1
|
Su JY, Wang Y, Wu SS, Li WK, Wang CY, Ma JY, Qiu YT, Zhou MS, Wang Z, Li P, Liu CT, Wu J. Association between new plasma inflammatory markers and risk of colorectal neoplasms in individuals over 50 years old. Carcinogenesis 2023; 44:824-836. [PMID: 37713476 DOI: 10.1093/carcin/bgad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE(S) The prognostic value of systemic cytokine profiles and inflammatory markers in colorectal cancer were explored by several studies. We want to know more about inflammatory biomarkers in colorectal adenoma and early cancer. METHOD The level of 38 inflammatory markers in the plasma of 112 adenoma patients, 72 Tis-T1 staging of colorectal carcinoma patients, 34 T2-T4 staging of colorectal carcinoma patients and 53 normal subjects were detected and compared. RESULT(S) Eight inflammatory biomarkers (Eotaxin, GCSF, IL-4, IL-5, IL-17E, MCP-1, TNF-α and VEGF-A) have higher plasma concentrations in colorectal adenoma and cancer patients compared with normal participants over 50 years old. CONCLUSION(S) Inflammatory markers may have the prognostic value for colorectal adenoma and early-stage carcinoma.
Collapse
Affiliation(s)
- Jia-Yi Su
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Yun Wang
- Department of Presbyatrics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shang-Shang Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
- Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wen-Kun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Cheng-Yao Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Jiu-Yue Ma
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Yu-Ting Qiu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Min-Si Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Zhan Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Chun-Tao Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Beijing Digestive Disease Center, Beijing 100050, China
| |
Collapse
|
2
|
Zhao C, Wang D, Li Z, Zhang Z, Xu Y, Liu J, Lei Q, Han D, Huo Y, Liu S, Li L, Zhang Y. IL8 derived from macrophages inhibits CD8 + T-cell function by downregulating TIM3 expression through IL8-CXCR2 axis in patients with advanced colorectal cancer. Int Immunopharmacol 2023; 121:110457. [PMID: 37331296 DOI: 10.1016/j.intimp.2023.110457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) is a vital immune checkpoint that regulates the immune response. However, the specific role of TIM3 in patients with colorectal cancer (CRC) have rarely been studied. In this study, we investigated the effect of TIM3 on CD8+ T cells in CRC and explored the mechanism of TIM3 regulation in tumor microenvironment (TME). METHODS Peripheral blood and tumor tissues of patients with CRC were collected to evaluate TIM3 expression using flow cytometry. Cytokines in the serum of healthy donors and patients with early- and advanced-stage CRC were screened using a multiplex assay. The effects of interleukin-8 (IL8) on TIM3 expression on CD8+ T cells were analyzed using cell incubation experiments in vitro. The correlation between TIM3 or IL8 and prognosis was verified using bioinformatics analysis. RESULTS TIM3 expression on CD8+ T cells was obviously reduced in patients with advanced-stage CRC, whereas a lower TIM3 expression level was associated with poorer prognosis. Macrophage-derived IL8, which could inhibit TIM3 expression on CD8+ T cells, was significantly increased in the serum of patients with advanced CRC. In addition, the function and proliferation of CD8+ and TIM3+CD8+ T cells were inhibited by IL8, which was partly depending on TIM3 expression. The inhibitory effects of IL8 were reversed by anti-IL8 and anti-CXCR2 antibodies. CONCLUSIONS In summary, macrophages-derived IL8 suppresses TIM3 expression on CD8+ T cells through CXCR2. Targeting the IL8/CXCR2 axis may be an effective strategy for treating patients with advanced CRC.
Collapse
Affiliation(s)
- Chenhui Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhen Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhen Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yujie Xu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qingyang Lei
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dong Han
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yachang Huo
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan 450052, China.
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China.
| |
Collapse
|
3
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
4
|
Kartikasari AER, Cassar E, Razqan MAM, Szydzik C, Huertas CS, Mitchell A, Plebanski M. Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Front Immunol 2022; 13:918254. [PMID: 36466914 PMCID: PMC9708892 DOI: 10.3389/fimmu.2022.918254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/27/2022] [Indexed: 08/18/2023] Open
Abstract
High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Emily Cassar
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Mohammed A. M. Razqan
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Crispin Szydzik
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Amirsasan R, Akbarzadeh M, Akbarzadeh S. Exercise and colorectal cancer: prevention and molecular mechanisms. Cancer Cell Int 2022; 22:247. [PMID: 35945569 PMCID: PMC9361674 DOI: 10.1186/s12935-022-02670-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
Exercise and physical activity have been shown to be strongly associated with a decreased incidence rate of various chronic diseases especially numerous human malignancies. A huge number of clinical trials and meta-analysis have demonstrated that exercise is significantly effective in lowering the risk of colorectal cancer. In addition, it is suggested as an effective therapeutic modality against this cancer type. Therefore, in this review, we will review comprehensibly the effects of exercise in preventing, treating, and alleviating the adverse effects of conventional therapeutic options in colorectal cancer. Moreover, the possible mechanisms underlying the positive effects of exercise and physical activity in colorectal cancer, including regulation of inflammation, apoptosis, growth factor axis, immunity, epigenetic, etc. will be also discussed. Exercise is an effective post-treatment management program in colorectal cancer survivals Exercise improves muscle strength, cardiorespiratory fitness, emotional distress, physical activity, fatigue, and sleep quality in colorectal patients undergoing chemotherapy Targeting and modulating insulin-like growth factor (IGF) system, inflammation, apoptosis, immunity, epigenetic, Leptin and Ghrelin, and signaling pathways are major underlying mechanisms for preventive effects of exercise in colorectal cancer
Collapse
Affiliation(s)
- Ramin Amirsasan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Akbarzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shabnam Akbarzadeh
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Fang Z, Hang D, Wang K, Joshi A, Wu K, Chan AT, Ogino S, Giovannucci EL, Song M. Risk prediction models for colorectal cancer: Evaluating the discrimination due to added biomarkers. Int J Cancer 2021; 149:1021-1030. [PMID: 33948940 DOI: 10.1002/ijc.33621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Most risk prediction models for colorectal cancer (CRC) are based on questionnaires and show a modest discriminatory ability. Therefore, we aim to develop risk prediction models incorporating plasma biomarkers for CRC to improve discrimination. We assessed the predictivity of 11 biomarkers in 736 men in the Health Professionals Follow-up Study and 639 women in the Nurses' Health Study. We used stepwise logistic regression to examine whether a set of biomarkers improved the predictivity on the basis of predictors in the National Cancer Institute's (NCI) Colorectal Cancer Risk Assessment Tool. Model discrimination was assessed using C-statistics. Bootstrap with 500 randomly sampled replicates was used for internal validation. The models containing each biomarker generated a C-statistic ranging from 0.50 to 0.59 in men and 0.50 to 0.54 in women. The NCI model demonstrated a C-statistic (95% CI) of 0.67 (0.62-0.71) in men and 0.58 (0.54-0.63) in women. Through stepwise selection of biomarkers, the C-statistic increased to 0.70 (0.66-0.74) in men after adding growth/differentiation factor 15, total adiponectin, sex hormone binding globulin and tumor necrosis factor receptor superfamily member 1B (P for difference = 0.008); and increased to 0.62 (0.57-0.66) in women after further including insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 (P for difference = .06). The NCI + selected biomarkers model was internally validated with a C-statistic (95% CI) of 0.73 (0.70-0.77) in men and 0.66 (0.61-0.70) in women. Circulating plasma biomarkers may improve the performance of risk factor-based prediction model for CRC.
Collapse
Affiliation(s)
- Zhe Fang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dong Hang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Amit Joshi
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Lu H, Wu PF, Zhang W, Liao X. Circulating Interleukins and Risk of Multiple Sclerosis: A Mendelian Randomization Study. Front Immunol 2021; 12:647588. [PMID: 33936066 PMCID: PMC8081970 DOI: 10.3389/fimmu.2021.647588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Background Previous research have implicated critical roles of systemic inflammation in the development of Multiple Sclerosis (MS). But the causal relationship between interleukins (ILs) and MS has not been fully elucidated. Objective In this study, we applied Mendelian randomization (MR) approaches to address the causal associations between genetically determined circulating levels of ILs and the risk of MS. Methods Genetic instruments for circulating IL-1 receptor antagonist (IL-1Ra), IL-2 receptor α subunit (IL-2Rα), IL-6, IL-16, IL-17, and IL-18 were obtained from recently published genome-wide association studies (GWAS). Summary-level data for MS were obtained from the International Multiple Sclerosis Genetics Consortium. MR analyses were performed using the R software (version 3.6.1, The R Foundation) and the TwoSampleMR package. Results Genetic predisposition to higher circulating levels of IL-2Rα were significantly associated with MS risk. The odds ratio (OR) was 1.22 (95% confidence interval [CI], 1.12-1.32; p < 0.001) per one standard deviation increase in circulating IL-2Rα levels. There was a suggestive association of circulating IL-1Ra with MS risk (OR, 0.94; 95% CI, 0.88-0.99; p = 0.027). The other ILs were not associated with the outcome. Conclusion Our results indicated that circulating IL-2Rα was causally associated with risk of MS.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng-Fei Wu
- Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Wan Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA, United States
| | - Xiaoyao Liao
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Chang J, Zhang W, Lin G, Tong D, Zhu D, Zhao J, Yu Q, Huang D, Li W. Tumor Response to Irinotecan is Associated with IL-10 Expression Level in Metastatic Colorectal Cancer-Results from mCRC Biomarker Study. Onco Targets Ther 2020; 13:11819-11826. [PMID: 33235468 PMCID: PMC7680186 DOI: 10.2147/ott.s275636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Metastatic colorectal cancer (mCRC) is a leading cause of cancer-related death. Resistance to chemotherapy is the main reason for the failure of the treatment of mCRC. IL-10 has been reported to decrease after surgery and increase after mCRC reoccurrence. The role of IL-10 in chemotherapy drug resistance of mCRC is not well elucidated. Patients and Methods The retrospective study recruited 264 mCRC patients between January 2012 and December 2016 (NCT03532711). All the enrolled patients received an oxaliplatin-containing or irinotecan-containing regimen. The expression level of IL-10 in 232 patients’ plasma and 68 patients’ tumor tissue was examined. The relationships between IL-10 and clinicopathological characteristics were analyzed. Kaplan–Meier method and Cox regression were used to evaluate the prognostic impact of IL-10. Results The median concentration of IL-10 was 7.60 pg/mL before treatment and 11.08 pg/mL after treatment, which suggested that IL-10 level was significantly increased by treatment with a chemotherapeutic regimen (p = 0.000). By utilizing univariate and multivariate Cox proportional hazard analyses, we found that low IL-10 level in plasma was significantly associated with improved overall survival (OS) of mCRC patients treated with irinotecan-containing regimen-with optimal cutoff value of 5.525pg/mL, respectively (p =0.002). In addition, the low IL-10 expression level in tumor tissue was significantly associated with the improved OS for the irinotecan-containing regimen (p = 0.023). Conclusion Our study demonstrated that IL-10 could act as a prognostic biomarker for mCRC patients undergoing irinotecan-containing chemotherapy.
Collapse
Affiliation(s)
- Jinjia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Wen Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Guangyi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Duo Tong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Dan Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Jing Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Qihe Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Dan Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
| | - Wenhua Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
9
|
Gerada C, Ryan KM. Autophagy, the innate immune response and cancer. Mol Oncol 2020; 14:1913-1929. [PMID: 32745353 PMCID: PMC7463325 DOI: 10.1002/1878-0261.12774] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cellular degradation and recycling system, which can interact with components of innate immune signalling pathways to enhance pathogen clearance, in both immune and nonimmune cells. Whilst this interaction is often beneficial for pathogen clearance, it can have varying outcomes in regard to tumorigenesis. Autophagy and the innate immune response can have both pro- and antitumorigenic effects at different stages of tumorigenesis due to the plastic nature of the tumour microenvironment (TME). Although both of these components have been studied in isolation as potential therapeutic targets, there has been less research concerning the interaction between autophagy and the innate immune response within the TME. As the innate immune response is critical for the formation of an effective antitumour adaptive immune response, targeting autophagy pathways in both tumour cells and innate immune cells could enhance tumour clearance. Within tumour cells, autophagy pathways are intertwined with pattern recognition receptor (PRR), inflammatory and cell death pathways, and therefore can alter the immunogenicity of the TME and development of the antitumour immune response. In innate immune cells, autophagy components can have autophagy-independent roles in functional pathways, and therefore could be valuable targets for enhancing immune cell function in the TME and immunotherapy. This review highlights the individual importance of autophagy and the innate immune response to tumorigenesis, and also explains the complex interactions between these pathways in the TME.
Collapse
Affiliation(s)
- Chelsea Gerada
- Cancer Research UK Beatson InstituteGarscube EstateGlasgowUK
| | - Kevin M. Ryan
- Cancer Research UK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| |
Collapse
|
10
|
Wan S, Tang Q, Feng D, Hu Z, Shao W, Chen Y. Epidemiology characteristics of ethnic minority colorectal cancer in Yunnan in Southwestern China. Transl Cancer Res 2020; 9:2692-2700. [PMID: 35117628 PMCID: PMC8799176 DOI: 10.21037/tcr.2020.02.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/08/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the world's deadliest cancers, and its mortality rate has been on the rise in China. Yunnan is a region with a higher concentration of ethnic minorities. CRC affects many people from ethnic minority groups, which differ from Han in terms of their age and gender compositions. METHODS We collected samples from 1,016 cases of CRC patients along with their case files at Yunnan Provincial Cancer Hospital from the period between January 2013 and December 2018. RESULTS In total, 7.1% (n=72) of all lung cancer cases diagnosed from 2013 to 2018 in Yunnan Provincial Cancer Hospital occurred in patients 40 years old or younger, 44% (n=447) were 40 to 60 years old, and 48.9% (n=497) were 60 years old or above. The composition ratio of CRC patients in the different age groups differed significantly and enhanced significantly with age, with a statistical significance of P<0.05. A total of 33.6% (n=38) of 113 minority patients and 16.8% (n=152) of 903 Han patients reported a history of smoking, and 23.0% (n=26) of 113 minority patients and 14.6% (n=132) of Han patients had a history of drinking. Long-term smoking and drinking are significantly associated with the incidence of CRC, and this was more significant among ethnic minorities (P<0.05). CONCLUSIONS The high incidence of CRC in Yunnan is strongly related to patients' lifestyles, and diet should be a core focus of efforts to prevent and treat CRC. Early screening and regular check for common tumor markers can also help to reduce the incidence of CRC and provide a basis for improvements in CRC treatment and prognosis in Yunnan.
Collapse
Affiliation(s)
| | - Qi Tang
- Second People's Hospital of Yunnan, The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Daying Feng
- Kunming Medical University, Kunming 650500, China
| | - Zaoxiu Hu
- Kunming Medical University, Kunming 650500, China
| | - Weiqing Shao
- Kunming Medical University, Kunming 650500, China
| | - Yajuan Chen
- Kunming Medical University, Kunming 650500, China
| |
Collapse
|