1
|
Lin Y, Wu J, Zhuo Y, Feng B, Fang Z, Xu S, Li J, Zhao H, Wu D, Hua L, Che L. Effects of maternal methyl donor intake during pregnancy on ileum methylation and function in an intrauterine growth restriction pig model. J Anim Sci Biotechnol 2024; 15:19. [PMID: 38310243 PMCID: PMC10838427 DOI: 10.1186/s40104-023-00970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) affects intestinal growth, morphology, and function, which leads to poor growth performance and high mortality. The present study explored whether maternal dietary methyl donor (MET) supplementation alleviates IUGR and enhances offspring's growth performance by improving intestinal growth, function, and DNA methylation of the ileum in a porcine IUGR model. METHODS Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery. After farrowing, 8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum. RESULTS The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets. Moreover, maternal MET supplementation significantly reduced the plasma concentrations of isoleucine, cysteine, urea, and total amino acids in sows and newborn piglets. It also increased lactase and sucrase activity in the jejunum of newborn piglets. MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets. DNA methylation analysis of the ileum showed that MET supplementation increased the methylation level of DNA CpG sites in the ileum of newborn piglets. Down-regulated differentially methylated genes were enriched in folic acid binding, insulin receptor signaling pathway, and endothelial cell proliferation. In contrast, up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosynthetic process. CONCLUSIONS Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets, which may be associated with better intestinal function and methylation status.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiangnan Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Martinez-Morata I, Wu H, Galvez-Fernandez M, Ilievski V, Bottiglieri T, Niedzwiecki MM, Goldsmith J, Jones DP, Kioumourtzoglou MA, Pierce B, Walker DI, Gamble MV. Metabolomic Effects of Folic Acid Supplementation in Adults: Evidence from the FACT Trial. J Nutr 2024; 154:670-679. [PMID: 38092151 PMCID: PMC10900167 DOI: 10.1016/j.tjnut.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Folic acid (FA) is the oxidized form of folate found in supplements and FA-fortified foods. Most FA is reduced by dihydrofolate reductase to 5-methyltetrahydrofolate (5mTHF); the latter is the form of folate naturally found in foods. Ingestion of FA increases the plasma levels of both 5mTHF and unmetabolized FA (UMFA). Limited information is available on the downstream metabolic effects of FA supplementation, including potential effects associated with UMFA. OBJECTIVE We aimed to assess the metabolic effects of FA-supplementation, and the associations of plasma 5mTHF and UMFA with the metabolome in FA-naïve Bangladeshi adults. METHODS Sixty participants were selected from the Folic Acid and Creatine Trial; half received 800 μg FA/day for 12 weeks and half placebo. Plasma metabolome profiles were measured by high-resolution mass spectrometry, including 170 identified metabolites and 26,541 metabolic features. Penalized regression methods were used to assess the associations of targeted metabolites with FA-supplementation, plasma 5mTHF, and plasma UMFA. Pathway analyses were conducted using Mummichog. RESULTS In penalized models of identified metabolites, FA-supplementation was associated with higher choline. Changes in 5mTHF concentrations were positively associated with metabolites involved in amino acid metabolism (5-hydroxyindoleacetic acid, acetylmethionine, creatinine, guanidinoacetate, hydroxyproline/n-acetylalanine) and 2 fatty acids (docosahexaenoic acid and linoleic acid). Changes in 5mTHF concentrations were negatively associated with acetylglutamate, acetyllysine, carnitine, propionyl carnitine, cinnamic acid, homogentisate, arachidonic acid, and nicotine. UMFA concentrations were associated with lower levels of arachidonic acid. Together, metabolites selected across all models were related to lipids, aromatic amino acid metabolism, and the urea cycle. Analyses of nontargeted metabolic features identified additional pathways associated with FA supplementation. CONCLUSION In addition to the recapitulation of several expected metabolic changes associated with 5mTHF, we observed additional metabolites/pathways associated with FA-supplementation and UMFA. Further studies are needed to confirm these associations and assess their potential implications for human health. TRIAL REGISTRATION NUMBER This trial was registered at https://clinicaltrials.gov as NCT01050556.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, United States
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Brandon Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States; Department of Human Genetics, University of Chicago, Chicago, IL, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
3
|
Ren Q, Zhang G, Dong C, Li Z, Zhou D, Huang L, Li W, Huang G, Yan J. Parental Folate Deficiency Inhibits Proliferation and Increases Apoptosis of Neural Stem Cells in Rat Offspring: Aggravating Telomere Attrition as a Potential Mechanism. Nutrients 2023; 15:2843. [PMID: 37447170 DOI: 10.3390/nu15132843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.
Collapse
Affiliation(s)
- Qinghan Ren
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guoquan Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Li Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Jing Yan
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Department of Social Medicine and Health Administration, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry 2022; 27:4123-4135. [PMID: 35444255 DOI: 10.1038/s41380-022-01569-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The intricate processes of microbiota-gut-brain communication in modulating human cognition and emotion, especially in the context of mood disorders, have remained elusive. Here we performed faecal metagenomic, serum metabolomics and neuroimaging studies on a cohort of 109 unmedicated patients with depressed bipolar disorder (BD) patients and 40 healthy controls (HCs) to characterise the microbial-gut-brain axis in BD. Across over 12,000 measured metabolic features, we observed a large discrepancy (73.54%) in the serum metabolome between BD patients and HCs, spotting differentially abundant microbial-derived neuroactive metabolites including multiple B-vitamins, kynurenic acid, gamma-aminobutyric acid and short-chain fatty acids. These metabolites could be linked to the abundance of gut microbiota presented with corresponding biosynthetic potentials, including Akkermansia muciniphila, Citrobacter spp. (Citrobacter freundii and Citrobacter werkmanii), Phascolarctobacterium spp., Yersinia spp. (Yersinia frederiksenii and Yersinia aleksiciae), Enterobacter spp. (Enterobacter cloacae and Enterobacter kobei) and Flavobacterium spp. Based on functional neuroimaging, BD-related neuroactive microbes and metabolites were discovered as potential markers associated with BD-typical features of functional connectivity of brain networks, hinting at aberrant cognitive function, emotion regulation, and interoception. Our study combines gut microbiota and neuroactive metabolites with brain functional connectivity, thereby revealing potential signalling pathways from the microbiota to the gut and the brain, which may have a role in the pathophysiology of BD.
Collapse
|
5
|
The Impact of Maternal Folates on Brain Development and Function after Birth. Metabolites 2022; 12:metabo12090876. [PMID: 36144280 PMCID: PMC9503684 DOI: 10.3390/metabo12090876] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Folate is vital for biological processes within the body, including DNA synthesis, DNA repair, and methylation reactions that metabolize homocysteine. The role of folate is particularly important in pregnancy, where there is rapid cellular and tissue growth. Maternal folate deficiencies secondary to inadequate dietary supplementation are known to produce defects in the neural tube and spinal cord, yet the exact mechanism of folate in neurodevelopment is unknown. The consequences of maternal folate deficiency on offspring brain development and function beyond gestation are not well defined. The objective of this review is to investigate the role of folate deficiency in offspring neurodevelopment, and the complications that arise post-gestation. This was accomplished through a comprehensive review of the data presented in both clinical and preclinical studies. Evidence supports that folate deficiency is associated with altered offspring neurodevelopment, including smaller total brain volume, altered cortical thickness and cerebral white matter, altered neurogenesis, and neuronal apoptosis. Some of these changes have been associated with altered brain function in offspring with memory, motor function, language skills, and psychological issues. This review of literature also presents potential mechanisms of folate deficiency in neurodevelopment with altered metabolism, neuroinflammation, epigenetic modification through DNA methylation, and a genetic deficiency in one-carbon metabolism.
Collapse
|
6
|
de Paula BMF, de Souza Pinhel MA, Nicoletti CF, Nonino CB, Siqueira F, Vannucchi H. FOLIC ACID SUPPLEMENTATION MODULATES OFFSPRING GENES INVOLVED IN ENERGY METABOLISM: IN VIVO STUDY. CLINICAL NUTRITION OPEN SCIENCE 2022. [DOI: 10.1016/j.nutos.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Tang H, Peng T, Yang X, Liu L, Xu Y, Zhao Y, Huang S, Fu C, Huang Y, Zhou H, Li J, He L, Wang W, Niu H, Xu K. Plasma Metabolomic Changes in Children with Cerebral Palsy Exposed to Botulinum Neurotoxin. J Proteome Res 2022; 21:671-682. [PMID: 35018779 DOI: 10.1021/acs.jproteome.1c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The long-term effect of botulinum neurotoxin A (BoNT-A) on children with cerebral palsy (CP) is unclear, and how the dynamic changes of metabolites impact the duration of effect remains unknown. To tackle this, we collected 120 plasma samples from 91 children with spastic CP for analysis, with 30 samples in each time point: prior to injection and 1, 3, and 6 months after injection. A total of 354 metabolites were identified across all the time points, 39 of which exhibited significant changes (with tentative IDs) (p values <0.05, VIP > 1). Principal component analysis and partial least-squares discriminant analysis disclosed a clear separation between different groups (p values <0.05). Network analysis revealed the coordinated changes of functional metabolites. Pathway analysis highlighted the metabolic pathways associated with energy consumption and glycine, serine, and threonine metabolism and cysteine and methionine metabolism. Collectively, our results identified the significant dynamic changes of plasma metabolite after BoNT-A injections on children with CP. Metabolic pathways associated with energy expenditure might provide a new perspective for the effect of BoNT-A in children with CP. Glycine, serine, and threonine metabolism and cysteine and methionine metabolism might be related to the duration of effect of BoNT-A.
Collapse
Affiliation(s)
- Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China.,Department of Rehabilitation, School of Medicine, South China University of Technology, Guangzhou 510655, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Jinling Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Wenda Wang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| | - Huiran Niu
- Genechem Biotechnology Co., Ltd. Shanghai 200120, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangzhou China
| |
Collapse
|
8
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
[6 S]-5-Methyltetrahydrofolic Acid and Folic Acid Pregnancy Diets Differentially Program Metabolic Phenotype and Hypothalamic Gene Expression of Wistar Rat Dams Post-Birth. Nutrients 2020; 13:nu13010048. [PMID: 33375730 PMCID: PMC7823556 DOI: 10.3390/nu13010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
[6S]-5-methyltetrahydrofolic acid (MTHF) is a proposed replacement for folic acid (FA) in diets and prenatal supplements. This study compared the effects of these two forms on maternal metabolism and hypothalamic gene expression. Pregnant Wistar rats received an AIN-93G diet with recommended FA (1X, 2 mg/kg, control), 5X-FA or equimolar levels of MTHF. During lactation they received the control diet and then a high fat diet for 19-weeks post-weaning. Body weight, adiposity, food intake, energy expenditure, plasma hormones, folate, and 1-carbon metabolites were measured. RNA-sequencing of the hypothalamus was conducted at parturition. Weight-loss from weaning to 1-week post-weaning was less in dams fed either form of the 5X vs. 1X folate diets, but final weight-gain was higher in 5X-MTHF vs. 5X-FA dams. Both doses of the MTHF diets led to 8% higher food intake and associated with lower plasma leptin at parturition, but higher leptin at 19-weeks and insulin resistance at 1-week post-weaning. RNA-sequencing revealed 279 differentially expressed genes in the hypothalamus in 5X-MTHF vs. 5X-FA dams. These findings indicate that MTHF and FA differ in their programing effects on maternal phenotype, and a potential adverse role of either form when given at the higher doses.
Collapse
|