ismaila
- American Society of Clinical Oncology (ASCO), Alexandria, VA
| | | | | | | | - Peter Ellis
- Juravinski Cancer Center, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Jill Feldman
- EGFR Resisters Patient Advocacy Group, Deerfield, IL
| | | | - Swati Kulkarni
- Western University, Windsor Regional Cancer Program, Windsor, Ontario, Canada
| | - Janessa Laskin
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Akshintala S, Sundby RT, Bernstein D, Glod JW, Kaplan RN, Yohe ME, Gross AM, Derdak J, Lei H, Pan A, Dombi E, Palacio-Yance I, Herrera KR, Miettinen MM, Chen HX, Steinberg SM, Helman LJ, Mascarenhas L, Widemann BC, Navid F, Shern JF, Heske CM. Phase I trial of Ganitumab plus Dasatinib to Cotarget the Insulin-Like Growth Factor 1 Receptor and Src Family Kinase YES in Rhabdomyosarcoma. Clin Cancer Res 2023; 29:3329-3339. [PMID: 37398992 PMCID: PMC10529967 DOI: 10.1158/1078-0432.ccr-23-0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Antibodies against insulin-like growth factor (IGF) type 1 receptor have shown meaningful but transient tumor responses in patients with rhabdomyosarcoma (RMS). The SRC family member YES has been shown to mediate IGF type 1 receptor (IGF-1R) antibody acquired resistance, and cotargeting IGF-1R and YES resulted in sustained responses in murine RMS models. We conducted a phase I trial of the anti-IGF-1R antibody ganitumab combined with dasatinib, a multi-kinase inhibitor targeting YES, in patients with RMS (NCT03041701). PATIENTS AND METHODS Patients with relapsed/refractory alveolar or embryonal RMS and measurable disease were eligible. All patients received ganitumab 18 mg/kg intravenously every 2 weeks. Dasatinib dose was 60 mg/m2/dose (max 100 mg) oral once daily [dose level (DL)1] or 60 mg/m2/dose (max 70 mg) twice daily (DL2). A 3+3 dose escalation design was used, and maximum tolerated dose (MTD) was determined on the basis of cycle 1 dose-limiting toxicities (DLT). RESULTS Thirteen eligible patients, median age 18 years (range 8-29) enrolled. Median number of prior systemic therapies was 3; all had received prior radiation. Of 11 toxicity-evaluable patients, 1/6 had a DLT at DL1 (diarrhea) and 2/5 had a DLT at DL2 (pneumonitis, hematuria) confirming DL1 as MTD. Of nine response-evaluable patients, one had a confirmed partial response for four cycles, and one had stable disease for six cycles. Genomic studies from cell-free DNA correlated with disease response. CONCLUSIONS The combination of dasatinib 60 mg/m2/dose daily and ganitumab 18 mg/kg every 2 weeks was safe and tolerable. This combination had a disease control rate of 22% at 5 months.
Collapse
Affiliation(s)
- Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Isabel Palacio-Yance
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Kailey R. Herrera
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Markku M. Miettinen
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Helen X. Chen
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Lee J. Helman
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Osteosarcoma Institute, Dallas, Texas
| | - Leo Mascarenhas
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Fariba Navid
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
5
|
Park H, Tseng SC, Sholl LM, Hatabu H, Awad MM, Nishino M. Molecular Characterization and Therapeutic Approaches to Small Cell Lung Cancer: Imaging Implications. Radiology 2022; 305:512-525. [PMID: 36283111 PMCID: PMC9713457 DOI: 10.1148/radiol.220585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/16/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy with exceptionally poor prognosis, comprising approximately 15% of lung cancers. Emerging knowledge of the molecular and genomic landscape of SCLC and recent successful clinical applications of new systemic agents have allowed for precision oncology treatment approaches. Imaging is essential for the diagnosis, staging, and treatment monitoring of patients with SCLC. The role of imaging is increasing with the approval of new treatment agents, including immune checkpoint inhibitors, which lead to novel imaging manifestations of response and toxicities. The purpose of this state-of-the-art review is to provide the reader with the latest information about SCLC, focusing on the subtyping of this malignancy (molecular characterization) and the emerging systemic therapeutic approaches and their implications for imaging. The review will also discuss the future directions of SCLC imaging, radiomics and machine learning.
Collapse
Affiliation(s)
- Hyesun Park
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | | | - Lynette M. Sholl
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | - Hiroto Hatabu
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | - Mark M. Awad
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| | - Mizuki Nishino
- From the Departments of Radiology (H.P., S.C.T., H.H., M.N.),
Pathology (L.M.S.), Medical Oncology (M.M.A.), and Medicine (M.M.A.),
Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450
Brookline Ave, Boston, MA 02215
| |
Collapse
|
6
|
Daniel Humberto Pozza, Ramon Bezerra Andrade de Mello. Treatment Sequencing Strategies in Lung Cancer. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:323-336. [PMID: 35599008 PMCID: PMC9127753 DOI: 10.3779/j.issn.1009-3419.2022.104.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND The advances in the lung cancer screening methods and therapeutics, together with awareness towards deleterious habits, such as smoking, is increasing the overall survival with better quality of life for the patients. However, lung cancer is still one of the most common and fatal neoplasm with a high incidence and consequently burden to public health worldwide. Thus, based on guidelines and recent phases II and III clinical trials studies, this manuscript summarizes the current treatment sequencing strategies in lung cancer. METHODS A comprehensive search of related articles was performed focused on phases II and III clinical trials studies. RESULTS The lung cancer management should take into consideration the tumor characteristics, histology, molecular pathology and be discussed in a multidisciplinary team. Lung cancer treatment options comprises surgery whenever possible, radiotherapy associate with/or chemotherapy and immunotherapy as monotherapy, or combined with chemotherapy and best palliative care. CONCLUSIONS The screening predictability in more patients, smoking reduction, early diagnosis, better disease understanding and individualized, more effective and tolerable therapeutics are related to an increasing in overall survival and quality of life. In the near future improvement of personalized therapy in precision medicine is expected, enhancing new predictive biomarkers, optimal doses and optimal treatment sequencing as well as anti-cancer vaccines development.
Collapse
Affiliation(s)
- Daniel Humberto Pozza
- Department of Biomedicine, Faculty of Medicine and i3s, University of Porto, 4200-319 Porto, Portugal,Daniel Humberto Pozza, E-mail:
| | - Ramon Bezerra Andrade de Mello
- Discipline of Medical Oncology, Post-graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo, Brazil./Nine of July Hospital, São Paulo, Brazil
| |
Collapse
|
7
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
8
|
Limited-Stage Small-Cell Lung Cancer: Current Progress and the Next Frontier. RADIATION 2021. [DOI: 10.3390/radiation1040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Limited-stage (LS) small-cell lung cancer (SCLC) is defined as disease confined to a tolerable radiation portal without extrathoracic metastases. Despite clinical research over two decades, the prognosis of LS-SCLC patients remains poor. The current standard of care for LS-SCLC patients is concurrent platinum-based chemotherapy with thoracic radiotherapy (RT). Widespread heterogeneity on the optimal radiation dose and fractionation regimen among physicians highlights the logistical challenges of administering BID regimens. Prophylactic cranial irradiation (PCI) is recommended to patients following a good initial response to chemoradiation due to improved overall survival from historical trials and the propensity for LS-SCLC to recur with brain metastases. However, PCI utilization is being debated due to the greater availability of magnetic resonance imaging (MRI) and data in extensive-stage SCLC regarding close MRI surveillance in lieu of PCI while spurring novel RT techniques, such as hippocampal-avoidance PCI. Additionally, novel treatment combinations incorporating targeted small molecule therapies and immunotherapies with or following radiation for LS-SCLC have seen recent interest and some concepts are being investigated in clinical trials. Here, we review the landscape of progress, limitations, and challenges for LS-SCLC including current standard of care, novel radiation techniques, and the integration of novel therapeutic strategies for LS-SCLC.
Collapse
|
9
|
Yamaguchi Y, Ohshima M. Local administration of anti-hepatocyte growth factor-neutralizing antibody reverts naturally occurring periodontitis. J Oral Biosci 2021; 63:245-252. [PMID: 34303825 DOI: 10.1016/j.job.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Periodontitis is a chronic inflammatory process associated with the loss of tooth-supporting tissue. The imbalance of epithelial-mesenchymal signaling is considered to drive disease progression, and hepatocyte growth factor (HGF) is one of the main mediators of this interaction. The aim of this study was to validate the role of HGF in the pathogenesis of periodontitis and to evaluate the effects of anti-HGF neutralizing antibodies. METHODS Gingival tissues from cynomolgus monkeys, which naturally develop severe periodontitis, were isolated to establish an in vitro periodontitis model. Periodontitis-affected monkeys were treated by gingival injection of anti-HGF neutralizing antibodies. The therapeutic effects were documented by clinical examination (probing depth and bleeding on probing), histological examination of tissue, and reevaluation of gingival fibroblasts in the in vitro model. RESULTS Periodontitis-affected monkeys contain periodontitis-associated fibroblasts (PAFs) with a pro-inflammatory phenotype that induced pronounced collagen degradation in vitro. This degradation was effectively inhibited by anti-HGF-neutralizing antibodies. Locally administered anti-HGF antibody to monkey gingiva clinically improved the severity of periodontitis. This was also reflected in the tissue histology with lower inflammatory cell infiltrates in treated gingiva than in non-treated gingiva. Moreover, fibroblasts isolated from anti-HGF-treated gingiva demonstrated reduced collagen degradation capacity. CONCLUSIONS Our study confirmed the central role of HGF in the pathogenesis of severe periodontitis in relevant in vitro and in vivo models. The positive effect of anti-HGF treatment provides a strong rationale for the use of anti-HGF-neutralizing antibodies for the treatment of human periodontitis.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Functional Morphology, Nihon University Dental Research Center, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Misumido 31-1, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
10
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Yu L, Lai Q, Gou L, Feng J, Yang J. Opportunities and obstacles of targeted therapy and immunotherapy in small cell lung cancer. J Drug Target 2020; 29:1-11. [PMID: 32700566 DOI: 10.1080/1061186x.2020.1797050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive malignant tumour which accounts for approximately 13-15% of all newly diagnosed lung cancer cases. To date, platinum-based chemotherapy are still the first-line treatments for SCLC. However, chemotherapy resistance and systemic toxicity limit the long-term clinical outcome of first-line treatment in SCLC. Recent years, targeted therapy and immunotherapy have made great breakthrough in cancer therapy, and researchers aim to exploit both as a single agent or in combination with chemotherapy to improve the survival of SCLC patients, but limited effectiveness and the adverse events remain the major obstacles in the treatment of SCLC. To overcome these challenges for SCLC therapies, prevention and early diagnosis for this refractory disease is very important. At the same time, we should reveal more information about the pathogenesis of SCLC and the mechanism of drug resistance. Finally, new treatment strategies should also be taken into considerations, such as repurposing drug, optimising of targets, combination therapy strategies or prognostic biomarkers to enhance therapeutic effects and decrease the adverse events rates in SCLC patients. This article will review the molecular biology characteristics of SCLC and discuss the opportunities and obstacles of the current therapy for SCLC patients.
Collapse
Affiliation(s)
- Lin Yu
- The Clinical Laboratory of Mianyang Central Hospital, Mianyang, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Lantu Gou
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jiafu Feng
- The Clinical Laboratory of Mianyang Central Hospital, Mianyang, China
| | - Jinliang Yang
- Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Tjong MC, Mak DY, Shahi J, Li GJ, Chen H, Louie AV. Current Management and Progress in Radiotherapy for Small Cell Lung Cancer. Front Oncol 2020; 10:1146. [PMID: 32760673 PMCID: PMC7372592 DOI: 10.3389/fonc.2020.01146] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy (RT) and chemotherapy continue to be widely utilized in small cell lung cancer (SCLC) management. In most limited stage (LS)-SCLC cases, the standard initial therapy remains concurrent chemoradiotherapy (CRT), typically with an etoposide and platinum-based regimen. Hyperfractionated twice daily (BID) RT remains the standard of care, though conventional daily (QD) RT is now a viable alternative supported by randomized evidence. In LS-SCLC patients who experienced good response to CRT, prophylactic cranial irradiation (PCI) remains the standard of care. Brain imaging, ideally with MRI, should be performed prior to PCI to screen for clinically apparent brain metastases that may require a higher dose of cranial irradiation. Platinum doublet chemotherapy alone is the historic standard initial therapy in extensive stage (ES)-SCLC. Addition of immunotherapy such as atezolizumab and durvalumab to chemotherapy is now recommended after their benefits were demonstrated in recent trials. In patients with response to chemotherapy, consolidation thoracic RT and PCI could be considered, though with caveats. Emergence of hippocampal avoidance cranial irradiation and SRS in SCLC patients may supplant whole cranial irradiation as future standards of care. Incorporation of novel systemic therapies such as immunotherapies has changed the treatment paradigm and overall outlook of patients with SCLC. This narrative review summarizes the current state, ongoing trials, and future directions of radiotherapy in management of SCLC.
Collapse
Affiliation(s)
- Michael C Tjong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - David Y Mak
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jeevin Shahi
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - George J Li
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
13
|
Huang HL, Lin WJ. Dual Peptide-Modified Nanoparticles Improve Combination Chemotherapy of Etoposide and siPIK3CA Against Drug-Resistant Small Cell Lung Carcinoma. Pharmaceutics 2020; 12:pharmaceutics12030254. [PMID: 32178266 PMCID: PMC7150975 DOI: 10.3390/pharmaceutics12030254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive form of malignancy with rapid recurrence and poor prognosis. The dual peptide-modified nanoparticles (NPs) for improving chemotherapy against drug-resistant small cell lung carcinoma cells has been developed. In this study, the SCLC targeting ligand, antagonist G peptide (AG), and cell-penetrating peptide, TAT, modified NPs were used to encapsulate both anticancer drugs etoposide (ETP) and PIK3CA small-interfering RNA (siPIK3CA). The ETP@NPs and siRNA@NPs had particle size 201.0 ± 1.9-206.5 ± 0.7 nm and 155.3 ± 12.4-169.1 ± 11.2 nm, respectively. The lyophilized ETP@NPs and siRNA@NPs maintained their particle size and zeta potential during 28-day storage without severe aggregation or dissociation. Either ETP@NPs or siRNA@NPs significantly reduced the IC50 of drugs by 2.5-5.5 folds and 2.4-3.9 folds, respectively, as compared to free ETP and siRNA/PEI nanocomplex in drug-resistant CD133(+) H69 cells. Herein, the IC50 of dual-peptide modified ETP@NPs and siRNA@NPs were prominently lower than single-peptide modified NPs. The synergistic effect (CI < 1) was further observed in co-treatment of ETP and siPIK3CA particularly delivered by dual-peptide modified NPs.
Collapse
Affiliation(s)
- Hsin-Lin Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
- Correspondence: ; Tel.: +886-2-33668765; Fax: +886-2-23919098
| |
Collapse
|
14
|
Tsiouprou I, Zaharias A, Spyratos D. The Role of Immunotherapy in Extensive Stage Small-Cell Lung Cancer: A Review of the Literature. Can Respir J 2019; 2019:6860432. [PMID: 31781314 PMCID: PMC6875088 DOI: 10.1155/2019/6860432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
Lung cancer is the second most common cancer in both sexes worldwide. Small-cell lung cancer (SCLC) is a form of neuroendocrine tumor, which is classified into limited and extensive-stage disease and shows excellent initial response to chemotherapy; however, almost all patients relapse later. During the past few years, several clinical trials have evaluated the effect of addition of immunotherapy to conventional chemotherapy in patients with extensive SCLC. Checkpoint inhibitors are currently under investigation, especially the CTLA-4 and PD-1/PD-L1 inhibitors. Nowadays, evidence show a statistically significant survival benefit of adding atezolizumab, an IgG1 monoclonal antibody targeting against PD-L1, to platinum-based chemotherapy plus etoposide in patients who have not received any previous systemic therapy. Furthermore, the role of nivolumab, an IgG4 anti-PD-1 monoclonal antibody, is significant for the treatment of relapsed SCLC cases. Recently, pembrolizumab was the first immunotherapeutic agent to be approved by the FDA for patients with metastatic SCLC with disease progression on or after platinum-based chemotherapy and at least one other prior line of chemotherapy. Nevertheless, prognostic biomarkers to immunotherapy response remain to be discovered.
Collapse
Affiliation(s)
- Ioanna Tsiouprou
- Pulmonary Department, Aristotle University of Thessalloniki, G. Papanikolaou Hospital, Exohi, Thessaloniki 57010, Greece
| | - Athanasios Zaharias
- Pulmonary Department, Aristotle University of Thessalloniki, G. Papanikolaou Hospital, Exohi, Thessaloniki 57010, Greece
| | - Dionisios Spyratos
- Pulmonary Department, Aristotle University of Thessalloniki, G. Papanikolaou Hospital, Exohi, Thessaloniki 57010, Greece
| |
Collapse
|
15
|
MET Inhibitors in Small Cell Lung Cancer: From the Bench to the Bedside. Cancers (Basel) 2019; 11:cancers11101404. [PMID: 31547040 PMCID: PMC6827355 DOI: 10.3390/cancers11101404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive type of lung cancer. The different systemic treatment approaches attempted in the last 35 years have not improved overall survival in the advanced stage. Targeted therapies assessed in clinical trials have failed to show efficacy against SCLC. Within the potentially interesting targets, the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition (MET) pathway activation is associated with worse survival and chemoresistance in SCLC. Preclinical data suggest that the inhibition of the MET pathway can revert chemoresistance and prevent tumor growth. Recently, immunotherapy has shown modest but relevant activity in SCLC. Interestingly, MET modulation seems to be involved in increasing the efficacy of standard checkpoint inhibitors. Here, we review the preclinical and clinical data of MET inhibition in SCLC, and the role of this pathway in the immune response.
Collapse
|
16
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
17
|
Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front Cell Dev Biol 2019; 7:60. [PMID: 31106200 PMCID: PMC6492564 DOI: 10.3389/fcell.2019.00060] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells reside in a highly complex and heterogeneous tumor microenvironment (TME), which is composed of a myriad of genetically stable non-cancer cells, including fibroblasts, immune cells, endothelial cells, and epithelial cells, and a tumor-specific extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs), as an abundant and active stromal cell population in the TME, function as the signaling center and remodeling machine to aid the creation of a desmoplastic tumor niche. Although there is no denial that the TME and CAFs may have anti-tumor effects as well, a great deal of findings reported in recent years have convincingly revealed the tumor-promoting effects of CAFs and CAF-derived ECM proteins, enzymes, chemical factors and other downstream effectors. While there is growing enthusiasm for the development of CAF-targeting therapies, a better understanding of the complexities of CAF-ECM and CAF-cancer cell interactions is necessary before novel therapeutic strategies targeting the malignant tumor “soil” can be successfully implemented in the clinic.
Collapse
Affiliation(s)
- Tianyi Liu
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Danni Li
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
18
|
Miranda O, Farooqui M, Siegfried JM. Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer. Cancers (Basel) 2018; 10:cancers10090280. [PMID: 30134579 PMCID: PMC6162713 DOI: 10.3390/cancers10090280] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte growth factor (HGF) is the ligand for the tyrosine kinase receptor c-Met (Mesenchymal Epithelial Transition Factor also known as Hepatocyte Growth Factor Receptor, HGFR), a receptor with expression throughout epithelial and endothelial cell types. Activation of c-Met enhances cell proliferation, invasion, survival, angiogenesis, and motility. The c-Met pathway also stimulates tissue repair in normal cells. A body of past research shows that increased levels of HGF and/or overexpression of c-Met are associated with poor prognosis in several solid tumors, including lung cancer, as well as cancers of the head and neck, gastro-intestinal tract, breast, ovary and cervix. The HGF/c-Met signaling network is complex; both ligand-dependent and ligand-independent signaling occur. This article will provide an update on signaling through the HGF/c-Met axis, the mechanism of action of HGF/c-Met inhibitors, the lung cancer patient populations most likely to benefit, and possible mechanisms of resistance to these inhibitors. Although c-Met as a target in non-small cell lung cancer (NSCLC) showed promise based on preclinical data, clinical responses in NSCLC patients have been disappointing in the absence of MET mutation or MET gene amplification. New therapeutics that selectively target c-Met or HGF, or that target c-Met and a wider spectrum of interacting tyrosine kinases, will be discussed.
Collapse
Affiliation(s)
- Oshin Miranda
- Department of Pharmacology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Mariya Farooqui
- Department of Pharmacology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jill M Siegfried
- Department of Pharmacology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Pharmacology, University of Minnesota, 321 Church Street SE, 6-120 Jackson Hall, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Rossi A, Tay R, Chiramel J, Prelaj A, Califano R. Current and future therapeutic approaches for the treatment of small cell lung cancer. Expert Rev Anticancer Ther 2018; 18:473-486. [PMID: 29544351 DOI: 10.1080/14737140.2018.1453361] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) is a very aggressive disease characterized by a high response rate to first-line chemotherapy, but most patients relapse within 1 year with disappointing results to second-line treatments. Chemotherapy has reached a plateau of effectiveness and new therapeutic strategies are needed to change the natural history of SCLC. Areas covered: This review will focus on the current results and the future development of the therapeutic approaches for the treatment of SCLC. Expert commentary: Immunotherapy is becoming a new frontier for the management of SCLC with preliminary interesting results. To date, no targeted drugs have been approved for clinical practice but several novel agents are in an advanced stage of clinical development in SCLC.
Collapse
Affiliation(s)
- Antonio Rossi
- a Division of Medical Oncology , Scientific Institute for Research and Health Care (IRCCS) "Casa Sollievo della Sofferenza" , San Giovanni Rotondo , Italy
| | - Rebecca Tay
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK
| | - Jaseela Chiramel
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK
| | - Arsela Prelaj
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK.,c Department of Radiological , Pathological and Oncological Science, Sapienza University of Rome , Italy
| | - Raffaele Califano
- b Department of Medical Oncology , The Christie NHS Foundation Trust , Manchester , UK.,d Department of Medical Oncology , Manchester University NHS Foundation Trust , Manchester , UK.,e Division of Cancer Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
20
|
Pan Y, Kong FW, Wang H, Wang X, Zhang H, Wu WB, Zhang M. A recurrence-free survivor with chemotherapy-refractory small cell lung cancer after pneumonectomy: A case report and review of the literature. Medicine (Baltimore) 2017; 96:e8922. [PMID: 29382030 PMCID: PMC5709029 DOI: 10.1097/md.0000000000008922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
RATIONALE The optimal therapeutic regimen for chemotherapy-refractory and node-positive small-cell lung cancer (SCLC) is criticizable for the lack of evidence. PATIENT CONCERNS A patient with locally advanced SCLC was insensitive to the first-line chemotherapy of etoposide, irinotecan, and cisplatin. DIAGNOSES The patient was diagnosed as SCLC with mediastinal lymph node metastasis by pathological staining. INTERVENTIONS Salvage pneumonectomy and systematic lymph node dissection combined with oral apatinib and mediastinal radiotherapy were performed for him. OUTCOMES The patient survived for more than 2 years without recurrence after the operation and adjuvant therapy. LESSONS For patients with chemotherapy-resistant but resectable SCLC, a timely resection combined with postoperative radiotherapy and apatinib might be effective.
Collapse
Affiliation(s)
- Yong Pan
- Department of General Surgery, Xuzhou Infectious Disease Hospital, Xuzhou, China
| | - Feng-Wei Kong
- Department of General Surgery, Xuzhou Infectious Disease Hospital, Xuzhou, China
| | | | - Xiang Wang
- Department of Oncology, Xuzhou Central Hospital Affiliated to Southeast University, Xuzhou, China
| | | | | | | |
Collapse
|