1
|
Santin DC, de Souza ID, Rodrigues ACC, Costa MP, da Silva TKC, Giacomini MC, da Silva Santos PS, Wang L. Effectiveness of self-etching bonding systems on dentin after radiotherapy: perspectives on microtensile and microshear bond strength. Clin Oral Investig 2024; 28:611. [PMID: 39453555 DOI: 10.1007/s00784-024-05994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE Self-etching dental adhesives bond with dentin through chemical reactions with calcium. This study assessed bond strength (BS) using microtensile (µTBS) and microshear (µSBS) tests on sound and post-radiotherapy dentin, with dental adhesives containing different functional monomers. METHODS Sound dentin (SD) and post-radiotherapy irradiated dentin (ID) were tested with two adhesive systems: Clearfil SE Bond (SE, 10-MDP-based) and FL Bond II (FL, containing carboxylic and phosphonic monomers with S-PRG bioactive particles). The tests occurred initially (24 h) and six months later; fracture mode was also analyzed (40x). Ninety-six human molars were randomly assigned (n = 12), and half were irradiated with a 70 Gy radiation dose. For µTBS test, teeth were bonded, restored and sectioned them into beams (0.64 mm2). The µSBS test used filled transparent cylindrical matrices with resin composite and light-cured them after dental adhesive applications. Three-way ANOVA and Tukey's test (p < 0.05) analyzed the data. RESULTS µTBS showed a significant substrate x adhesive interaction (p < 0.001), while µSBS was significant for all factors (p = 0.006). SE and FL performed better on SD and ID, respectively, in the µTBS test. As for µSBS, SE showed higher values on ID (p < 0.05). Lower BS values occurred for SD-FL and ID-SE after six months. CONCLUSION Dental adhesive performance varied based on substrate type and test method. FL was more stable for ID in µTBS, while SE excelled in µSBS. CLINICAL RELEVANCE As post-radiotherapy irradiated dentin becomes more vulnerable, self-etching systems based on functional monomer and bioactive ingredients may exhibit appropriate bonding to this altered substrate.
Collapse
Affiliation(s)
- Daniella Cristo Santin
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Isabella Dorigheto de Souza
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Ana Carolina Cunha Rodrigues
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Mylena Proença Costa
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thalyta Khetly Cardoso da Silva
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Marina Ciccone Giacomini
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology, and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Linda Wang
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
2
|
Shahin NM, Nagi BM, Amin AES, Badran AS. Effect of ionizing radiation on the shear bond strength of two different adhesive systems in primary teeth. in-vitro study. BMC Oral Health 2024; 24:1261. [PMID: 39434076 PMCID: PMC11494816 DOI: 10.1186/s12903-024-04996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Radiotherapy is a treatment modality used for head and neck cancer patients. It has a negative influence on bonding strength of adhesives. Little information is available about the effect of radiotherapy on bonding strength of adhesives in primary teeth. Therefore, this in vitro study aimed to detect the best adhesive system and ideal time to apply restorations in primary irradiated teeth regarding adhesive shear bond strength. METHODS Dentin samples from primary teeth were randomly assigned to four groups based on restoration application time and radiation exposure, (G1: control, G2: preradiation, G3: 24 h postradiation, and G4: 6 months postradiation) with 20 samples per group. These groups were further divided into 2 subgroups according to the adhesive system used, with 10 samples per subgroup. (1) 3M™ Single Bond Universal Adhesive (SB), (2) 3M AdperSingle Bond 2 (AS). Samples were exposed to gamma radiation from a cobalt-60 machine. One shot of 60 Gy of radiation was delivered. Then samples were subjected to a shear bond strength test. The load was applied until failure and the maximum load was recorded. Numerical data are presented as mean and standard deviation values, then distributed according to Shapiro-Wilk test or Levene's test and analyzed via two-way ANOVA. The significance level was set at p < 0.05 for all tests. Statistical analysis was performed with R statistical analysis software version 4.4.1 for Windows (Team RC, R: A language and environment for statistical computing. R foundation for statistical computing, 2023). RESULTS Compared with the AS subgroup, the SB subgroup presented significantly greater values (p < 0.001). For SB, there was no significant difference among the G1 and G4 groups (p > 0.001). However, there was a significant difference between G1, G2, and G3 (p < 0.001, P = 0.025, P = 0.265 ns respectively), and G3 presented the lowest values. For AS, there was no significant difference between groups G1 and G4 (p = < 0.001). Compared with the other groups, G3 presented a significant difference (p = 0.265 ns) and the lowest results. CONCLUSION Restorations performed 24 h after radiation had lower bond strength than those performed six months after radiation. Regardless of the adhesive system used, SB performed better than AS in terms of the shear bond strength.
Collapse
Affiliation(s)
- Nourhan Mahmoud Shahin
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, African Unity St, Cairo, 11566, Egypt.
| | - Basma Mahmoud Nagi
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, African Unity St, Cairo, 11566, Egypt
| | - Amin El Sayed Amin
- Department of Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira Saad Badran
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, African Unity St, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
4
|
Pan E, Xie W, Ajmera A, Araneta A, Jamieson C, Folefac E, Hussain A, Kyriakopoulos CE, Olson A, Parikh M, Parikh R, Saraiya B, Ivy SP, Van Allen EM, Lindeman NI, Kochupurakkal BS, Shapiro GI, McKay RR. A Phase I Study of Combination Olaparib and Radium-223 in Men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) with Bone Metastases (COMRADE). Mol Cancer Ther 2023; 22:511-518. [PMID: 36780008 PMCID: PMC10769512 DOI: 10.1158/1535-7163.mct-22-0583] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/14/2023]
Abstract
Given that radium-223 is a radiopharmaceutical that induces DNA damage, and olaparib is a PARP inhibitor that interferes with DNA repair mechanisms, we hypothesized their synergy in metastatic castration-resistant prostate cancer (mCRPC). We sought to demonstrate the safety and efficacy of olaparib + radium-223. We conducted a multicenter phase I 3+3 dose escalation study of olaparib with fixed dose radium-223 in patients with mCRPC with bone metastases. The primary objective was to establish the RP2D of olaparib, with secondary objectives of safety, PSA response, alkaline phosphatase response, radiographic progression-free survival (rPFS), overall survival, and efficacy by homologous recombination repair (HRR) gene status. Twelve patients were enrolled; all patients received a prior androgen receptor signaling inhibitor (ARSI; 100%) and 3 patients (25%) prior docetaxel. Dose-limiting toxicities (DLT) included cytopenias, fatigue, and nausea. No DLTs were seen in the observation period however delayed toxicities guided the RP2D. The RP2D of olaparib was 200 mg orally twice daily with radium-223. The most common treatment-related adverse events were fatigue (92%) and anemia (58%). The rPFS at 6 months was 58% (95% confidence interval, 27%-80%). Nine patients were evaluable for HRR gene status; 1 had a BRCA2 alteration (rPFS 11.8 months) and 1 had a CDK12 alteration (rPFS 3.1 months). Olaparib can be safely combined with radium-223 at the RP2D 200 mg orally twice daily with fixed dose radium-223. Early clinical benefit was observed and will be investigated in a phase II study.
Collapse
Affiliation(s)
- Elizabeth Pan
- University of California San Diego, La Jolla, California
| | - Wanling Xie
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Archana Ajmera
- University of California San Diego, La Jolla, California
| | - Arlene Araneta
- University of California San Diego, La Jolla, California
| | | | | | - Arif Hussain
- University of Maryland Medical System, Baltimore, Maryland
| | | | - Adam Olson
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mamta Parikh
- University of California Davis, Sacramento, California
| | - Rahul Parikh
- University of Kansas Medical Center, Kansas City, Kansas
| | - Biren Saraiya
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - S. Percy Ivy
- National Cancer Institute at the National Institutes of Health, Rockville, Maryland
| | | | | | | | | | - Rana R. McKay
- University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
6
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
7
|
Zdrowowicz M, Datta M, Rychłowski M, Rak J. Radiosensitization of PC3 Prostate Cancer Cells by 5-Thiocyanato-2'-deoxyuridine. Cancers (Basel) 2022; 14:cancers14082035. [PMID: 35454941 PMCID: PMC9025292 DOI: 10.3390/cancers14082035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Radiation therapy is one of the main treatments for cancer. However, the success of treatment by radiation therapy is largely dependent on tumor radiosensitivity. To improve therapeutic outcomes, radiation therapy should be combined with the use of a radiosensitizer which enables irradiation at lower doses with higher efficacies. 5-Thiocyanato-2′-deoxyuridine has been reported as a potential radiosensitizer of DNA damage based on advanced radiation chemical studies. In this paper, for the first time, we demonstrate the radiosensitizing properties of this modified nucleoside at the cellular level. The tested analogue increases the sensitivity of prostate cancer cells to ionizing radiation which is, at least partially, related to an increase in the number of DNA double-strand breaks and cell cycle regulation. Abstract Purpose: The radiosensitizing properties of uracil analogs modified in the C5 position are very interesting in the context of their effectiveness and safety in radiation therapy. Recently, radiation chemical studies have confirmed that 5-thiocyanato-2′-deoxyuridine (SCNdU) undergoes dissociation induced by an excess electron attachment and established this nucleoside as a potential radiosensitizer. In this paper, we verify the sensitizing properties of SCNdU at the cellular level and prove that it can effectively enhance ionizing radiation-induced cellular death. Methods and Materials: Prostate cancer cells were treated with SCNdU and irradiated with X rays. The cytotoxicity of SCNdU was determined by MTT test. Cell proliferation was assessed using a clonogenic assay. Cell cycle analyses, DNA damage, and cell death analyses were performed by flow cytometry. Results: SCNdU treatment significantly suppressed the proliferation and increased the radiosensitivity of prostate cancer cells. The radiosensitizing effect expressed by the dose enhancement factor is equal to 1.69. Simultaneous exposure of cells to SCNdU and radiation causes an increase in the fraction of the most radiosensitive G2/M phase, enhancement of the histone H2A.X phosphorylation level, and apoptosis induction. Finally, SCNdU turned out to be marginally cytotoxic in the absence of ionizing radiation. Conclusions: Our findings indicate that SCNdU treatment enhances the radiosensitivity of prostate cancer cells in a manner associated with the cell cycle regulation, double strand formation, and a slight induction of apoptosis.
Collapse
Affiliation(s)
- Magdalena Zdrowowicz
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.D.); (J.R.)
- Correspondence:
| | - Magdalena Datta
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.D.); (J.R.)
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland;
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.D.); (J.R.)
| |
Collapse
|
8
|
Mahmoud AS, Abu Bakar MZ, Hamzah H, Tengkue Ahmad TA, Mohd Noor MH. Octreotide acetate enhanced radio sensitivity and induced apoptosis in MCF7 breast cancer cell line. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Fractionated low-level laser irradiation on breast cancer (MCF 7 cells) treatment. Lasers Med Sci 2021; 37:1265-1271. [PMID: 34331605 DOI: 10.1007/s10103-021-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer is responsible for one of the top leading causes of cancer deaths among women. Radiotherapy (RT) uses high energy radiation to kill cancer cells, but this method has been reportedly linked to risks of toxicity. Post-therapeutic relapse from RT believed to be caused by its toxicity is one of the challenges encountered during tumour therapy. Therefore, further attention should be devoted to developing novel anti-tumour therapeutic approaches. The role of low-level laser therapy (LLLT) in breast cancer management is to alleviate the side effects arising from RT, instead of acting against the tumour cells directly. This study investigated the effects of low-level laser (532 nm), as well as single and fractionated irradiation, on breast cancer MCF 7 cell line. Additionally, this study assessed the most effective laser parameter for fractionated irradiation. The MCF 7 cells were irradiated with green laser power at 1.5, 45.0, and 100.0 mW with a spot size diameter of 0.7 mm for 1, 5, 10, and 15 min. The irradiation was carried out in single, double, and triple fractionation separated by 5- and 10-min intervals in between the fractional regimes. The laser output of 100 mW showed a promising potential in killing cells with single fractionation. However, as the irradiation was fractionated into two, power of 1.5 mW appeared to be more effective in cell death, which contributed to the lowest percentage cells viable of 31.4% recorded in the study. It was proven that fractionated regime was more successful in tumour cell death.
Collapse
|
10
|
Effects of fractionation and ionizing radiation dose on the chemical composition and microhardness of enamel. Arch Oral Biol 2020; 121:104959. [PMID: 33171393 DOI: 10.1016/j.archoralbio.2020.104959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the chemical and mechanical properties of enamel submitted to different in vitro radiation protocols. DESIGN Third molars were divided into seven groups (n = 8): non-irradiated (NI); a single dose of 30 Gy (SD30), 50 Gy (SD50), or 70 Gy (SD70) of radiation; or fractional radiation doses of up to 30 Gy (FD30), 50 Gy (FD50), or 70 Gy (FD70). Hemisections were analysed by Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDS) and Knoop microhardness (KHN) test. One-way ANOVA followed by Bonferroni's post-hoc test compared the test groups with the NI. Two-way ANOVA was performed for the fractionation and radiation dose, followed by Bonferroni's test (α = 0.05). RESULTS FTIR revealed differences for the amide I band between the NI and FD50 and NI and FD70 groups (p < 0.001). For the organic matrix/mineral ratio, the FD70 group presented a lower ratio compared to NI (p = 0.009). Excluding the NI group, there were differences between the FD30 and FD50 (p = 0.045) and the FD30 and FD70 groups (p < 0.001). For EDS, there were differences for Ca (p = 0.011) and Ca/P (p < 0.001), with the FD70 group presenting lower values compared to NI (p = 0.015; p < 0.001). For KHN, the FD70 group presented lower values than the NI (p = 0.002). Two-way ANOVA showed difference for the dose (p < 0.001), with the 70 Gy group presenting a lower KHN value within the fractionated groups. CONCLUSION Fractional doses 70 Gy irradiation caused chemical and mechanical changes to enamel. Radiation applied in single or fractional doses produced different effects to enamel.
Collapse
|
11
|
Plavc G, Jesenko T, Oražem M, Strojan P. Challenges in Combining Immunotherapy with Radiotherapy in Recurrent/Metastatic Head and Neck Cancer. Cancers (Basel) 2020; 12:E3197. [PMID: 33143094 PMCID: PMC7692120 DOI: 10.3390/cancers12113197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICI) has recently become a standard part of the treatment of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC), although the response rates are low. Numerous preclinical and clinical studies have now illuminated several mechanisms by which radiotherapy (RT) enhances the effect of ICI. From RT-induced immunogenic cancer cell death to its effect on the tumor microenvironment and vasculature, the involved mechanisms are diverse and intertwined. Moreover, the research of these interactions is challenging because of the thin line between immunostimulatory and the immunosuppressive effect of RT. In the era of active research of immunoradiotherapy combinations, the significance of treatment and host-related factors that were previously seen as being less important is being revealed. The impact of dose and fractionation of RT is now well established, whereas selection of the number and location of the lesions to be irradiated in a multi-metastatic setting is something that is only now beginning to be understood. In addition to spatial factors, the timing of irradiation is as equally important and is heavily dependent on the type of ICI used. Interestingly, using smaller-than-conventional RT fields or even partial tumor volume RT could be beneficial in this setting. Among host-related factors, the role of the microbiome on immunotherapy efficacy must not be overlooked nor can we neglect the role of gut irradiation in a combined RT and ICI setting. In this review we elaborate on synergistic mechanisms of immunoradiotherapy combinations, in addition to important factors to consider in future immunoradiotherapy trial designs in R/M HNSCC.
Collapse
Affiliation(s)
- Gaber Plavc
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (M.O.); (P.S.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tanja Jesenko
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Miha Oražem
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (M.O.); (P.S.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (M.O.); (P.S.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
12
|
Kudkuli J, Agrawal A, Gurjar OP, Sharma SD, Rekha PD, Manzoor MAP, Singh B, Rao BS, Abdulla R. Demineralization of tooth enamel following radiation therapy; An in vitro microstructure and microhardness analysis. J Cancer Res Ther 2020; 16:612-618. [PMID: 32719276 DOI: 10.4103/jcrt.jcrt_8_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective The objective of this study is to evaluate the effects of radiotherapy doses on mineral density and percentage mineral volume of human permanent tooth enamel. Materials and Methods Synchrotron radiation Xray microcomputed tomography (SRμCT) and microhardness testing were carried out on 8 and 20 tooth samples, respectively. Enamel mineral density was derived from SRμCT technique using ImageJ software. Microhardness samples were subjected to Vickers indentations followed by calculation of microhardness and percentage mineral volume values using respective mathematical measures. Data were analyzed using paired t-test at a significance level of 5%. Qualitative analysis of the enamel microstructure was done with two-dimensional projection images and scanned electron micrographs using μCT and field emission scanning electron microscopy, respectively. Results Vickers microhardness and SRμCT techniques showed a decrease in microhardness and an increase in mineral density, respectively, in postirradiated samples. These changes were related to mineral density variation and alteration of hydroxyapatite crystal lattice in enamel surface. Enamel microstructure showed key features such as microporosities and loss of smooth homogeneous surface. These indicate tribological loss and delamination of enamel which might lead to radiation caries. Conclusions Tooth surface loss might be a major contributing factor for radiation caries in head-and-neck cancer patients prescribed to radiotherapy. Such direct effects of radiotherapy cause enamel abrasion, delamination, and damage to the dentinoenamel junction. Suitable measures should, therefore, be worked out to protect nontarget oral tissues such as teeth while delivering effective dosages to target regions.
Collapse
Affiliation(s)
- Jagadish Kudkuli
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Indore, India
| | - Ashish Agrawal
- Imaging Beamline (BL-4), BARC Beamline Section, Technical Physics Division, Indus-2, RRCAT, Indore, India
| | - Om Prakash Gurjar
- Department of Radiotherapy, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, India
| | - Sunil Dutt Sharma
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre; Department of Health Sciences, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Indore, India
| | | | - Balwant Singh
- Imaging Beamline (BL-4), BARC Beamline Section, Technical Physics Division, Indus-2, RRCAT, Indore, India
| | - B S Rao
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Indore, India
| | - Riaz Abdulla
- Depatment of Biomaterials & Research centre, Department of Oral pathology, Yenepoya Dental College, Yenepoya (Deemed to be University), Indore, India
| |
Collapse
|
13
|
Hajhamid B, De Souza GM. Irradiation therapy and chewing simulation: effect on zirconia and human enamel. J Prosthodont Res 2020; 65:249-254. [PMID: 33041279 DOI: 10.2186/jpr.jpr_d_20_00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Ionizing radiation therapy (RT) is the main option for head and neck cancer treatment, but it is associated with multiple side effects. This study aimed to evaluate the effect of RT associated with chewing simulation on the surface of human enamel and Yttria-partially stabilized zirconia (Y-TZP). METHODS Maxillary premolar cusps and Y-TZP slabs were divided in 7 experimental groups: CO: no RT (control); EZ groups had irradiation applied to both, enamel and zirconia samples (simulating restoration prior to RT); E groups had irradiation applied to enamel only (simulating restoration after RT). RT doses were either 30, 50 or 70 Gray (Gy). Enamel cusps were abraded against zirconia slabs in a chewing simulator (CS - one million cycles/ 80 N/ 60 mm/min, 2 mm horizontal path, artificial saliva, 37˚ C). Zirconia hardness was evaluated before CS; zirconia roughness and enamel volume (wear) were evaluated before and after CS. Hardness and wear data were analyzed by one-way Analysis of Variance and Tukey post hoc test. Roughness was analyzed by Repeated Measures test and Bonferroni test (p=0.05). RESULTS There was no significant effect of enamel or zirconia irradiation on enamel cusp wear (p=0.226), regardless of the irradiation dose used - up to 70 Gy. Irradiation also did not affect Y-TZP surface roughness (p=0.127) and hardness (p=0.964). CONCLUSIONS RT does not promote significant changes to the surface characteristics of zirconia. Irradiated enamel abraded against zirconia does not show higher wear volume when compared to non-irradiated enamel.
Collapse
|
14
|
Yan D, Chen S, Krauss DJ, Deraniyagala R, Chen P, Ye H, Wilson G. Inter/intra-tumoral dose response variations assessed using FDG-PET/CT feedback images: Impact on tumor control and treatment dose prescription. Radiother Oncol 2020; 154:235-242. [PMID: 33035624 DOI: 10.1016/j.radonc.2020.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To quantify inter/intra-tumoral variations of baseline metabolic activity and dose response. To evaluate their impact on tumor control and treatment dose prescription strategies. METHODS AND MATERIALS Tumor voxel baseline metabolic activity, SUV0, and dose response matrix, DRM, quantified using the pre-treatment and weekly FDG-PET/CT imaging feedback for each of 34 HNSCC patients (25 HPV+ and 9 HVP-) were evaluated. Inter/intra-tumoral variations of tumor voxel (SUV0, DRM) for each of the HPV- and HPV+ tumor groups were quantified and used to evaluate the variations of individual tumor control probabilities and the efficiency of uniform vs non-uniform treatment dose prescription strategies. RESULTS Tumor voxel dose response variation of all tumor voxels assessed using FDG-PET/CT imaging feedback had the mean(CV) = 0.47(47%), which was consistent with those of previously published in vitro tumor clonogenic assay. The HPV- tumors had the mean(CV) dose response, 0.53(49%), significantly larger than those of the HPV+ tumors, 0.45(43%). However, their baseline SUVs were opposite, 6.5(56%) vs 7.7(65%). Comparing to the inter-tumoral variations, both HPV-/+ tumor groups showed larger intra-tumoral variations, (53%, 58%) vs (20%, 31%) for the baseline SUV and (38%, 37%) vs (31%, 21%) for the dose response. Due to the large dose response variations, treatment dose to control the tumor voxels has very broad range with CV of TCD50 = 97% for the HPV- and 67% for the HPV+ tumor group respectively. As a consequence, heterogeneous prescription dose could potentially reduce the treatment integral dose for 92% of the HPV+ tumors and 78% of the HPV- tumors. CONCLUSIONS The study demonstrates that tumor dose response assessed using FDG-PET/CT feedback images had a similar distribution to those assessed conventionally using in vitro tumor clonogenic assay. Inter-tumoral dose response variation seems larger for HPV- tumors, but intra-tumoral dose response variations are similar for both HPV groups. These variations cause very large variation on the individual tumor control probability and limit the efficacy of dose escalation and de-escalation in conventional clinical practice. On the other hand, heterogeneous dose prescription guided by metabolic imaging feedback has a potential advantage in radiotherapy.
Collapse
Affiliation(s)
- Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA.
| | - Shupeng Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Daniel J Krauss
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Peter Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - Hong Ye
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| | - George Wilson
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, USA
| |
Collapse
|
15
|
Hajhamid B, Mohammad Rahimi R, F Bahr D, M De Souza G. Effect of ionizing radiation and chewing simulation on human enamel and zirconia. J Prosthodont Res 2020; 65:67-72. [PMID: 32938881 DOI: 10.2186/jpr.jpor_2019_592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE To evaluate the effect of ionizing irradiation on human enamel and zirconia after chewing simulation. METHODS Twenty enamel and twenty translucent Yttria-stabilized zirconia (Y-PSZ) specimens were divided in 4 groups: Co (control) - no irradiation on enamel cusps/opposing zirconia slabs; E70 - irradiated (70 Gray) enamel cusps/opposing irradiated enamel slabs; Z70 - irradiated zirconia cusps/opposing irradiated zirconia slabs; EZ70 - irradiated enamel cusps/opposing irradiated zirconia slabs. Cusps were abraded against slabs in a chewing simulator (CS - one million cycles, 80 N, artificial saliva, 37˚C). Wear and roughness of zirconia and enamel were analyzed using a stylus profilometer. The abraded enamel was analyzed by Electron probe micro-analyzer (EPMA) and zirconia was characterized by nanoindentation and X-ray diffraction. One-way analysis of variance (ANOVA) and Tukey test were used for analysis of wear, Repeated Measures and Bonferroni test for roughness, and hardness and modulus values were compared using Wilcoxan Mann Whitney rank sum test (overall 5% significance). RESULTS Significantly higher volume loss was presented by cusps in the E70 group (p<0.001). Wear was similar between Co and EZ70 groups. There was no significant effect of irradiation on roughness of enamel or zirconia slabs (p=0.072). Irradiated Y-PSZ slabs had significantly higher hardness and modulus than non-irradiated ones and a 7% increase in m phase content was detected after irradiation. CONCLUSIONS The opposing surface characteristics played a more significant role on enamel wear than did ionizing radiation. However, radiation affects Y-PSZ crystalline composition, hardness and modulus of elasticity.
Collapse
Affiliation(s)
- Beshr Hajhamid
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G1G6
| | - Raheleh Mohammad Rahimi
- School of Materials Engineering, Purdue University, 701West Stadium Avenue, West Lafayette, IN 47907-2045
| | - David F Bahr
- School of Materials Engineering, Purdue University, 701West Stadium Avenue, West Lafayette, IN 47907-2045
| | - Grace M De Souza
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G1G6
| |
Collapse
|
16
|
Xiang K, Jendrossek V, Matschke J. Oncometabolites and the response to radiotherapy. Radiat Oncol 2020; 15:197. [PMID: 32799884 PMCID: PMC7429799 DOI: 10.1186/s13014-020-01638-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy (RT) is applied in 45-60% of all cancer patients either alone or in multimodal therapy concepts comprising surgery, RT and chemotherapy. However, despite technical innovations approximately only 50% are cured, highlight a high medical need for innovation in RT practice. RT is a multidisciplinary treatment involving medicine and physics, but has always been successful in integrating emerging novel concepts from cancer and radiation biology for improving therapy outcome. Currently, substantial improvements are expected from integration of precision medicine approaches into RT concepts.Altered metabolism is an important feature of cancer cells and a driving force for malignant progression. Proper metabolic processes are essential to maintain and drive all energy-demanding cellular processes, e.g. repair of DNA double-strand breaks (DSBs). Consequently, metabolic bottlenecks might allow therapeutic intervention in cancer patients.Increasing evidence now indicates that oncogenic activation of metabolic enzymes, oncogenic activities of mutated metabolic enzymes, or adverse conditions in the tumor microenvironment can result in abnormal production of metabolites promoting cancer progression, e.g. 2-hyroxyglutarate (2-HG), succinate and fumarate, respectively. Interestingly, these so-called "oncometabolites" not only modulate cell signaling but also impact the response of cancer cells to chemotherapy and RT, presumably by epigenetic modulation of DNA repair.Here we aimed to introduce the biological basis of oncometabolite production and of their actions on epigenetic regulation of DNA repair. Furthermore, the review will highlight innovative therapeutic opportunities arising from the interaction of oncometabolites with DNA repair regulation for specifically enhancing the therapeutic effects of genotoxic treatments including RT in cancer patients.
Collapse
Affiliation(s)
- Kexu Xiang
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstrasse 173, 45147, Essen, Germany.
| |
Collapse
|
17
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
18
|
van Son MJ, Peters M, Moerland MA, Lagendijk JJW, Eppinga WSC, Shah TT, Ahmed HU, van der Voort van Zyp JRN. MRI-Guided Ultrafocal Salvage High-Dose-Rate Brachytherapy for Localized Radiorecurrent Prostate Cancer: Updated Results of 50 Patients. Int J Radiat Oncol Biol Phys 2020; 107:126-135. [PMID: 32006609 DOI: 10.1016/j.ijrobp.2020.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Most patients with local prostate cancer recurrence after radiation therapy undergo palliative androgen deprivation therapy because whole-gland salvage treatments have a high risk of severe toxicity. Focal treatment reduces this risk while offering a second opportunity for cure. We report updated outcomes of ultrafocal salvage high-dose-rate brachytherapy (HDR-BT). METHODS AND MATERIALS Prospectively collected data from the first 50 treated patients were analyzed. Disease status was assessed by 3T multiparametric magnetic resonance imaging (MRI), 18F-Choline or 68Ga-prostate-specific membrane antigen positron emission tomography/computed tomography, and systematic or tumor-targeted biopsies. Ultrafocal salvage HDR-BT (1 × 19 Gy) was performed by implanting the clinical target volume (CTV: gross tumor volume + 5 mm margin) under fused transrectal ultrasound/MRI guidance. Follow-up included toxicity grading (using Common Terminology Criteria for Adverse Events 4.0), quality of life assessment, and prostate-specific antigen (PSA) testing. RESULTS Median follow-up was 31 months. Median CTV D95% was 18.8 Gy. We observed 2% grade 3 genitourinary toxicity, no grade 3 gastrointestinal toxicity, and 22% newly developed grade 3 erectile dysfunction. Five of 13 patients (38%) with self-reported pretreatment potency (International Index of Erectile Function >17) remained potent. Clinically relevant quality of life deterioration was reported for only 6 of 31 items and was not statistically significant. Biochemical failure (nadir + 2) occurred in 26 patients. Among intraprostatic recurrences, 73% were in field. After 2.5 years, biochemical disease-free survival was 51% (95% confidence interval, 37%-69%), metastases-free survival was 75% (64%-89%), androgen deprivation therapy-free survival was 90% (82%-99%), and overall survival was 98% (94%-100%). Presalvage PSA, CTV size, and stage ≥T3 were significantly associated with biochemical failure. Higher-risk patients (stage ≥T3, PSA ≥10, or PSA double time ≤9 months) had 25% biochemical disease-free survival at 2.5 years versus 71% for lower-risk patients. CONCLUSIONS At this early stage, MRI-guided ultrafocal HDR-BT seems to be a safe salvage treatment option, with acceptable biochemical control in a well-selected group of patients and potential for effectively postponing androgen deprivation therapy.
Collapse
Affiliation(s)
| | - Max Peters
- Department of Radiotherapy, University Medical Center Utrecht, the Netherlands
| | - Marinus A Moerland
- Department of Radiotherapy, University Medical Center Utrecht, the Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, the Netherlands
| | - Wietse S C Eppinga
- Department of Radiotherapy, University Medical Center Utrecht, the Netherlands
| | - Taimur T Shah
- Department of Surgery and Cancer, Division of Surgery, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Hashim U Ahmed
- Department of Surgery and Cancer, Division of Surgery, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | |
Collapse
|
19
|
Madan R, Khosla D. 6Rs of Radiation Oncology. Pract Radiat Oncol 2020. [DOI: 10.1007/978-981-15-0073-2_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance. Genes (Basel) 2019; 10:genes10110927. [PMID: 31739546 PMCID: PMC6896142 DOI: 10.3390/genes10110927] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide and the sixth leading cause of death, according to Globocan 2018. Despite efforts made for therapeutic advances, EC remains highly lethal, portending a five-year overall survival of just 15-20%. Hence, the discovery of new molecular targets that might improve therapeutic efficacy is urgently needed. Due to high proliferative rates and also the limited oxygen and nutrient diffusion in tumors, the development of hypoxic regions and consequent activation of hypoxia-inducible factors (HIFs) are a common characteristic of solid tumors, including EC. Accordingly, HIF-1α, involved in cell cycle deregulation, apoptosis, angiogenesis induction and proliferation in cancer, constitutes a predictive marker of resistance to radiotherapy (RT). Deregulation of epigenetic mechanisms, including aberrant DNA methylation and histone modifications, have emerged as critical factors in cancer development and progression. Recently, interactions between epigenetic enzymes and HIF-1α transcription factors have been reported. Thus, further insight into hypoxia-induced epigenetic alterations in EC may allow the identification of novel therapeutic targets and predictive biomarkers, impacting on patient survival and quality of life.
Collapse
|
21
|
Wang CY, Chang CY, Wang CY, Liu K, Kang CY, Lee YJ, Chen WR. N-Dihydrogalactochitosan Potentiates the Radiosensitivity of Liver Metastatic Tumor Cells Originated from Murine Breast Tumors. Int J Mol Sci 2019; 20:ijms20225581. [PMID: 31717306 PMCID: PMC6888949 DOI: 10.3390/ijms20225581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.
Collapse
Affiliation(s)
- Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Chun-Yu Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Kaili Liu
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK 73034, USA;
| | - Chia-Yun Kang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan; (C.-Y.C.); (C.-Y.W.); (C.-Y.K.)
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (Y.-J.L.); (W.R.C.); Tel.: +886-960-429508 (Y.-J.L.); +1-212-2192879 (W.R.C.)
| | - Wei R. Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK 73034, USA;
- Correspondence: (Y.-J.L.); (W.R.C.); Tel.: +886-960-429508 (Y.-J.L.); +1-212-2192879 (W.R.C.)
| |
Collapse
|
22
|
Preclinical Combination Studies of an FGFR2 Targeted Thorium-227 Conjugate and the ATR Inhibitor BAY 1895344. Int J Radiat Oncol Biol Phys 2019; 105:410-422. [DOI: 10.1016/j.ijrobp.2019.06.2508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 06/01/2019] [Indexed: 11/23/2022]
|
23
|
Sohrabi M. UNIVERSAL RADIATION PROTECTION SYSTEM (URPS); A NATURAL GLOBAL STANDARDISED TREND FOR HUMAN EXPOSURE CONTROL IN 21st CENTURY. RADIATION PROTECTION DOSIMETRY 2019; 184:277-284. [PMID: 31141148 DOI: 10.1093/rpd/ncz097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 06/09/2023]
Abstract
In order to address the many deficiencies with current radiological protection system worldwide, this paper proposes a new Universal Radiation Protection System (URPS) Hypothesis with novel philosophy, concepts and methodologies of applying principles of equal human health-effect risks of an individual per unit radiation dose either from environmental natural background (NBG) or man-made sources; a 'standardised integrated dose system' for integrating all individual doses with emphasis on national NBG doses; considering worker as a member of public; and a 'cause-effect conservation principle' for epidemiology risk estimation. The URPS also a radiation hypothesises fractionation weighting factors (WF); a 'URPS Model' for bridging 'linear no-threshold and hormesis models'; example dose limit for workers; as well as new terms and definitions. State-of-the-art developments on URPS hypothesis are presented and discussed with simple global natural trends for standardised human exposure control in order to protect workers, patients, public and environment by standardised methods independent of source and country of origin in the 21st century.
Collapse
Affiliation(s)
- M Sohrabi
- Health Physics and Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int J Mol Sci 2019; 20:ijms20133212. [PMID: 31261963 PMCID: PMC6650939 DOI: 10.3390/ijms20133212] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT), besides cancer cells, also affects the tumor microenvironment (TME): tumor blood vessels and cells of the immune system. It damages endothelial cells and causes radiation-induced inflammation. Damaged vessels inhibit the infiltration of CD8+ T lymphocytes into tumors, and immunosuppressive pathways are activated. They lead to the accumulation of radioresistant suppressor cells, including tumor-associated macrophages (TAMs) with the M2 phenotype, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). The area of tumor hypoxia increases. Hypoxia reduces oxygen-dependent DNA damage and weakens the anti-cancer RT effect. It activates the formation of new blood vessels and leads to cancer relapse after irradiation. Irradiation may also activate the immune response through immunogenic cell death induction. This leads to the "in situ" vaccination effect. In this article, we review how changes in the TME affect radiation-induced anticancer efficacy. There is a very delicate balance between the activation of the immune system and the immunosuppression induced by RT. The effects of RT doses on immune system reactions and also on tumor vascularization remain unclear. A better understanding of these interactions will contribute to the optimization of RT treatment, which may prevent the recurrence of cancer.
Collapse
|
25
|
Radiotherapy impairs adhesive bonding in permanent teeth. Support Care Cancer 2019; 28:239-247. [DOI: 10.1007/s00520-019-04782-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
|
26
|
Wickstroem K, Hagemann UB, Cruciani V, Wengner AM, Kristian A, Ellingsen C, Siemeister G, Bjerke RM, Karlsson J, Ryan OB, Linden L, Mumberg D, Ziegelbauer K, Cuthbertson AS. Synergistic Effect of a Mesothelin-Targeted 227Th Conjugate in Combination with DNA Damage Response Inhibitors in Ovarian Cancer Xenograft Models. J Nucl Med 2019; 60:1293-1300. [PMID: 30850485 PMCID: PMC6735281 DOI: 10.2967/jnumed.118.223701] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 01/06/2023] Open
Abstract
Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix “i”) when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roger M Bjerke
- Thorium Conjugate Research, Bayer American Samoa, Oslo, Norway
| | - Jenny Karlsson
- Thorium Conjugate Research, Bayer American Samoa, Oslo, Norway
| | - Olav B Ryan
- Thorium Conjugate Research, Bayer American Samoa, Oslo, Norway
| | - Lars Linden
- Bayer AG Pharmaceuticals Division, Wuppertal, Germany
| | | | | | | |
Collapse
|
27
|
Su NW, Wu SH, Chi CW, Tsai TH, Chen YJ. Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem Toxicol 2018; 124:400-410. [PMID: 30576710 DOI: 10.1016/j.fct.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
Concurrent chemotherapy and radiotherapy (RT) is important for controlling oral squamous cell carcinoma (OSCC), which is often accompanied by significant acute and late toxicities. We investigated whether cordycepin, a small molecule extracted from Cordyceps sinensis, could enhance the radiosensitivity of oral cancer cells. Using colony formation assay, we demonstrated that cordycepin induces radiosensitizing effects on two OSCC cells. DNA histogram analysis showed that cordycepin combined with RT prolonged the RT-induced G2/M phase arrest. It protracted the duration of DNA double strand breaks, which was detected by immunofluorescent staining of phosphorylated histone H2AX (γ-H2AX). The underlying molecular mechanism might involve the downregulation of protein expression related to DNA damage repair, including phosphorylated ataxia-telangiectasia mutated (p-ATM) and phosphorylated checkpoint kinase 2. Reciprocal upregulation of phosphorylated checkpoint kinase 1 (Chk1) expression was noted, and the radiosensitizing effect of cordycepin could be further augmented by Chk1 mRNA knockdown, indicating a compensatory DNA repair machinery involving phosphorylation of Chk1. In vivo, the combination of cordycepin and RT exhibited greater growth inhibition on xenografts and stronger apoptosis induction than RT alone, without exacerbating major toxicities. In conclusion, cordycepin increased the radiosensitivity of OSCC cells, which is associated with the modulation of RT-induced DNA damage repair machinery.
Collapse
Affiliation(s)
- Nai-Wen Su
- Division of Medical Oncology and Hematology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, 11094, Taiwan; Institute of Tradition Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shu-Hua Wu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 25160, Taiwan
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 25160, Taiwan
| | - Tung-Hu Tsai
- Institute of Tradition Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan; Department of Chemical Engineering, National United University, Miaoli, 36063, Taiwan.
| | - Yu-Jen Chen
- Institute of Tradition Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, 25160, Taiwan; Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, 25160, Taiwan; Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
28
|
Targeted alpha therapy using Radium-223: From physics to biological effects. Cancer Treat Rev 2018; 68:47-54. [PMID: 29859504 DOI: 10.1016/j.ctrv.2018.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
With the advance of the use of ionizing radiation in therapy, targeted alpha therapy (TAT) has assumed an important role around the world. This kind of therapy can potentially reduce side effects caused by radiation in normal tissues and increased destructive radiobiological effects in tumor cells. However, in many countries, the use of this therapy is still in a pioneering phase. Radium-223 (223Ra), an alpha-emitting radionuclide, has been the first of its kind to be approved for the treatment of bone metastasis in metastatic castration-resistant prostate cancer. Nevertheless, the interaction mechanism and the direct effects of this radiopharmaceutical in tumor cells are not fully understood neither characterized at a molecular level. In fact, the ways how TAT is linked to radiobiological effects in cancer is not yet revised. Therefore, this review introduces some physical properties of TAT that leads to biological effects and links this information to the hallmarks of cancer. The authors also collected the studies developed with 223Ra to correlate with the three categories reviewed - properties of TAT, 5 R's of radiobiology and hallmarks of cancer- and with the promising future to this radiopharmaceutical.
Collapse
|
29
|
Meyer J, Singal AG. Stereotactic ablative radiotherapy for hepatocellular carcinoma: History, current status, and opportunities. Liver Transpl 2018; 24:420-427. [PMID: 29205797 DOI: 10.1002/lt.24991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023]
Abstract
A variety of surgical and other local-regional approaches to the management of hepatocellular carcinoma (HCC) are in clinical use. External beam radiation therapy is a relative newcomer to the portfolio of treatment options. Advances in planning and delivery of radiation therapy, developing in parallel with and inspiring changing paradigms of tumor management in the field of radiation oncology, have led to growing interest in radiation therapy as a viable treatment option for HCC as well as other liver tumors. In this review, we discuss these advances, current trends in liver radiotherapy, as well as avenues of future clinical and basic research. Liver Transplantation 24 420-427 2018 AASLD.
Collapse
Affiliation(s)
- Jeffrey Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Mediciner, Baltimore, MD
| | - Amit G Singal
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
30
|
Cui L, Her S, Borst GR, Bristow RG, Jaffray DA, Allen C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother Oncol 2017; 124:344-356. [PMID: 28784439 DOI: 10.1016/j.radonc.2017.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Abstract
The utilization of gold nanoparticles (AuNPs) as radiosensitizers has shown great promise in pre-clinical research. In the current review, the physical, chemical, and biological pathways via which AuNPs enhance the effects of radiation are presented and discussed. In particular, the impact of AuNPs on the 5 Rs in radiobiology, namely repair, reoxygenation, redistribution, repopulation, and intrinsic radiosensitivity, which determine the extent of radiation enhancement effects are elucidated. Key findings from previous studies are outlined. In addition, crucial parameters including the physicochemical properties of AuNPs, route of administration, dosing schedule of AuNPs and irradiation, as well as type of radiation therapy, are highlighted; the optimal selection and combination of these parameters enable the achievement of a greater therapeutic window for AuNP sensitized radiotherapy. Future directions are put forward as a means to provide guidelines for successful translation of AuNPs to clinical applications as radiosensitizers.
Collapse
Affiliation(s)
- Lei Cui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Sohyoung Her
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada
| | - Gerben R Borst
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Robert G Bristow
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada; Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - David A Jaffray
- Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; TECHNA Institute and Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Techna Institute, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Christine Allen
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Canada; STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
31
|
Effects of different radiation doses on the microhardness, superficial morphology, and mineral components of human enamel. Arch Oral Biol 2017; 80:130-135. [DOI: 10.1016/j.archoralbio.2017.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 11/21/2022]
|
32
|
Sun W, Yan H, Qian C, Wang C, Zhao M, Liu Y, Zhong Y, Liu H, Xiao H. Cofilin-1 and phosphoglycerate kinase 1 as promising indicators for glioma radiosensibility and prognosis. Oncotarget 2017; 8:55073-55083. [PMID: 28903403 PMCID: PMC5589642 DOI: 10.18632/oncotarget.19025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
Glioma is a primary malignancy in central nervous system. Radiotherapy has been used as one of the standard treatments for glioma for decades. Since radioresistance can reduce the curative efficacy of radiotherapy in glioma, investigating the cause of radioresistance and predicting the tumour radiosensibility appeared particularly important. We previously reported that CFL1 and PGK1 are over-expressed in radioresistant U251 glioma cells. In this study, the level of CFL1 and PGK1 of 113 glioma tissues were measured by ELISA method. The relevance of the expression of these two proteins to radiosensibility was analyzed by mean test and multivariate logistic regression. The survival analysis was carried out in 85 irradiated patients and 105 followed-up patients respectively. The relationship between protein expression and clinical parameters was explored in overall 113 patients, and the correlation between CFL1 and PGK1 were determined as well. Our results showed that the expression of CFL1 and PGK1 were significantly higher (P < 0.001) in radioresistant patients than others. The multivariate Logistic regression demonstrated that the expression of CFL1 (p < 0.001) and PGK1 (p < 0.001) were associated with radioresistance in glioma. The multivariate Cox regression in overall survival suggested that CFL1 level or PGK1 level could be the independent prognosis factor for poor prognosis in 113 glioma patients. In addition, CFL1 expression was positively correlated with PGK1 expression in glioma. The results suggested that as promising indicators, CFL1 and PGK1 could be used to evaluate glioma radiosensibility and prognosis. These two proteins could also be the potential therapeutic targets of glioma.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hua Yan
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Chenhan Wang
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Yuchi Liu
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Yujie Zhong
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| |
Collapse
|
33
|
Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models. Transl Oncol 2017; 10:686-692. [PMID: 28683435 PMCID: PMC5498409 DOI: 10.1016/j.tranon.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH2)15–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9)-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.
Collapse
|
34
|
Marcu LG. Future treatment directions for HPV-associated head and neck cancer based on radiobiological rationale and current clinical evidence. Crit Rev Oncol Hematol 2016; 103:27-36. [DOI: 10.1016/j.critrevonc.2016.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/11/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022] Open
|
35
|
Welsh L, Panek R, McQuaid D, Dunlop A, Schmidt M, Riddell A, Koh DM, Doran S, Murray I, Du Y, Chua S, Hansen V, Wong KH, Dean J, Gulliford S, Bhide S, Leach MO, Nutting C, Harrington K, Newbold K. Prospective, longitudinal, multi-modal functional imaging for radical chemo-IMRT treatment of locally advanced head and neck cancer: the INSIGHT study. Radiat Oncol 2015; 10:112. [PMID: 25971451 PMCID: PMC4438605 DOI: 10.1186/s13014-015-0415-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radical chemo-radiotherapy (CRT) is an effective organ-sparing treatment option for patients with locally advanced head and neck cancer (LAHNC). Despite advances in treatment for LAHNC, a significant minority of these patients continue to fail to achieve complete response with standard CRT. By constructing a multi-modality functional imaging (FI) predictive biomarker for CRT outcome for patients with LAHNC we hope to be able to reliably identify those patients at high risk of failing standard CRT. Such a biomarker would in future enable CRT to be tailored to the specific biological characteristics of each patients' tumour, potentially leading to improved treatment outcomes. METHODS/DESIGN The INSIGHT study is a single-centre, prospective, longitudinal multi-modality imaging study using functional MRI and FDG-PET/CT for patients with LAHNC squamous cell carcinomas receiving radical CRT. Two cohorts of patients are being recruited: one treated with, and another treated without, induction chemotherapy. All patients receive radical intensity modulated radiotherapy with concurrent chemotherapy. Patients undergo functional imaging before, during and 3 months after completion of radiotherapy, as well as at the time of relapse, should that occur within the first two years after treatment. Serum samples are collected from patients at the same time points as the FI scans for analysis of a panel of serum markers of tumour hypoxia. DISCUSSION The primary aim of the INSIGHT study is to acquire a prospective multi-parametric longitudinal data set comprising functional MRI, FDG PET/CT, and serum biomarker data from patients with LAHNC undergoing primary radical CRT. This data set will be used to construct a predictive imaging biomarker for outcome after CRT for LAHNC. This predictive imaging biomarker will be used in future studies of functional imaging based treatment stratification for patients with LAHNC. Additional objectives are: defining the reproducibility of FI parameters; determining robust methods for defining FI based biological target volumes for IMRT planning; creation of a searchable database of functional imaging data for data mining. The INSIGHT study will help to establish the role of FI in the clinical management of LAHNC. TRIAL REGISTRATION NCRI H&N CSG ID 13860.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/therapy
- Chemoradiotherapy/mortality
- Female
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/therapy
- Humans
- Longitudinal Studies
- Magnetic Resonance Imaging/methods
- Male
- Middle Aged
- Multimodal Imaging/methods
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplasm Staging
- Positron-Emission Tomography/methods
- Prognosis
- Prospective Studies
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Intensity-Modulated/methods
- Tomography, X-Ray Computed/methods
- Young Adult
Collapse
Affiliation(s)
- Liam Welsh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
- Clinical Research Fellow, Head and Neck Unit, Royal Marsden Hospital, Sutton, Surrey, SM2 5PT, UK.
| | - Rafal Panek
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Dualta McQuaid
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Alex Dunlop
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Maria Schmidt
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Angela Riddell
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Dow-Mu Koh
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Simon Doran
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Iain Murray
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Yong Du
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Sue Chua
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Vibeke Hansen
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kee H Wong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Jamie Dean
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Sarah Gulliford
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Shreerang Bhide
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Martin O Leach
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Christopher Nutting
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | - Kevin Harrington
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Kate Newbold
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
36
|
Hu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol 2015; 5:90. [PMID: 25927031 PMCID: PMC4396194 DOI: 10.3389/fonc.2015.00090] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine differentiation (NED) in prostate cancer is a well-recognized phenotypic change by which prostate cancer cells transdifferentiate into neuroendocrine-like (NE-like) cells. NE-like cells lack the expression of androgen receptor and prostate specific antigen, and are resistant to treatments. In addition, NE-like cells secrete peptide hormones and growth factors to support the growth of surrounding tumor cells in a paracrine manner. Accumulated evidence has suggested that NED is associated with disease progression and poor prognosis. The importance of NED in prostate cancer progression and therapeutic response is further supported by the fact that therapeutic agents, including androgen-deprivation therapy, chemotherapeutic agents, and radiotherapy, also induce NED. We will review the work supporting the overall hypothesis that therapy-induced NED is a mechanism of resistance to treatments, as well as discuss the relationship between therapy-induced NED and therapy-induced senescence, epithelial-to-mesenchymal transition, and cancer stem cells. Furthermore, we will use radiation-induced NED as a model to explore several NED-based targeting strategies for development of novel therapeutics. Finally, we propose future studies that will specifically address therapy-induced NED in the hope that a better treatment regimen for prostate cancer can be developed.
Collapse
Affiliation(s)
- Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN , USA
| | - Richard Choo
- Department of Radiation Oncology, Mayo Clinic , Rochester, MN , USA
| | - Jiaoti Huang
- Department of Pathology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
37
|
Increased expression of SHP-1 is associated with local recurrence after radiotherapy in patients with nasopharyngeal carcinoma. Radiol Oncol 2014; 48:40-9. [PMID: 24587778 PMCID: PMC3908846 DOI: 10.2478/raon-2014-0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/04/2013] [Indexed: 12/02/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a major cancer in southern China. Src homology phosphatase-1 (SHP-1) is a tyrosine phosphatase that regulates growth, differentiation, cell cycle progression, and oncogenesis. We determined the clinical significance of SHP-1 expression in the tumours of NPC patients from southern China who were treated with radiotherapy. Patients and methods. SHP-1 expression was determined by real-time polymerase chain reaction (PCR) and western blotting of NPC tissue samples of 50 patients and nasopharyngeal tissues of 50 non-NPC patients who had chronic nasopharyngeal inflammation. SHP-1 expression was measured in NPC tissue samples of 206 patients by immunohistochemistry and survival analysis was performed. Results The tumours of NPC patients had significantly increased expression of SHP-1 at mRNA and protein levels relative to patients with chronic nasopharyngeal inflammation. Survival analysis of NPC patients indicated that SHP-1 expression was significantly associated with poor local recurrence-free survival (p = 0.008), but not with nodal recurrence-free survival, distant metastasis-free survival, or overall survival. Conclusions SHP-1 appears to be associated with radiation resistance of NPC cells and can be considered as a candidate marker for prognosis and/or therapeutic target in patients with this type of cancer.
Collapse
|
38
|
O'Connor P. The impact of missed fractions in head and neck radiotherapy and how they can be minimised. Radiography (Lond) 2013. [DOI: 10.1016/j.radi.2013.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
|
40
|
Molecularly targeted agents as radiosensitizers in cancer therapy--focus on prostate cancer. Int J Mol Sci 2013; 14:14800-32. [PMID: 23863691 PMCID: PMC3742274 DOI: 10.3390/ijms140714800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.
Collapse
|
41
|
The hallmarks of cancer and the radiation oncologist: updating the 5Rs of radiobiology. Clin Oncol (R Coll Radiol) 2013; 25:569-77. [PMID: 23850153 DOI: 10.1016/j.clon.2013.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/17/2022]
Abstract
A comprehensive, mechanistic understanding of radiobiological phenomena that can be integrated within the broader context of cancer biology offers the prospect of transforming clinical practice in radiation oncology. In this review, we revisit the six established biological hallmarks of cancer and examine how they have provided insights into novel therapeutic strategies. In addition, we discuss the potential of two emerging hallmarks to continue to expand our understanding beyond the narrow confines of the traditional 5Rs of radiobiology.
Collapse
|
42
|
Ree AH, Hollywood D. Design and conduct of early-phase radiotherapy trials with targeted therapeutics: lessons from the PRAVO experience. Radiother Oncol 2013; 108:3-16. [PMID: 23830196 DOI: 10.1016/j.radonc.2013.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/28/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022]
Abstract
New strategies to facilitate the improvement of physical and integrated biological optimization of high-precision treatment protocols are an important priority for modern radiation oncology. From a clinical perspective, as knowledge accumulates from molecular radiobiology, there is a complex and exciting opportunity to investigate novel approaches to rational patient treatment stratification based on actionable tumor targets, together with the appropriate design of next-generation early-phase radiotherapy trials utilizing targeted therapeutics, to formally evaluate relevant clinical and biomarker endpoints. A unique aspect in the development pathway of systemic agents with presumed radiosensitizing activity will also be the need for special attention on patient eligibility and the rigorous definition of radiation dose-volume relationships and potential dose-limiting toxicities. Based on recent experience from systematically investigating histone deacetylase inhibitors as radiosensitizing agents, from initial studies in preclinical tumor models through the conduct of a phase I clinical study to evaluate tumor activity of the targeted agent as well as patient safety and tumor response to the combined treatment modality, this communication will summarize principles relating to early clinical evaluation of combining radiotherapy and targeted therapeutics.
Collapse
Affiliation(s)
- Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
| | | |
Collapse
|
43
|
Leu JD, Chiu YW, Lo CC, Chiang PH, Chiu SJ, Tsai CH, Hwang JJ, Chen RC, Gorbunova V, Lee YJ. Enhanced cellular radiosensitivity induced by cofilin-1 over-expression is associated with reduced DNA repair capacity. Int J Radiat Biol 2013; 89:433-44. [PMID: 23362981 DOI: 10.3109/09553002.2013.767992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A previous report has indicated that over-expression of cofilin-1 (CFL-1), a member of the actin depolymerizing factor (ADF)/cofilin protein family, enhances cellular radiosensitivity. This study explores the involvement of various DNA damage responses and repair systems in the enhanced cellular radiosensitivity as well as assessing the role of CFL-1 phosphorylation in radiosensitivity. MATERIALS AND METHODS Human non-small lung cancer H1299 cells harboring a tet-on gene expression system were used to induce exogenous expression of wild-type CFL-1. Colony formation assays were used to determine cell survival after γ-ray exposure. DNA damage levels were determined by Comet assay. DNA repair capacity was assessed by fluorescence-based DNA repair analysis and antibody detection of various repair proteins. The effects of CFL-1 phosphorylation on radiation responses were explored using two mutant CFL-1 proteins, S3D and S3A. Finally, endogenous CFL-1 phosphorylation levels were investigated using latrunculin A (LA), cytochalasin B (CB) and Y27632. RESULTS When phosphorylatable CFL-1 was expressed, radiosensitivity was enhanced after exposure to γ-rays and this was accompanied by DNA damage. Phosphorylated histone H2AX (γ-H2AX) and p53-binding protein-1 (53BP1) foci, as well as Chk1/2 phosphorylation, were apparently suppressed, although ataxia telangiectasia mutated (ATM) kinase activation was apparently unaffected. In addition, two radiation-induced double-strand break (DSB) repair systems, namely homologous recombination repair (HRR) and non-homologous end joining (NHEJ), were suppressed. Moreover, over-expression of CFL-1 S3D and CFL-1 S3A both enhanced radiosensitivity. However, enhanced radiosensitivity and reduced γ-H2AX expression were only detected in cells treated with LA which increased endogenous phospho-CFL-1, and not in cells treated with Y27632, which dephosphorylates CFL-1. CONCLUSION CFL-1 over-expression enhances radiosensitivity and this is associated with reduced DNA repair capacity. Although phosphorylated CFL-1 seems to be involved in radiosensitivity, further studies are required to address the importance of CFL-1 activity to the regulation of radiosensitivity.
Collapse
Affiliation(s)
- Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch , Taipei
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Morris S. Skin Lymphoma. Clin Oncol (R Coll Radiol) 2012; 24:371-85. [DOI: 10.1016/j.clon.2012.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/22/2012] [Indexed: 11/26/2022]
|
45
|
Saelen MG, Flatmark K, Folkvord S, de Wijn R, Rasmussen H, Fodstad Ø, Ree AH. Tumor kinase activity in locally advanced rectal cancer: angiogenic signaling and early systemic dissemination. Angiogenesis 2011; 14:481-9. [PMID: 21833622 PMCID: PMC3214264 DOI: 10.1007/s10456-011-9231-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/30/2011] [Indexed: 01/08/2023]
Abstract
Tumor hypoxia is a common determinant of resistance to cytotoxic therapies and metastatic behavior. In rectal cancer patients receiving preoperative chemoradiotherapy, tyrosine kinase activities in tumors with poor and good treatment responses were found to differ. Given that tyrosine kinase signaling mediates hypoxic tissue adaptation, the present study examined whether tumor kinase activity might also correlate with systemic dissemination of rectal cancer. Immunomagnetic selection of disseminated tumor cells (DTC) from bone marrow aspirates was undertaken in 55 patients with locally advanced rectal cancer. Using peptide arrays with 144 tyrosine kinase substrates, phosphopeptide signatures were generated from patients' baseline tumor biopsies, to study association between DTC and tumor tyrosine kinase activity regulated ex vivo by sunitinib. Disseminated tumor cells were detected in 60% of cases, and these patients had significantly poorer metastasis-free survival than patients without DTC. Phosphorylation of 31 array tyrosine kinase substrates by tumor samples was significantly more strongly inhibited by sunitinib in the DTC-negative patients, with a number of phosphosubstrates representing angiogenic factors. In this cohort of rectal cancer patients, tumor phenotypes defined by a subset of tyrosine kinase activities correlating with weak ex vivo inhibition by sunitinib, was associated with early systemic dissemination.
Collapse
Affiliation(s)
- Marie Grøn Saelen
- Department of Tumor Biology, Oslo University Hospital--Radiumhospitalet, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
46
|
Effects of lapatinib monotherapy: results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck. Br J Cancer 2011; 105:618-27. [PMID: 21829197 PMCID: PMC3188940 DOI: 10.1038/bjc.2011.237] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Lapatinib is a dual inhibitor of epidermal growth factor receptor (EGFR) and human EGFR-2 (HER-2) tyrosine kinases. This study investigated the pharmacodynamic and clinical effects of lapatinib in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). METHODS In total, 107 therapy-naive patients with locally advanced SCCHN were randomised (2 : 1) to receive lapatinib or placebo for 2-6 weeks before chemoradiation therapy (CRT). Endpoints included apoptosis and proliferation rates, clinical response, and toxicity. RESULTS Versus placebo, lapatinib monotherapy did not significantly increase apoptosis detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labelling or caspase-3 assays. A statistically significant decrease in proliferation using Ki67 assay was observed (P=0.030). In a subset of 40 patients that received 4 weeks of lapatinib or placebo, objective response rate (ORR) was 17% (n=4/24) vs 0% (n=0/16). In the lapatinib single-agent responders, all had EGFR overexpression, 50% had EGFR amplification, and 50% had HER2 expression by immunohistochemistry (including one patient with HER2 amplification). However, these patients showed variable modulation of apoptosis, proliferation, and phosphorylated EGFR on drug treatment. Following CRT, there was a statistically non-significant difference in ORR between lapatinib (70%) and placebo (53%). There was no clear correlation between changes in apoptosis or proliferation and response to chemoradiation. Mucosal inflammation, asthenia, odynophagia, and dysphagia were the most commonly reported adverse events with lapatinib. CONCLUSION Short-term lapatinib monotherapy did not demonstrate apoptotic changes, but provided evidence of clinical activity in locally advanced SCCHN, and warrants further investigation in this disease.
Collapse
|
47
|
Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer 2011; 105:628-39. [PMID: 21772330 PMCID: PMC3188925 DOI: 10.1038/bjc.2011.240] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
48
|
Hirst DG, Robson T. Molecular biology: the key to personalised treatment in radiation oncology? Br J Radiol 2011; 83:723-8. [PMID: 20739343 DOI: 10.1259/bjr/91488645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We know considerably more about what makes cells and tissues resistant or sensitive to radiation than we did 20 years ago. Novel techniques in molecular biology have made a major contribution to our understanding at the level of signalling pathways. Before the "New Biology" era, radioresponsiveness was defined in terms of physiological parameters designated as the five Rs. These are: repair, repopulation, reassortment, reoxygenation and radiosensitivity. Of these, only the role of hypoxia proved to be a robust predictive and prognostic marker, but radiotherapy regimens were nonetheless modified in terms of dose per fraction, fraction size and overall time, in ways that persist in clinical practice today. The first molecular techniques were applied to radiobiology about two decades ago and soon revealed the existence of genes/proteins that respond to and influence the cellular outcome of irradiation. The subsequent development of screening techniques using microarray technology has since revealed that a very large number of genes fall into this category. We can now obtain an adequately robust molecular signature, predicting for a radioresponsive phenotype using gene expression and proteomic approaches. In parallel with these developments, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) can now detect specific biological molecules such as haemoglobin and glucose, so revealing a 3D map of tumour blood flow and metabolism. The key to personalised radiotherapy will be to extend this capability to the proteins of the molecular signature that determine radiosensitivity.
Collapse
|
49
|
Radiotherapy Research Priorities for the UK. Clin Oncol (R Coll Radiol) 2010; 22:707-9. [DOI: 10.1016/j.clon.2010.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/10/2010] [Indexed: 11/22/2022]
|
50
|
|