1
|
Li Y, Chen X, Wu L, Huang Z, Xu S, Hong X, Lai J, Qiu S, Zheng X. Impact of the radiotherapy rhythm on prognosis in nasopharyngeal carcinoma. Ann Med 2024; 56:2407061. [PMID: 39310946 PMCID: PMC11421160 DOI: 10.1080/07853890.2024.2407061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE The role of chronoradiobiology in nasopharyngeal carcinoma (NPC) has not been fully elucidated. We sought to investigate the impact of radiotherapy rhythm on the survival outcomes of individuals to explore a chronomodulated radiation strategy to improve prognosis of NPC. METHODS A cohort comprising non-metastatic NPC patients subjected to intensity-modulated radiotherapy at Fujian Cancer Hospital between Jan. 2016 and Dec. 2019 was assembled. Rhythmic fluctuation of radiotherapy (RFRT) was quantified based on the temporal distribution of radiation delivery. Cox proportional hazard model was performed to explore the impact of radiotherapy rhythm on all-cause mortality. The maximally selected rank statistics method was employed to discern an optimal cutoff. Sensitivity analyses were conducted to ensure the robustness of observed associations. RESULTS Our analysis encompassed 2245 patients, with a median follow-up duration of 55 months, during which 315 individuals succumbed. Multivariate Cox regression analysis unveiled a significant correlation between prolonged RFRT and heightened mortality risk in NPC patients (HR, 1.17, 95% CI, 1.07-1.27, p < .001), a relationship robust to comprehensive adjustment for confounding variables. A cutoff value of 3 h was selected for potential clinical application, beyond which patients exhibited markedly poorer survival outcomes. Subgroup analyses consistently underscored the directional consistency of observed effects. CONCLUSION Our study sheds light on the potential advantages of scheduling radiotherapy sessions at consistent times. These findings have implications for optimizing radiotherapy schedules and warrant further investigation into personalized chronotherapy approaches in NPC management.
Collapse
Affiliation(s)
- Ying Li
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Xiaochuan Chen
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Lishui Wu
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Zongwei Huang
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Siqi Xu
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Xinyi Hong
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Jinghua Lai
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| | - Sufang Qiu
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
| | - Xiong Zheng
- Radiation Oncology Department, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, Fujian, China
| |
Collapse
|
2
|
Savvidis C, Kallistrou E, Kouroglou E, Dionysopoulou S, Gavriiloglou G, Ragia D, Tsiama V, Proikaki S, Belis K, Ilias I. Circadian rhythm disruption and endocrine-related tumors. World J Clin Oncol 2024; 15:818-834. [PMID: 39071458 PMCID: PMC11271730 DOI: 10.5306/wjco.v15.i7.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
This review delved into the intricate relationship between circadian clocks and physiological processes, emphasizing their critical role in maintaining homeostasis. Orchestrated by interlocked clock genes, the circadian timekeeping system regulates fundamental processes like the sleep-wake cycle, energy metabolism, immune function, and cell proliferation. The central oscillator in the hypothalamic suprachiasmatic nucleus synchronizes with light-dark cycles, while peripheral tissue clocks are influenced by cues such as feeding times. Circadian disruption, linked to modern lifestyle factors like night shift work, correlates with adverse health outcomes, including metabolic syndrome, cardiovascular diseases, infections, and cancer. We explored the molecular mechanisms of circadian clock genes and their impact on metabolic disorders and cancer pathogenesis. Specific associations between circadian disruption and endocrine tumors, spanning breast, ovarian, testicular, prostate, thyroid, pituitary, and adrenal gland cancers, are highlighted. Shift work is associated with increased breast cancer risk, with PER genes influencing tumor progression and drug resistance. CLOCK gene expression correlates with cisplatin resistance in ovarian cancer, while factors like aging and intermittent fasting affect prostate cancer. Our review underscored the intricate interplay between circadian rhythms and cancer, involving the regulation of the cell cycle, DNA repair, metabolism, immune function, and the tumor microenvironment. We advocated for integrating biological timing into clinical considerations for personalized healthcare, proposing that understanding these connections could lead to novel therapeutic approaches. Evidence supports circadian rhythm-focused therapies, particularly chronotherapy, for treating endocrine tumors. Our review called for further research to uncover detailed connections between circadian clocks and cancer, providing essential insights for targeted treatments. We emphasized the importance of public health interventions to mitigate lifestyle-related circadian disruptions and underscored the critical role of circadian rhythms in disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Efthymia Kallistrou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Eleni Kouroglou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Sofia Dionysopoulou
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | | | - Dimitra Ragia
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Vasiliki Tsiama
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Stella Proikaki
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Konstantinos Belis
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Hippocration General Hospital, Athens GR-11527, Greece
| |
Collapse
|
3
|
Zhang J, Yang Y, Li K, Li J. Application of graphene oxide in tumor targeting and tumor therapy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2551-2576. [PMID: 37768314 DOI: 10.1080/09205063.2023.2265171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Graphene oxide (GO), as a kind of two-dimensional sp2 carbon nanomaterials, has attracted great attention in many fields in the past decade. Due to its unique physical and chemical properties, GO is showing great promise in the field of biomedicine. For GO, all the atoms on its surface are exposed to the surface with ultra-high specific surface area, and a variety of groups on the surface, such as carboxyl, hydroxyl and epoxy groups, can effectively bind/load various biomolecules. Due to the availability of these groups, GO also possesses excellent hydrophilicity and biocompatibility for the modification of the desired biocompatible molecules or polymers on the surface of GO. The nano-network structure and hydrophobicity of GO enable it to load a large number of hydrophobic drugs containing benzene rings and it has been widely used as a multi-functional nano-carrier for chemotherapeutic drug or gene delivery. This review article will give an in-depth overview of the synthesis methods of GO, the advantages and disadvantages of GO used in nano-drug delivery system, the research progress of GO as a stimulus-responsive nano-drug carrier, and the application of these intelligent systems in cancer treatment.
Collapse
Affiliation(s)
- Jia Zhang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Yibo Yang
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Kun Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jian Li
- College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China
| |
Collapse
|
4
|
Wang Y, Li JQ, Qiang WM, Wang SR, Shen AM, Xi CX, Liu H. Can chronoradiotherapy offer benefits to cervical cancer patients? A scoping review. Chronobiol Int 2023; 40:353-360. [PMID: 36912010 DOI: 10.1080/07420528.2023.2174880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The objective of this scoping review was to synthesize the available evidence and evaluate the effectiveness of chronoradiotherapy interventions in cervical cancer patients. This scoping review was performed by searching in the PubMed, Cochrane Library, Embase, Web of Science, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), China National Knowledge Infrastructure (CNKI), Wanfang, Wenpu, and Chinese Biomedical Literature (CBM) databases. Databases were searched for studies published in English or Chinese from inception to 21 May 2021, and reference lists of relevant reports were scanned. Two investigators independently screened eligible studies in accordance with predetermined eligibility criteria and extracted data. The included studies were summarized and analyzed. Five studies including a total of 422 patients with cervical cancer were included in the scoping review; four studies were Chinese, and one was Indian. Main themes identified included the efficiency of chronoradiotherapy and relevant toxic and side effects, including diarrhea toxicity, hematologic toxicity, myelosuppression, gastrointestinal mucositis, and skin reactions. Administration of radiotherapy at different times of the day resulted in similar efficacy. However, the toxic side effects of morning radiotherapy (MR) and evening radiotherapy (ER) differed, with radiotherapy in the evening leading to more severe hematologic toxicity and myelosuppression. There were conflicting conclusions about gastrointestinal reactions with chronoradiotherapy, and further studies are needed. Radiation responses may be associated with circadian genes, through the influence of cell cycles and apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jia-Qian Li
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Wan-Min Qiang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Shu-Rui Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao-Mei Shen
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chen-Xi Xi
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Wang Y, Qiang WM, Li JQ, Shen AM, Chen XC, Li XF, Zhang BZ, Xie J, Yan R, Li XH, Zhang ZL, Wang CL, Li LY. The effect of chronoradiotherapy on cervical cancer patients: A multicenter randomized controlled study. Front Oncol 2022; 12:1021453. [PMID: 36457490 PMCID: PMC9706194 DOI: 10.3389/fonc.2022.1021453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVES To investigate the short-term efficacy and radiotoxicity 3.543of chronoradiotherapy in patients with cervical cancer. We also examined the overall symptom score and quality of life (QOL) of patients who underwent morning radiotherapy and evening radiotherapy. METHODS We conducted a multicenter randomized controlled trial to compare the effects of morning radiotherapy (9:00-11:00 AM) with evening radiotherapy (7:00-9:00 PM) in cervical cancer patients receiving radiotherapy. From November 2021 to June 2022, 114 cervical cancer patients admitted to eight cancer center hospitals in Tianjin, Chongqing, Hubei, Shanxi, Shandong, Shaanxi, Hebei, and Cangzhou were randomly divided into the morning radiotherapy group (MG; N = 61) and the evening radiotherapy group (EG; N = 53). The short-term efficacy of radiotherapy on cervical cancer patients at different time points and the occurrence of radiotoxicity were explored after patients had undergone radiotherapy. RESULTS The total effective response (partial remission [PR] + complete remission [CR]) rate was similar across the two groups (93.5% vs. 96.3%, p > 0.05). However, the incidence of bone marrow suppression and intestinal reaction in the two groups were significantly different (p < 0.05). The patients in the MG had significantly higher Anderson symptom scores than patients in the EG (21.64 ± 7.916 vs. 18.53 ± 4.098, p < 0.05). In terms of physical activity, functional status, and overall QOL, the MG had significantly lower scores than the EG (p < 0.05). No other measures showed a significant difference between the groups. CONCLUSION The radiotherapy effect of the MG was consistent with that of the EG. The incidence of radiation enteritis and radiation diarrhea in the MG was significantly higher than that in the EG; however, bone marrow suppression and blood toxicity in the EG were more serious than in the MG. Because of the small sample size of the study, we only examined the short-term efficacy of radiotherapy. Therefore, further clinical trials are needed to verify the efficacy and side effects of chronoradiotherapy. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/searchproj.aspx, Registration Number: ChiCTR2100047140.
Collapse
Affiliation(s)
- Ying Wang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Wan-Min Qiang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jia-Qian Li
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ao-Mei Shen
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Cen Chen
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao-Fang Li
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Bao-Zhong Zhang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Juan Xie
- Radiotherapy Department, Shaanxi Provincial Cancer Hospital, Xian, China
| | - Rong Yan
- Nursing Department, Shandong Cancer Hospital, Qingdao, China
| | - Xiang-Hua Li
- Nursing Department, Cangzhou People's Hospital, Cangzhou, China
| | - Zhao-Li Zhang
- Nursing Department, Chongqing Cancer Hospital, Chongqing, China
| | - Cui-Ling Wang
- Nursing Department, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Lai-You Li
- Nursing Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Amiama-Roig A, Verdugo-Sivianes EM, Carnero A, Blanco JR. Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy. Cancers (Basel) 2022; 14:5071. [PMID: 36291855 PMCID: PMC9599830 DOI: 10.3390/cancers14205071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 08/19/2023] Open
Abstract
Living organisms present rhythmic fluctuations every 24 h in their behavior and metabolism to anticipate changes in the environment. These fluctuations are controlled by a very complex molecular mechanism, the circadian clock, that regulates the expression of multiple genes to ensure the right functioning of the body. An individual's circadian system is altered during aging, and this is related to numerous age-associated pathologies and other alterations that could contribute to the development of cancer. Nowadays, there is an increasing interest in understanding how circadian rhythms could be used in the treatment of cancer. Chronotherapy aims to understand the impact that biological rhythms have on the response to a therapy to optimize its action, maximize health benefits and minimize possible adverse effects. Clinical trials so far have confirmed that optimal timing of treatment with chemo or immunotherapies could decrease drug toxicity and increase efficacy. Instead, chronoradiotherapy seems to minimize treatment-related symptoms rather than tumor progression or patient survival. In addition, potential therapeutic targets within the molecular clock have also been identified. Therefore, results of the application of chronotherapy in cancer therapy until now are challenging, feasible, and could be applied to clinical practice to improve cancer treatment without additional costs. However, different limitations and variables such as age, sex, or chronotypes, among others, should be overcome before chronotherapy can really be put into clinical practice.
Collapse
Grants
- RTI2018-097455-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- RED2018-102723-T Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- CB16/12/00275 Centro de Investigación Biomédica en Red de Cáncer
- PI-0397-2017 Consejería de Salud y Familias
- P18-RT-2501 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
- No. CTEICU/PAIDI 2020 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
7
|
Webb AJ, Harper E, Rattay T, Aguado-Barrera ME, Azria D, Bourgier C, Brengues M, Briers E, Bultijnck R, Chang-Claude J, Choudhury A, Cicchetti A, De Ruysscher D, De Santis MC, Dunning AM, Elliott RM, Fachal L, Gómez-Caamaño A, Gutiérrez-Enríquez S, Johnson K, Lobato-Busto R, Kerns SL, Post G, Rancati T, Reyes V, Rosenstein BS, Seibold P, Seoane A, Sosa-Fajardo P, Sperk E, Taboada-Valladares B, Valdagni R, Vega A, Veldeman L, Ward T, West CM, Symonds RP, Talbot CJ. Treatment time and circadian genotype interact to influence radiotherapy side-effects. A prospective European validation study using the REQUITE cohort. EBioMedicine 2022; 84:104269. [PMID: 36130474 PMCID: PMC9486558 DOI: 10.1016/j.ebiom.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Circadian rhythm impacts broad biological processes, including response to cancer treatment. Evidence conflicts on whether treatment time affects risk of radiotherapy side-effects, likely because of differing time analyses and target tissues. We previously showed interactive effects of time and genotypes of circadian genes on late toxicity after breast radiotherapy and aimed to validate those results in a multi-centre cohort. METHODS Clinical and genotype data from 1690 REQUITE breast cancer patients were used with erythema (acute; n=340) and breast atrophy (two years post-radiotherapy; n=514) as primary endpoints. Local datetimes per fraction were converted into solar times as predictors. Genetic chronotype markers were included in logistic regressions to identify primary endpoint predictors. FINDINGS Significant predictors for erythema included BMI, radiation dose and PER3 genotype (OR 1.27(95%CI 1.03-1.56); P < 0.03). Effect of treatment time effect on acute toxicity was inconclusive, with no interaction between time and genotype. For late toxicity (breast atrophy), predictors included BMI, radiation dose, surgery type, treatment time and SNPs in CLOCK (OR 0.62 (95%CI 0.4-0.9); P < 0.01), PER3 (OR 0.65 (95%CI 0.44-0.97); P < 0.04) and RASD1 (OR 0.56 (95%CI 0.35-0.89); P < 0.02). There was a statistically significant interaction between time and genotypes of circadian rhythm genes (CLOCK OR 1.13 (95%CI 1.03-1.23), P < 0.01; PER3 OR 1.1 (95%CI 1.01-1.2), P < 0.04; RASD1 OR 1.15 (95%CI 1.04-1.28), P < 0.008), with peak time for toxicity determined by genotype. INTERPRETATION Late atrophy can be mitigated by selecting optimal treatment time according to circadian genotypes (e.g. treat PER3 rs2087947C/C genotypes in mornings; T/T in afternoons). We predict triple-homozygous patients (14%) reduce chance of atrophy from 70% to 33% by treating in mornings as opposed to mid-afternoon. Future clinical trials could stratify patients treated at optimal times compared to those scheduled normally. FUNDING EU-FP7.
Collapse
Affiliation(s)
- Adam J Webb
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Emily Harper
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tim Rattay
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Miguel E Aguado-Barrera
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain
| | - David Azria
- Department of Radiation Oncology, Montpellier Cancer Institute, Université Montpellier, Inserm U1194, Montpellier, France
| | - Celine Bourgier
- Department of Radiation Oncology, Montpellier Cancer Institute, Université Montpellier, Inserm U1194, Montpellier, France
| | - Muriel Brengues
- Institut de Recherche en Cancérologie de Montpellier, Université Montpellier, Inserm U1194, Montpellier, France
| | | | - Renée Bultijnck
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Alessandro Cicchetti
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (Maastro clinic), GROW School for Oncology and Developmental Biology, Maastricht, the Netherlands
| | - Maria Carmen De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Rebecca M Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Antonio Gómez-Caamaño
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Kerstie Johnson
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Ramón Lobato-Busto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, New York, NY, United States
| | - Giselle Post
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Victoria Reyes
- Radiation Oncology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Barry S Rosenstein
- Department of Radiation Oncology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alejandro Seoane
- Medical Physics Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Paloma Sosa-Fajardo
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Elena Sperk
- Department of Radiation Oncology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Begoña Taboada-Valladares
- Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Haematology-Oncology, Universita degli Studi di Milano, Italy
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Tim Ward
- Patient advocate, NCRI CTRad consumer, UK
| | - Catharine M West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - R Paul Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | |
Collapse
|
8
|
Marcu LG. Developments on tumour site-specific chrono-oncology towards personalised treatment. Crit Rev Oncol Hematol 2022; 179:103803. [PMID: 36058443 DOI: 10.1016/j.critrevonc.2022.103803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Research into chronotherapy has seen notable developments over the past decades, with a clear focus on the identification of circadian clock genes as potential treatment targets. Moreover, new factors are investigated, such as gender and the role of cancer stem cells in influencing the outcome of chronomodulated treatments. These factors could add to the arsenal of parameters that assist with patient stratification and treatment personalisation. Literature analysis showed that certain anatomical sites received more attention and the associated studies reported clinically significant results, even though some findings are contradictory. The aim of this work was to review the existing studies on chrono-oncology using a tumour site-specific approach and to highlight the status of research in various cancers. Inconsistencies in data reporting, the nature of the studies and the highly heterogeneous patient characteristics, highlight the need for well-designed randomised controlled trials to elucidate the real potential of chronotherapy in oncology.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Informatics and Science, University of Oradea, Oradea 410087, Romania; School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
9
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
10
|
Anisman H, Kusnecov AW. Sleep and circadian rhythms. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Benazzi S, Gorini S, Feraco A, Caprio M. Ritmi circadiani e variabili metaboliche. L'ENDOCRINOLOGO 2021. [PMCID: PMC8569496 DOI: 10.1007/s40619-021-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
I ritmi circadiani sono influenzati da numerose variabili correlate allo stile di vita, soprattutto in relazione ai ritmi imposti dalla società moderna, e vengono profondamente alterati da diverse condizioni patologiche. La fisiologia circadiana è organizzata in modo complesso e integrato; molti dei fattori che sincronizzano il sistema sono a loro volta influenzati e regolati da diversi assi ormonali. Parallelamente, i disturbi del ritmo circadiano derivano da input non ottimali dei fattori sincronizzanti o da condizioni patologiche, e le conseguenze determinano un impatto significativo in diverse condizioni, quali l’obesità e i disturbi del sonno. Durante l’attuale emergenza COVID-19 sono stati registrati crescenti tassi di alterazioni del sonno, complici la preoccupazione diffusa, un comportamento alimentare alterato e la difficoltà per molti, durante il lockdown, nel mantenere ritmi di vita regolari (Barrea et al. in J Transl Med 18:1–11, 2020). Le misure di intervento che si sono mostrate più promettenti contro la desincronizzazione circadiana sono quelle che agiscono sullo stile di vita, basate sul recupero di un corretto ritmo del sonno, la corretta esposizione alla luce solare, l’idonea distribuzione dei pasti e del timing alimentare e lo svolgimento di un’adeguata attività fisica.
Collapse
|
12
|
Hassan SA, Ali AAH, Sohn D, Flögel U, Jänicke RU, Korf H, von Gall C. Does timing matter in radiotherapy of hepatocellular carcinoma? An experimental study in mice. Cancer Med 2021; 10:7712-7725. [PMID: 34545699 PMCID: PMC8559477 DOI: 10.1002/cam4.4277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigates whether a chronotherapeutic treatment of hepatocellular carcinoma (HCC) may improve treatment efficacy and mitigate side effects on non-tumoral liver (NTL). HCC was induced in Per2::luc mice which were irradiated at four time points of the day. Proliferation and DNA-double strand breaks were analyzed in irradiated and nonirradiated animals by detection of Ki67 and γ-H2AX. Prior to whole animal experiments, organotypic slice cultures were investigated to determine the dosage to be used in whole animal experiments. Irradiation was most effective at the proliferation peaks in HCC at ZT02 (early inactivity phase) and ZT20 (late activity phase). Irradiation effects on NTL were minimal at ZT20. As compared with NTL, nonirradiated HCC revealed disruption in daily variation and downregulation of all investigated clock genes except Per1. Irradiation affected rhythmic clock gene expression in NTL and HCC at all ZTs except at ZT20 (late activity phase). Irradiation at ZT20 had no effect on total leukocyte numbers. Our results indicate ZT20 as the optimal time point for irradiation of HCC in mice at which the ratio between efficacy of tumor treatment and toxic side effects was maximal. Translational studies are now needed to evaluate whether the late activity phase is the optimal time point for irradiation of HCC in man.
Collapse
Affiliation(s)
- Soha A. Hassan
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Zoology DepartmentFaculty of ScienceSuez UniversitySuezEgypt
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Department of Anatomy and EmbryologyFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Ulrich Flögel
- Department of Molecular CardiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Horst‐Werner Korf
- Institute of Anatomy IMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
13
|
Walton JC, Walker WH, Bumgarner JR, Meléndez-Fernández OH, Liu JA, Hughes HL, Kaper AL, Nelson RJ. Circadian Variation in Efficacy of Medications. Clin Pharmacol Ther 2021; 109:1457-1488. [PMID: 33025623 PMCID: PMC8268638 DOI: 10.1002/cpt.2073] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/13/2020] [Indexed: 12/22/2022]
Abstract
Although much has been learned about circadian clocks and rhythms over the past few decades, translation of this foundational science underlying the temporal regulation of physiology and behavior to clinical applications has been slow. Indeed, acceptance of the modern study of circadian rhythms has been blunted because the phenomenology of cyclic changes had to counteract the 20th century dogma of homeostasis in the biological sciences and medicine. We are providing this review of clinical data to highlight the emerging awareness of circadian variation in efficacy of medications for physicians, clinicians, and pharmacists. We are suggesting that gold-standard double-blind clinical studies should be conducted to determine the best time of day for optimal effectiveness of medications; also, we suggest that time of day should be tracked and reported as an important biological variable in ongoing clinical studies hereafter. Furthermore, we emphasize that time of day is, and should be considered, a key biological variable in research design similar to sex. In common with biomedical research data that have been historically strongly skewed toward the male sex, most pharmaceutical data have been skewed toward morning dosing without strong evidence that this is the optimal time of efficacy.
Collapse
Affiliation(s)
- James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Jacob R. Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | | | - Jennifer A. Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Heather L. Hughes
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Alexis L. Kaper
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
14
|
Bar N, Sobel JA, Penzel T, Shamay Y, Behar JA. From sleep medicine to medicine during sleep-a clinical perspective. Physiol Meas 2021; 42. [PMID: 33794516 DOI: 10.1088/1361-6579/abf47c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/01/2021] [Indexed: 01/01/2023]
Abstract
Objective. In this perspective paper, we aim to highlight the potential of sleep as an auspicious time for diagnosis, management and therapy of non-sleep-specific pathologies.Approach. Sleep has a profound influence on the physiology of body systems and biological processes. Molecular studies have shown circadian-regulated shifts in protein expression patterns across human tissues, further emphasizing the unique functional, behavioral and pharmacokinetic landscape of sleep. Thus, many pathological processes are also expected to exhibit sleep-specific manifestations. Modern advances in biosensor technologies have enabled remote, non-invasive recording of a growing number of physiologic parameters and biomarkers promoting the detection and study of such processes.Main results. Here, we introduce key clinical studies in selected medical fields, which leveraged novel technologies and the advantageous period of sleep to diagnose, monitor and treat pathologies. Studies demonstrate that sleep is an ideal time frame for the collection of long and clean physiological time series data which can then be analyzed using data-driven algorithms such as deep learning.Significance.This new paradigm proposes opportunities to further harness modern technologies to explore human health and disease during sleep and to advance the development of novel clinical applications - from sleep medicine to medicine during sleep.
Collapse
Affiliation(s)
- Nitai Bar
- Israel Department of Radiology, Rambam Health Care Campus, Haifa, Israel
| | - Jonathan A Sobel
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Thomas Penzel
- Interdisciplinary Center of Sleep Medicine, Charite University Medicine Berlin, Chariteplatz 1, D-10117 Berlin, Germany.,Saratov State University, Saratov, Russia
| | - Yosi Shamay
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| | - Joachim A Behar
- Biomedical Engineering Faculty, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Bermúdez-Guzmán L, Blanco-Saborío A, Ramírez-Zamora J, Lovo E. The Time for Chronotherapy in Radiation Oncology. Front Oncol 2021; 11:687672. [PMID: 34046365 PMCID: PMC8144648 DOI: 10.3389/fonc.2021.687672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Five decades ago, Franz Halberg conceived the idea of a circadian-based therapy for cancer, given the differential tolerance to treatment derived from the intrinsic host rhythms. Nowadays, different experimental models have demonstrated that both the toxicity and efficacy of several anticancer drugs vary by more than 50% as a function of dosing time. Accordingly, it has been shown that chemotherapeutic regimens optimally timed with the circadian cycle have jointly improved patient outcomes both at the preclinical and clinical levels. Along with chemotherapy, radiation therapy is widely used for cancer treatment, but its effectiveness relies mainly on its ability to damage DNA. Notably, the DNA damage response including DNA repair, DNA damage checkpoints, and apoptosis is gated by the circadian clock. Thus, the therapeutic potential of circadian-based radiotherapy against cancer is mainly dependent upon the control that the molecular clock exerts on DNA repair enzymes across the cell cycle. Unfortunately, the time of treatment administration is not usually considered in clinical practice as it varies along the daytime working hours. Currently, only a few studies have evaluated whether the timing of radiotherapy affects the treatment outcome. Several of these studies show that it is possible to reduce the toxicity of the treatment if it is applied at a specific time range, although with some inconsistencies. In this Perspective, we review the main advances in the field of chronoradiotherapy, the possible causes of the inconsistencies observed in the studies so far and provide some recommendations for future trials.
Collapse
Affiliation(s)
| | | | | | - Eduardo Lovo
- International Cancer Center, Diagnostic Hospital, San Salvador, El Salvador
| |
Collapse
|
16
|
The prognostic impact of daytime and seasonality of radiotherapy on head and neck cancer. Radiother Oncol 2021; 158:293-299. [PMID: 33848563 DOI: 10.1016/j.radonc.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The potential impact of daytime and season of radiotherapy application on prognosis is unclear. This was analyzed in a retrospective cohort of patients who were diagnosed with non-metastatic head and neck squamous cell carcinoma (HNSCC) and treated with definitive radiotherapy with or without chemotherapy. MATERIALS AND METHODS Patient and tumor characteristics, treatment parameters and outcome until last follow-up or death were obtained. Median radiotherapy delivery daytime of each patient was categorized as morning (AM) and afternoon (PM). Treatment season was defined by median date of treatment course. Each year was divided into DARK and LIGHT according to equinoxes. Time-to-event endpoints were defined by first biopsy confirming the HNSCC. RESULTS Six hundred fifty-five cases were identified who were treated with (chemo)radiotherapy between 2002 and 2015. Median follow-up was 47 months. No significant heterogeneity in patient, tumor and treatment characteristics were observed between DARK and LIGHT or regarding median daily fraction time (X2 p > 0.05). Five-year loco-regional control (73% vs. 61%; p = 0.0108) and progression-free survival (51% vs. 43%; p = 0.0374) were superior when radiotherapy was administered in DARK. Neither the daytime nor any other treatment time-related parameter affected prognosis. CONCLUSION This is the first study investigating and presenting the prognostic impact of seasonality regarding the treatment course on loco-regional control and progression-free survival (DARK > LIGHT). The biological mechanism of action is unclear. These results should be interpreted with caution and our findings have to be validated externally.
Collapse
|
17
|
The impact of delivery daytime and seasonality of radiotherapy for head and neck cancer on toxicity burden. Radiother Oncol 2021; 158:162-166. [PMID: 33667582 DOI: 10.1016/j.radonc.2021.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
AIM The potential impact of the daytime and season of radiotherapy application on acute and late toxicity burden was analyzed on a cohort of curatively treated head and neck squamous cell carcinoma patients. METHODS Through a retrospective chart review, patient and tumor characteristics, treatment parameters and outcome were obtained. Patients treated with definitive or adjuvant radiotherapy with and without chemotherapy receiving ≥60 Gy between 2002 and 2015 were included (n = 617). Daily fraction times and dates were extracted. Median radiotherapy delivery time of each patient was categorized as morning (AM) and afternoon (PM). Treatment season was defined by the median day of the treatment course. Each year was divided into DARK and LIGHT by the March and September equinoxes. Acute (T) and late (A) toxicity were defined by TAME methodology. RESULTS Median follow-up was 51 months. Mean T and A scores during and after radiotherapy in DARK vs. LIGHT were 1.98 vs. 1.61 (p = 0.0127) and 0.41 vs. 0.30 (p = 0.1699), respectively. Mean T and A scores during and after AM vs. PM radiotherapy were 1.71 vs. 1.88 (p = 0.0387) and 0.31 vs. 0.41 (p = 0.2638), respectively. Multivariate analyses indicated DARK vs. LIGHT as the only independent treatment time-related factor among other factors such as tumor subsite, UICC stage, radiotherapy technique, and chemotherapy for T. CONCLUSION This is the first study investigating the impact of seasonality on toxicity burden, showing higher acute toxicity with radiotherapy in DARK. The daytime did not predict the toxicity. The hypothesis-generating findings of this retrospective study should be further investigated.
Collapse
|
18
|
Sapienza LG, Nasra K, Berry R, Danesh L, Little T, Abu-Isa E. Clinical effects of morning and afternoon radiotherapy on high-grade gliomas. Chronobiol Int 2021; 38:732-741. [PMID: 33557650 DOI: 10.1080/07420528.2021.1880426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Initial clinical reports comparing the delivery of radiotherapy (RT) at distinct times of the day suggest that this strategy might affect toxicity and oncologic outcomes of radiation for multiple human tissues, but the clinical effects on high-grade gliomas (HGG) are unknown. The present study addresses the hypothesis that radiotherapy treatment time of the day (RT-TTD) influences outcome and/or toxic events in HGG. Patients treated between 2009-2018 were reviewed (n = 109). Outcomes were local control (LC), distant CNS control (DCNSC), progression-free survival (PFS), and overall survival (OS). RT-TTD was classified as morning if ≥50% of fractions were delivered before 12:00 h (n = 70) or as afternoon (n = 39) if after 12:00 h. The average age was 62.6 years (range: 14.5-86.9) and 80% were glioblastoma. The median follow-up was 10.9 months (range: 0.4-57.2). The 1y/3y LC, DCNSC, and PFS were: 61.3%/28.1%, 86.8%/65.2%, and 39.7%/10.2%, respectively. Equivalent PFS was found between morning and afternoon groups (HR 1.27; p = .3). The median OS was 16.5 months. Patients treated in the afternoon had worse survival in the univariate analysis (HR 1.72; p = .05), not confirmed after multivariate analysis (HR 0.92, p = .76). Patients with worse baseline performance status and treatment interruptions showed worse PFS and OS. The proportion of patients that developed grade 3 acute toxicity, pseudo progression, and definitive treatment interruptions were 10.1%, 9.2%, and 7.3%, respectively, and were not affected by RT-TTD. In conclusion, for patients with HGG, there was no difference in PFS and OS between patients treated in the morning or afternoon. Of note, definitive treatment interruptions adversely affected outcomes and should be avoided, especially in patients with low performance status. Based on these clinical findings, high-grade glioma cells may not be the best initial model to be irradiated in order to study the effects of chronotherapy.
Collapse
Affiliation(s)
- Lucas Gomes Sapienza
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Karim Nasra
- Department of Radiology, Michigan State University College of Human Medicine/Ascension Providence Hospital, Southfield, Michigan, USA
| | - Ryan Berry
- Department of Internal Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Leana Danesh
- Department of Internal Medicine, Michigan State University College of Osteopathic Medicine, East Lansing, Michigan, USA
| | - Tania Little
- Department of Internal Medicine, Ascension Providence Hospital, Southfield, MI, USA
| | - Eyad Abu-Isa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Negoro H, Iizumi T, Mori Y, Matsumoto Y, Chihara I, Hoshi A, Sakurai H, Nishiyama H, Ishikawa H. Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. J Clin Med 2020; 9:jcm9072263. [PMID: 32708724 PMCID: PMC7408763 DOI: 10.3390/jcm9072263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose: Worsening lower urinary tract symptoms (LUTS) are a frequent adverse event following proton beam therapy (PBT) for localized prostate cancer. We investigated the differences in worsening LUTS among patients who received PBT at different times of day. Participants and Methods: Among 173 patients who underwent PBT for prostate cancer, 168 patients (median age 68.5 years) completed international prostate symptom score (IPSS) questionnaires and were included. Changes in the IPSS from baseline to the end of PBT were assessed by multiple linear regression analysis for age, National Comprehensive Cancer Network risk classification, androgen deprivation therapy, fractional PBT dose, clinical target volume, severity of IPSS, diabetes, LUTS medication use before PBT, anti-coagulant therapy and radiation time of day (morning (08:30–10:30), around noon (10:31–14:30), and late afternoon (14:31–16:30)). Results: IPSS total score and IPSS-Quality of Life (QoL) score (12 patients were excluded due to missing IPSS-QoL score) increased from eight to 14.9 (p < 0.0001) and from two to four (p < 0.0001), respectively. Time of day (morning) was the only determinant for worsening LUTS (β = −0.24, p < 0.01), voiding subscore (β = −0.22, p < 0.05) and IPSS-QoL (β = −0.27, p < 0.005), and was a determinant in item four (urgency) (β = −0.28, p < 0.005) with age (β = 0.19, p < 0.05). Conclusions: Morning PBT for localized prostate cancer significantly ameliorated worsening LUTS and improved QoL compared with treatment around noon or late afternoon. Chronoradiation therapy for localized prostate cancer may be effective and further research to elucidate the underlying mechanism is warranted.
Collapse
Affiliation(s)
- Hiromitsu Negoro
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-3575, Japan; (I.C.); (A.H.); (H.N.)
- Correspondence: ; Fax: +81-29-853-8854
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8575, Japan; (T.I.); (Y.M.); (Y.M.); (H.S.); (H.I.)
| | - Yutaro Mori
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8575, Japan; (T.I.); (Y.M.); (Y.M.); (H.S.); (H.I.)
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8575, Japan; (T.I.); (Y.M.); (Y.M.); (H.S.); (H.I.)
| | - Ichiro Chihara
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-3575, Japan; (I.C.); (A.H.); (H.N.)
| | - Akio Hoshi
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-3575, Japan; (I.C.); (A.H.); (H.N.)
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8575, Japan; (T.I.); (Y.M.); (Y.M.); (H.S.); (H.I.)
| | - Hiroyuki Nishiyama
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-3575, Japan; (I.C.); (A.H.); (H.N.)
| | - Hitoshi Ishikawa
- Department of Radiation Oncology, University of Tsukuba, Ibaraki 305-8575, Japan; (T.I.); (Y.M.); (Y.M.); (H.S.); (H.I.)
| |
Collapse
|
20
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
21
|
Radiation chronotherapy-clinical impact of treatment time-of-day: a systematic review. J Neurooncol 2019; 145:415-427. [PMID: 31729636 DOI: 10.1007/s11060-019-03332-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Many brain tumor patients suffer from radiation-induced toxicities. Chronotherapy is a treatment modality that utilizes circadian rhythms to optimize the effect on tumor while minimizing negative outcomes on healthy tissue. This review aims to systematically examine the literature on the application of a radiation chronotherapeutic for all cancers and determine the possible advantages of incorporating a circadian-based fixed time-of-day for radiotherapy into CNS cancers. METHODS A systematic review of the literature was conducted in two electronic databases from inception to February 1, 2019. Primary research manuscripts were screened for those related to adult human subjects exposed to ionizing radiation using the chronotherapy technique. RESULTS Nine manuscripts were included in the review from 79 eligible articles. Three were prospective randomized trails and 6 were retrospective reviews. This survey revealed that overall survival and tumor control do not have consistent effects with only 60% and 55.5% of paper which included the variables having some significance, respectively. Treatment symptoms were the primary endpoint for both the prospective trials and were examined in 3 of the retrospective reviews; effects were observed in sensitive tissue for all 5 studies including mucosal linings and skin basal layer. CONCLUSIONS Existing literature suggests that the application of radiation chronotherapy may reduce negative symptom outcome within highly proliferative tissues. Further examination of radiation chronotherapy in well-designed prospective trials and studies in brain tumor patients are merited.
Collapse
|
22
|
Abdollahi H. Radiotherapy dose painting by circadian rhythm based radiomics. Med Hypotheses 2019; 133:109415. [PMID: 31586813 DOI: 10.1016/j.mehy.2019.109415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Radiotherapy dose painting is a new dose delivery technique to achieve higher treatment outcome. In this approach, does is escalated to high progressive regions which are heterogeneous and determined by advanced medical imaging. Radiomics is issued as a feasible image quantification method to reveal tumor heterogeneity by extraction of high throughput mineable texture features. On the other hand, circadian rhythm is a given biological process that studied as a critical factor to obtain more effective treatment outcome. In this study, we hypothesized that radiotherapy dose painting could be enhanced by using circadian rhythm that is determined on the radiomics maps obtained from medical images. This hypothesis is based on the idea which circadian rhythm could change the tumor heterogeneity and therefore image features.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
23
|
Symonds P, Jones GDD. Hot Topics in Radiobiology. Clin Oncol (R Coll Radiol) 2019; 31:269-271. [PMID: 30885531 DOI: 10.1016/j.clon.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Affiliation(s)
- P Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester, UK.
| | - G D D Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|