1
|
Kirupananthan D, Bertolo RF, Brunton JA. Lysine Dipeptide Enhances Gut Structure and Whole-Body Protein Synthesis in Neonatal Piglets with Intestinal Atrophy. J Nutr 2022; 152:1843-1850. [PMID: 35481706 DOI: 10.1093/jn/nxac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Parenteral nutrition (PN) is often a necessity for preterm infants; however, prolonged PN leads to gut atrophy, weakened gut barrier function, and a higher risk of intestinal infections. Peptide transporter-1 (PepT1) is a di- or tripeptide transporter in the gut and, unlike other nutrient transporters, its activity is preserved with the onset of intestinal atrophy from PN. As such, enteral amino acids in the form of dipeptides may be more bioavailable than free amino acids when atrophy is present. OBJECTIVES In Yucatan miniature piglets with PN-induced intestinal atrophy, we sought to determine the structural and functional effects of enteral refeeding with lysine as a dipeptide, compared to free L-lysine. METHODS Piglets aged 7-8 days were PN-fed for 4 days to induce intestinal atrophy, then were refed with enteral diets with equimolar lysine supplied as lysyl-lysine (Lys-Lys; n = 7), free lysine (n = 7), or Lys-Lys with glycyl-sarcosine (n = 6; to determine whether competitive inhibition of Lys-Lys uptake would abolish PepT1-mediated effects). The diets provided lysine at 75% of the requirement and were gastrically delivered for a total of 18 hours. Whole-body and tissue-specific protein synthesis, as well as indices for gut structure and barrier function, were measured. RESULTS The villus height, mucosal weight, and free lysine concentration were higher in the Lys-Lys group compared to the other 2 groups (P < 0.05). Lysyl-lysine led to greater whole-body protein synthesis compared to free lysine (P < 0.05). Mucosal myeloperoxidase activity was lower in the Lys-Lys group (P < 0.05), suggesting less inflammation. The inclusion of glycyl-sarcosine with Lys-Lys abolished the dipeptide effects on whole-body and tissue-specific protein synthesis (P < 0.05), suggesting that improved lysine availability was mediated by PepT1. CONCLUSIONS Improved intestinal structure and whole-body protein synthesis suggests that feeding strategies designed to exploit PepT1 may help to avoid adverse effects when enteral nutrition is reintroduced into the compromised guts of neonatal piglets.
Collapse
Affiliation(s)
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
2
|
Deng Y, Han H, He L, Deng D, Wang J, Yin Y, Li T. Effects of Lysine-Lysine Dipeptide on Serum Amino Acid Profiles, Intestinal Morphology, and Microbiome in Suckling Piglets. Front Nutr 2022; 9:881371. [PMID: 35634396 PMCID: PMC9132013 DOI: 10.3389/fnut.2022.881371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Aims Small peptides are more energy-saving and efficiently absorbed compared to amino acids. Our study aimed to evaluate the effect of the Lys-Lys dipeptide on the improvement of growth performance, amino acid metabolism, and gut development in suckling piglets. Methods and Results Twenty-eight newborn suckling piglets were orally administrated with 0.1%, 1%, and 5% Lys-Lys dipeptide for 21 days. Our results showed that the Lys-Lys dipeptide has no significant effect on growth performance and intestinal morphology compared with the control group. We also found that the 1% Lys-Lys dipeptide significantly increased the concentrations of serum Lys, Thr, Phe, and Pro while decreasing Cys compared to the control group. Similarly, the 5% Lys-Lys dipeptide markedly increased the concentrations of serum Lys, Iso, Thr, Asp, Glu, and Pro compared to the control group. Moreover, the Lys-Lys dipeptide downregulated the expression of jejunal Slc7a1, Slc7a2, and Slc15a1 and ileal Slc7a2. Additionally, the Lys-Lys dipeptide decreased the microbiota richness indices and relative abundance of Bacteroidales. Conclusion In this study, we found that the Lys-Lys dipeptide contributes to the metabolism of amino acids but failed to affect the growth performance of piglets. Additionally, the Lys-Lys dipeptide decreased the relative abundance of Bacteroidales. These results provide a theoretical for the future application and research of Lys-Lys dipeptide in intestinal development of suckling piglets.
Collapse
Affiliation(s)
- Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hui Han
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liuqin He
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Dun Deng
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Tang Ren Shen Group, Zhuzhou, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| | - Tiejun Li
- Hunan Provincial Engineering Research Centre for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
| |
Collapse
|
3
|
Han H, Zhang L, Shang Y, Wang M, Phillips CJC, Wang Y, Su C, Lian H, Fu T, Gao T. Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals (Basel) 2022; 12:ani12111406. [PMID: 35681869 PMCID: PMC9179289 DOI: 10.3390/ani12111406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary A shortage of high-quality roughage jeopardises the Chinese mutton sheep industry. The development of new roughage resources is important to safeguard the health and welfare of the sheep, to save costs, increase efficiency and improve resource utilization. Mulberry leaves have high nutritional value and have been used in herbivore production for a long time in China. However, fresh mulberry leaves are not easy to preserve, and dried mulberry leaves readily lose nutrients in the conservation process. Ensiling mulberry leaves can reduce the anti-nutritional constituents, mainly phytic acid and tannin, while reducing any nutrient loss. In this study, mulberry silage replaced part of a maize silage-based diet for fattening Hu lambs. The effects of mulberry silage on the growth of the lambs, their gastrointestinal tissue morphology, rumen fermentation parameters and bacterial diversity were investigated. The results showed that using mulberry silage in place of 20–40% of the maize silage in the diet of Hu lambs promoted their growth, while maintaining satisfactory digestion. Abstract Maize silage has a significant environmental impact on livestock due to its high requirement for fertilizer and water. Mulberry has the potential to replace much of the large amount of maize silage grown in China, but its feeding value in the conserved form needs to be evaluated. We fed Hu lambs diets with 20–60% of the maize silage replaced by mulberry silage, adjusting the soybean meal content when increasing the mulberry silage inclusion rate in an attempt to balance the crude protein content of the diets. Mulberry silage had higher crude protein and lower acidic and neutral detergent fiber contents compared to maize silage. Replacing maize silage and soyabean meal with mulberry silage had no effect on the feed intake and growth rate of Hu lambs. However, the rumen pH increased, the acetate to propionate in rumen fluid increased, and the rumen ammonia concentration decreased as mulberry replaced maize silage and soyabean meal. This was associated with an increase in norank_f__F082 bacteria in the rumen. Rumen papillae were shorter when mulberry silage replaced maize silage, which may reflect the reduced neutral detergent fiber (NDF) content of the original silage. In conclusion, mulberry silage can successfully replace maize silage and soyabeans in the diet of Hu lambs without loss of production potential, which could have significant environmental benefits.
Collapse
Affiliation(s)
- Haoqi Han
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| | - Liyang Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| | - Yuan Shang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| | - Mingyan Wang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| | - Clive J. C. Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia;
- Curtin University Sustainable Policy (CUSP) Institute, Curtin University, Bentley 6102, Australia
| | - Yao Wang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| | - Chuanyou Su
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| | - Hongxia Lian
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
- Correspondence: (H.L.); (T.F.)
| | - Tong Fu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
- Correspondence: (H.L.); (T.F.)
| | - Tengyun Gao
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (H.H.); (L.Z.); (Y.S.); (M.W.); (Y.W.); (C.S.); (T.G.)
| |
Collapse
|
4
|
Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Le Beyec J, Billiauws L, Bado A, Joly F, Le Gall M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu Rev Nutr 2020; 40:299-321. [PMID: 32631145 DOI: 10.1146/annurev-nutr-011720-122203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.
Collapse
Affiliation(s)
- Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Biochimie Endocrinienne et Oncologique, Hôpital Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75013 Paris, France
| | - Lore Billiauws
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| |
Collapse
|
6
|
Jin M, Wang Y, Wang Y, Li Y, Wang G, Liu X, Xue Y, Liu Z, Li C. Protective Effects Oncorneal Endothelium During Intracameral Irrigation Using N-(2)-l-alanyl-l-Glutamine. Front Pharmacol 2020; 11:369. [PMID: 32292346 PMCID: PMC7118711 DOI: 10.3389/fphar.2020.00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Corneal endothelial disease is a global sight-threatening disease, and corneal transplantation using donor corneas remains the sole therapeutic option. A previous work demonstrated that N (2)-alanyl-glutamine (Ala-Gln) protected against apoptosis and cellular stress, and maintained intestinal tissue integrity. In this pursuit, the present study aimed to examine the effect of Ala-Gln in the protection of the corneal endothelium and expand its range of potential clinical applications. Mice in the control group were intracamerally irrigated with Ringers lactate injection, whereas those in the experimental group were irrigated with Ringers lactate injection containing Ala-Gln. The mean intraocular pressure increased to 44 ± 3.5 mm Hg during intracameral irrigation (normal range 10.2 ± 0.4 mmHg). In vivo confocal microscopy results showed that the addition of Ala-Gln protected the morphology, structure, and density of the corneal endothelial cells. Optical Coherence Tomography (OCT) measurements showed that corneal thickness was not significantly different between the two groups, because of the immediate corneal edema after irrigation, but the addition of Ala-Gln obviously promoted the recovery of the corneal edema. Scanning electron microscopy indicated that the corneal endothelial cells were severely ruptured and exfoliated in the Ringer’s group accompanied with cellular edema, when compared with the Ala-Gln group. The intracameral irrigation using Ala-Gln protected the structure and expression of cytoskeleton and Na-K-ATPase, which exhibited a regular distribution and significantly increased expression in comparison to Ringer’s group. Furthermore, Ala-Gln maintained the mitochondrial morphology and increased the activity of mitochondria. Moreover, transmission electron microscopy showed that intracameral irrigation of Ala-Gln reversed the ultrastructural changes induced by the acute ocular hypertension in mice. Our study demonstrates that the intracameral irrigation of Ala-Gln effectively maintained the corneal endothelial pump function and barrier function by protecting the mitochondrial function and preventing the rearrangement of cytoskeleton in acute ocular hypertension in mice.
Collapse
Affiliation(s)
- Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixin Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yunpeng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuezhi Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| |
Collapse
|
7
|
Chen Q, Wang C, Zhao FQ, Liu J, Liu H. Effects of methionine partially replaced by methionyl-methionine dipeptide on intestinal function in methionine-deficient pregnant mice. J Anim Physiol Anim Nutr (Berl) 2019; 103:1610-1618. [PMID: 31106911 DOI: 10.1111/jpn.13126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
This study was to compare the effects of parenteral supplementation of methionyl-methionine (Met-Met) or Met on intestinal barrier function in Met-deficient pregnant mice. Pregnant mice were randomly divided into three groups. The Control group was provided a diet containing Met and received i.p. injection of saline. The Met group was fed the same diet but without Met and received daily i.p. injection of 35% of the Met contained in the control diet. The Met-Met group was treated the same as the Met group, except that 25% of the Met injected was replaced with Met-Met. Met-Met promoted villus surface area in ileum compared with Met alone. In addition, the mRNA abundance of amino acid and glucose transporters in the small intestine was altered with Met-Met. Moreover, Met-Met increased tight junction protein and decreased apoptosis-related proteins expression in the jejunum and ileum. These results suggest that Met-Met can promote intestinal function over Met alone in Met-deficient mice.
Collapse
Affiliation(s)
- Qiong Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Alanyl-glutamine Protects Against Damage Induced by Enteroaggregative Escherichia coli Strains in Intestinal Cells. J Pediatr Gastroenterol Nutr 2019; 68:190-198. [PMID: 30247422 DOI: 10.1097/mpg.0000000000002152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an important pathogen causing enteric infections worldwide. This pathotype is linked to malnutrition in children from developing countries. Alanyl-glutamine (Ala-Gln) is an immune modulator nutrient that acts during intestinal damage and/or inflammation. This study investigated the effect of EAEC infection and Ala-Gln on cell viability, cell death, and inflammation of intestinal epithelium cells (IEC-6). METHODS Cells were infected with an EAEC prototype 042 strain, an EAEC wild-type strain isolated from a Brazilian malnourished child, and a commensal E coli HS. Gene transcription and protein levels of caspases-3, -8, and -9 and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) were evaluated using RT-qPCR, western blot analysis, and ELISA. RESULTS Infections with both EAEC strains decreased cell viability and induced apoptosis and necrosis after 24 hours. Ala-Gln supplementation increased cell proliferation and reduced cell death in infected cells. Likewise, EAEC strain 042 significantly increased the transcript levels of caspases-3, -8, and -9 when compared to the control group, and Ala-Gln treatment reversed this effect. Furthermore, EAEC induced CXCL1 protein levels, which were also reduced by Ala-Gln supplementation. CONCLUSION These findings suggest that EAEC infection promotes apoptosis, necrosis, and intestinal inflammation with involvement of caspases. Supplementation of Ala-Gln inhibits cell death, increases cell proliferation, attenuates mediators associated with cell death, and inflammatory pathways in infected cells.
Collapse
|
9
|
Nosworthy MG, Brunton JA. Cysteinyl-glycine reduces mucosal proinflammatory cytokine response to fMLP in a parenterally-fed piglet model. Pediatr Res 2016; 80:293-8. [PMID: 27055186 DOI: 10.1038/pr.2016.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/02/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND PepT1 transports dietary and bacterial peptides in the gut. We hypothesized that cysteinyl-glycine would ameliorate the inflammatory effect of a bacterial peptide, formyl-methionyl-leucyl-phenylalanine (fMLP), in both sow-fed and parenterally-fed piglets. METHODS An intestinal perfusion experiment was performed in piglets (N = 12) that were sow-reared or provided with parenteral nutrition (PN) for 4 d. In each piglet, five segments of isolated intestine were perfused with five treatments including cysteine and glycine, cysteinyl-glycine, fMLP, free cysteine and glycine with fMLP, or cysteinyl-glycine with fMLP. Mucosal cytokine responses and intestinal morphology was assessed in each gut segment. RESULTS PN piglets had lower mucosal IL-10 by approximately 20% (P < 0.01). Cysteinyl-glycine lowered TNF-α response to fMLP in PN-fed animals and IFN-γ response to fMLP in both groups (P < 0.05). The free cysteine and glycine treatment reduced TNF-α in sow-fed animals (P < 0.05). fMLP affected villus height in parenterally (P < 0.05), but not sow-fed animals. CONCLUSION Parenteral feeding conferred a susceptibility to mucosal damage by fMLP. The dipeptide was more effective at attenuating the inflammatory response to a bacterial peptide than free amino acids. This may be due to competitive inhibition of fMLP transport or a greater efficiency of transport of dipeptides.
Collapse
Affiliation(s)
- Matthew G Nosworthy
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|