1
|
Sevilla-Lorente R, Marmol-Perez A, Gonzalez-Garcia P, Rodríguez-Miranda N, Riquelme-Gallego B, Aragon-Vela J, Martinez-Gálvez JM, Molina-Garcia P, Alcantara JMA, Garcia-Consuegra J, Cogliati S, Salmeron LM, Huertas JR, Lopez LC, Ruiz JR, Amaro-Gahete FJ. Sexual dimorphism on the acute effect of exercise in the morning vs. evening: A randomized crossover study. JOURNAL OF SPORT AND HEALTH SCIENCE 2024:101021. [PMID: 39716617 DOI: 10.1016/j.jshs.2024.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Mammalian cells possess molecular clocks, the adequate functioning of which is decisive for metabolic health. Exercise is known to modulate these clocks, potentially having distinct effects on metabolism depending on the time of day. This study aimed to investigate the impact of morning vs. evening moderate-intensity aerobic exercise on glucose regulation and energy metabolism in healthy men and women. It also aimed to elucidate molecular mechanisms within skeletal muscle. METHODS Using a randomized crossover design, healthy men (n = 18) and women (n = 17) performed a 60-min bout of moderate-intensity aerobic exercise in the morning and evening. Glucose regulation was continuously monitored starting 24 h prior to the exercise day and continuing until 48 h post-exercise for each experimental condition. Energy expenditure and substrate oxidation were measured by indirect calorimetry during exercise and at rest before and after exercise for 30 min. Skeletal muscle biopsies were collected immediately before and after exercise to assess mitochondrial function, transcriptome, and mitochondrial proteome. RESULTS Results indicated similar systemic glucose, energy expenditure, and substrate oxidation during and after exercise in both sexes. Notably, transcriptional analysis, mitochondrial function, and mitochondrial proteomics revealed marked sexual dimorphism and time of day variations. CONCLUSION The sexual dimorphism and time of day variations observed in the skeletal muscle in response to exercise may translate into observable systemic effects with higher exercise-intensity or chronic exercise interventions. This study provides a foundational molecular framework for precise exercise prescription in the clinical setting.
Collapse
Affiliation(s)
- Raquel Sevilla-Lorente
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre "José Mataix", University of Granada, Granada 18071, Spain; Department of Physiology, University of Granada, Granada 18071, Spain
| | - Andres Marmol-Perez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pilar Gonzalez-Garcia
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain
| | - Nieves Rodríguez-Miranda
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain
| | - Blanca Riquelme-Gallego
- Faculty of Health Science, University of Granada, Ceuta 51005, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain
| | - Jerónimo Aragon-Vela
- Department of Health Sciences, Area of Physiology, University of Jaen, Jaen 23071, Spain
| | - Juan Manuel Martinez-Gálvez
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain; Biofisika Institute (Spanish National Research Council, University of the Basque Country/ Euskal Herriko Unibertsitatea) and Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa 48940, Spain
| | | | - Juan Manuel A Alcantara
- Department of Health Sciences, Institute for Innovation & Sustainable Food Chain Development, Public University of Navarre, Pamplona 31006, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona 31008, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain
| | - José Garcia-Consuegra
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Sara Cogliati
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Luis Miguel Salmeron
- Department of Surgery and Its Specialties, University Hospital Clínico San Cecilio, Granada 18007, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre "José Mataix", University of Granada, Granada 18071, Spain; Department of Physiology, University of Granada, Granada 18071, Spain
| | - Luis C Lopez
- Department of Physiology, University of Granada, Granada 18071, Spain; Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada 18016, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain.
| | - Francisco José Amaro-Gahete
- Department of Physiology, University of Granada, Granada 18071, Spain; Instituto de Investigación Biosanitaria (ibs.Granada), Granada 18014, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Granada 18071, Spain
| |
Collapse
|
2
|
Osuna-Prieto FJ, Acosta FM, Perez de Arrilucea Le Floc’h UA, Riquelme-Gallego B, Merchan-Ramirez E, Xu H, De La Cruz-Márquez JC, Amaro-Gahete FJ, Llamas-Elvira JA, Triviño-Ibáñez EM, Segura-Carretero A, Ruiz JR. Dihydrocapsiate does not increase energy expenditure nor fat oxidation during aerobic exercise in men with overweight/obesity: a randomized, triple-blinded, placebo-controlled, crossover trial. J Int Soc Sports Nutr 2022; 19:417-436. [PMID: 35875695 PMCID: PMC9302013 DOI: 10.1080/15502783.2022.2099757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Prior evidence suggests that capsinoids ingestion may increase resting energy expenditure (EE) and fat oxidation (FATox), yet whether they can modulate those parameters during exercise conditions remains poorly understood. We hypothesized that dihydrocapsiate (DHC) ingestion would increase EE and specifically FATox during an acute bout of aerobic exercise at FATmax intensity (the intensity that elicits maximal fat oxidation during exercise [MFO]) in men with overweight/obesity. Since FATmax and MFO during aerobic exercise appear to be indicators of metabolic flexibility, whether DHC has an impact on FATox in this type of population is of clinical interest. Methods A total of 24 sedentary men (age = 40.2 ± 9.2 years-old; body mass index = 31.6 ± 4.5 kg/m2 [n = 11 overweight, n = 13 obese]) participated in this randomized, triple-blinded, placebo-controlled, crossover trial (registered under ClinicalTrials.gov Identifier no. NCT05156697). On the first day, participants underwent a submaximal exercise test on a cycle ergometer to determine their MFO and FATmax intensity during exercise. After 72 hours had elapsed, the participants returned on 2 further days (≥ 72 hours apart) and performed a 60 min steady-state exercise bout (i.e. cycling at their FATmax, constant intensity) after ingesting either 12 mg of DHC or placebo; these conditions were randomized. Respiratory gas exchange was monitored by indirect calorimetry. Serum marker concentrations (i.e. glucose, triglycerides, non-esterified fatty acids (NEFAs), skin temperature, thermal perception, heart rate, and perceived fatigue) were assessed. Results There were no significant differences (P > 0.05) between DHC and placebo conditions in the EE and FATox during exercise. Similarly, no significant changes were observed in glucose, triglycerides, or NEFAs serum levels, neither in the skin temperature nor thermal perception across conditions. Heart rate and perceived fatigue did not differ between conditions. Conclusions DHC supplementation does not affect energy metabolism during exercise in men with overweight/obesity.
Collapse
Affiliation(s)
- Francisco J. Osuna-Prieto
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Francisco M. Acosta
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Unai A. Perez de Arrilucea Le Floc’h
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Blanca Riquelme-Gallego
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Elisa Merchan-Ramirez
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Huiwen Xu
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Juan Carlos De La Cruz-Márquez
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J. Amaro-Gahete
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, EFFECTS-262 Research group, University of Granada, Granada, Spain
| | - Jose A. Llamas-Elvira
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Nuclear Medicine. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Eva M. Triviño-Ibáñez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Nuclear Medicine. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Jonatan R Ruiz
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
3
|
Bent B, Cho PJ, Wittmann A, Thacker C, Muppidi S, Snyder M, Crowley MJ, Feinglos M, Dunn JP. Non-invasive wearables for remote monitoring of HbA1c and glucose variability: proof of concept. BMJ Open Diabetes Res Care 2021; 9:9/1/e002027. [PMID: 36170350 PMCID: PMC8208014 DOI: 10.1136/bmjdrc-2020-002027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/09/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Diabetes prevalence continues to grow and there remains a significant diagnostic gap in one-third of the US population that has pre-diabetes. Innovative, practical strategies to improve monitoring of glycemic health are desperately needed. In this proof-of-concept study, we explore the relationship between non-invasive wearables and glycemic metrics and demonstrate the feasibility of using non-invasive wearables to estimate glycemic metrics, including hemoglobin A1c (HbA1c) and glucose variability metrics. RESEARCH DESIGN AND METHODS We recorded over 25 000 measurements from a continuous glucose monitor (CGM) with simultaneous wrist-worn wearable (skin temperature, electrodermal activity, heart rate, and accelerometry sensors) data over 8-10 days in 16 participants with normal glycemic state and pre-diabetes (HbA1c 5.2-6.4). We used data from the wearable to develop machine learning models to predict HbA1c recorded on day 0 and glucose variability calculated from the CGM. We tested the accuracy of the HbA1c model on a retrospective, external validation cohort of 10 additional participants and compared results against CGM-based HbA1c estimation models. RESULTS A total of 250 days of data from 26 participants were collected. Out of the 27 models of glucose variability metrics that we developed using non-invasive wearables, 11 of the models achieved high accuracy (<10% mean average per cent error, MAPE). Our HbA1c estimation model using non-invasive wearables data achieved MAPE of 5.1% on an external validation cohort. The ranking of wearable sensor's importance in estimating HbA1c was skin temperature (33%), electrodermal activity (28%), accelerometry (25%), and heart rate (14%). CONCLUSIONS This study demonstrates the feasibility of using non-invasive wearables to estimate glucose variability metrics and HbA1c for glycemic monitoring and investigates the relationship between non-invasive wearables and the glycemic metrics of glucose variability and HbA1c. The methods used in this study can be used to inform future studies confirming the results of this proof-of-concept study.
Collapse
Affiliation(s)
- Brinnae Bent
- Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Peter J Cho
- Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - April Wittmann
- Endocrinology, Duke University Health System, Durham, North Carolina, USA
| | - Connie Thacker
- Endocrinology, Duke University Health System, Durham, North Carolina, USA
| | - Srikanth Muppidi
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Michael Snyder
- Department of Medicine, Stanford University, Stanford, California, USA
| | - Matthew J Crowley
- Endocrinology, Duke University Health System, Durham, North Carolina, USA
| | - Mark Feinglos
- Endocrinology, Duke University Health System, Durham, North Carolina, USA
| | - Jessilyn P Dunn
- Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Xu H, Martinez-Nicolas A, Martinez-Avila WD, Alcantara JMA, Corral-Perez J, Jimenez-Pavon D, Acosta FM, Ruiz JR, Martinez-Tellez B. Impact of an intermittent and localized cooling intervention on skin temperature, sleep quality and energy expenditure in free-living, young, healthy adults. J Therm Biol 2021; 97:102875. [PMID: 33863439 DOI: 10.1016/j.jtherbio.2021.102875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Where people live and work together it is not always possible to modify the ambient temperature; ways must therefore be found that allow individuals to feel thermally comfortable in such settings. The Embr Wave® is a wrist-worn device marketed as a 'personal thermostat' that can apply a local cooling stimulus to the skin. The aim of the present study was to determine the effect of an intermittent mild cold stimulus of 25 °C for 15-20 s every 5 min over 3.5 days under free-living conditions on 1) skin temperature, 2) perception of skin temperature, 3) sleep quality and 4) resting energy expenditure (REE) in young, healthy adults. Ten subjects wore the device for 3.5 consecutive days. This intervention reduced distal skin temperature after correcting for personal ambient temperature (P < 0.05), but did not affect the subjects' the perception of skin temperature, sleep quality or REE (all P ≥ 0.051). Thus, this intermittent mild cold regime can reduce distal skin temperature, and wearing it under free-living conditions for 3.5 days does not seem to impair the perception of skin temperature and sleep quality or modify REE.
Collapse
Affiliation(s)
- Huiwen Xu
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s.n, 18071, Granada, Spain; PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Juan Corral-Perez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, University of Cadiz, Cadiz, Spain
| | - David Jimenez-Pavon
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cadiz, Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, University of Cadiz, Cadiz, Spain
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18011, Granada, Spain; Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Sarafian D, Charrière N, Maufrais C, Montani JP. Cardiovascular and Orthostatic Responses to a Festive Meal Associated With Alcohol in Young Men. Front Physiol 2019; 10:1183. [PMID: 31632281 PMCID: PMC6780004 DOI: 10.3389/fphys.2019.01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/02/2019] [Indexed: 11/13/2022] Open
Abstract
Aim: Sharing a festive meal associated with alcohol is quite common. While the cardiovascular changes occurring after meal ingestion of different nutrient composition has been well-established, the effects of ingesting a festive versus a standard meal accompanied with alcohol are less clear. Here, we compared the postprandial hemodynamics, cutaneous and psychomotor performance responses after ingestion of a classical Swiss festive meal [cheese fondue (CF)] versus a light ready-meal [Nasi Goreng (NG)], both accompanied with white wine. Methods: In a randomized cross over design, we examined in 12 healthy young men, the continuous cardiovascular, cutaneous, and reaction time responses to ingestion of cheese fondue versus a standard meal at rest (sitting position) and hemodynamic changes in response to orthostatic challenge (active standing) in pre- and postprandial phases. Results: Breath alcohol concentration after wine ingestion was similar after both meal types. Compared to the standard meal, consumption of CF induced higher increases in heart rate (HR), cardiac output (CO), double product (DP) and cardiac power output (CPO), greater vasodilation, and rises in skin blood flow and skin temperature. Greater increases in HR, DP, and mean blood pressure (MBP) were observed during orthostatic challenges with CF compared to NG. A two-choice reaction time task revealed similar reaction times with both meals, suggesting no influence of meal composition on psychomotor performance. Conclusion: In sitting position, CF ingestion induced a more important cardiovascular load compared to NG. Although the dose of alcohol and the festive meal used here did not lead to orthostatic hypotension, eating CF induced a greater cardiometabolic load suggesting that hemodynamic reserves have been encroached during active standing. This may impede the cardiovascular capacity during physical exercise or stress situations, particularly in elderly subjects who are at greater risk for postprandial hypotension and cardiovascular diseases.
Collapse
Affiliation(s)
- Delphine Sarafian
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Charrière
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Claire Maufrais
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Acosta FM, Martinez-Tellez B, Blondin DP, Haman F, Rensen PCN, Llamas-Elvira JM, Martinez-Nicolas A, Ruiz JR. Relationship between the Daily Rhythm of Distal Skin Temperature and Brown Adipose Tissue 18F-FDG Uptake in Young Sedentary Adults. J Biol Rhythms 2019; 34:533-550. [PMID: 31389278 PMCID: PMC6732824 DOI: 10.1177/0748730419865400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study examines whether the daily rhythm of distal skin temperature (DST) is associated with brown adipose tissue (BAT) metabolism as determined by 18F-fluorodeoxyglucose (18F-FDG) uptake in young adults. Using a wireless thermometer (iButton) worn on the nondominant wrist, DST was measured in 77 subjects (26% male; age 22 ± 2 years; body mass index 25.2 ± 4.8 kg/m2) for 7 consecutive days. The temperatures to which they were habitually exposed over the day were also recorded. The interday stability of DST was calculated from the collected data, along with the intraday variability and relative amplitude; the mean temperature of the 5 and 10 consecutive hours with the maximum and minimum DST values, respectively; and when these hours occurred. Following exposure to cold, BAT volume and mean and peak standardized 18F-FDG uptake (SUVmean and SUVpeak) were determined for each subject via static 18F-FDG positron emission tomography/computed tomography scanning. Relative amplitude and the time at which the 10 consecutive hours of minimum DST values occurred were positively associated with BAT volume, SUVmean, and SUVpeak (p ≤ 0.02), whereas the mean DST of that period was inversely associated with the latter BAT variables (p ≤ 0.01). The interday stability and intraday variability of the DST were also associated (directly and inversely, respectively) with BAT SUVpeak (p ≤ 0.02 for both). All of these associations disappeared, however, when the analyses were adjusted for the ambient temperature to which the subjects were habitually exposed. Thus, the relationship between the daily rhythm of DST and BAT activity estimated by 18F-FDG uptake is masked by environmental and likely behavioral factors. Of note is that those participants exposed to the lowest ambient temperature showed 3 to 5 times more BAT volume and activity compared with subjects who were exposed to a warmer ambient temperature.
Collapse
Affiliation(s)
- Francisco M Acosta
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Denis P Blondin
- Faculty of Medicine and Health Sciences, Department of Pharmacology-Physiology, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jose M Llamas-Elvira
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Servicio de Medicina Nuclear, Granada, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group, Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), Faculty of Sports Science, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Levy SB. Field and laboratory methods for quantifying brown adipose tissue thermogenesis. Am J Hum Biol 2019; 31:e23261. [DOI: 10.1002/ajhb.23261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stephanie B. Levy
- Department of Anthropology CUNY Hunter College New York, New York
- Department of Anthropology Yale University New Haven Connecticut
| |
Collapse
|
8
|
Temperatus® software: A new tool to efficiently manage the massive information generated by iButtons. Int J Med Inform 2019; 126:9-18. [DOI: 10.1016/j.ijmedinf.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 12/04/2018] [Accepted: 03/09/2019] [Indexed: 02/06/2023]
|