1
|
Pokhrel NK, Panfil AR, Habib H, Seeniraj S, Joseph A, Rauch D, Cox L, Sprung R, Gilmore PE, Zhang Q, Townsend RR, Yu L, Yilmaz AS, Aurora R, Park W, Ratner L, Weilbaecher KN, Veis DJ. HTLV-1 infected T cells cause bone loss via small extracellular vesicles. J Extracell Vesicles 2024; 13:e12516. [PMID: 39385703 PMCID: PMC11464911 DOI: 10.1002/jev2.12516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
Adult T cell leukaemia (ATL), caused by infection with human T- lymphotropic virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T leads to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted the formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand (RANKL), suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV from osteoclast-active HTLV/T injected over mouse calvaria in the presence of low-dose RANKL caused more osteolysis than osteoclast-inactive sEV or RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukaemia.
Collapse
Affiliation(s)
- Nitin Kumar Pokhrel
- Division of Bone & Mineral Diseases, Musculoskeletal Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Haniya Habib
- Division of Bone & Mineral Diseases, Musculoskeletal Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Shamreethaa Seeniraj
- Division of Bone & Mineral Diseases, Musculoskeletal Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Ancy Joseph
- Division Molecular OncologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Daniel Rauch
- Division Molecular OncologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Linda Cox
- Division of Bone & Mineral Diseases, Musculoskeletal Research CenterWashington University School of MedicineSaint LouisMissouriUSA
| | - Robert Sprung
- Division of EndocrinologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Petra Erdmann Gilmore
- Division of EndocrinologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Qiang Zhang
- Division of EndocrinologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Robert Reid Townsend
- Division of EndocrinologyWashington University School of MedicineSaint LouisMissouriUSA
| | - Lianbo Yu
- College of Public HealthThe Ohio State UniversityColumbusOhioUSA
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, Bioinformatics Shared Resource, Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, School of MedicineSaint Louis UniversitySaint LouisMissouriUSA
| | - William Park
- Department of Molecular Microbiology and Immunology, School of MedicineSaint Louis UniversitySaint LouisMissouriUSA
| | - Lee Ratner
- Division Molecular OncologyWashington University School of MedicineSaint LouisMissouriUSA
| | | | - Deborah J. Veis
- Division of Bone & Mineral Diseases, Musculoskeletal Research CenterWashington University School of MedicineSaint LouisMissouriUSA
- Shriners Hospitals for ChildrenSt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
Tenshin H, Delgado-Calle J, Windle JJ, Roodman GD, Chirgwin JM, Kurihara N. Osteocytes and Paget's Disease of Bone. Curr Osteoporos Rep 2024; 22:266-272. [PMID: 38457001 PMCID: PMC11060996 DOI: 10.1007/s11914-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW To describe the contributions of osteocytes to the lesions in Paget's disease, which are characterized by locally overactive bone resorption and formation. RECENT FINDINGS Osteocytes, the most abundant cells in bone, are altered in Paget's disease lesions, displaying increased size, decreased canalicular length, incomplete differentiation, and less sclerostin expression compared to controls in both patients and mouse models. Pagetic lesions show increased senescent osteocytes that express RANK ligand, which drives osteoclastic bone resorption. Abnormal osteoclasts in Paget's disease secrete abundant IGF1, which enhances osteocyte senescence, contributing to lesion formation. Recent data suggest that osteocytes contribute to lesion formation in Paget's disease by responding to high local IGF1 released from abnormal osteoclasts. Here we describe the characteristics of osteocytes in Paget's disease and their role in bone lesion formation based on recent results with mouse models and supported by patient data.
Collapse
Affiliation(s)
- Hirofumi Tenshin
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - G David Roodman
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - John M Chirgwin
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
- Research Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Noriyoshi Kurihara
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Pokhrel NK, Panfil A, Habib H, Seeniraj S, Joseph A, Rauch D, Cox L, Sprung R, Gilmore PE, Zhang Q, Townsend RR, Yu L, Yilmaz AS, Aurora R, Park W, Ratner L, Weilbaecher KN, Veis DJ. HTLV-1 infected T cells cause bone loss via small extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582779. [PMID: 38496506 PMCID: PMC10942274 DOI: 10.1101/2024.02.29.582779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Adult T cell leukemia (ATL), caused by infection with human T cell leukemia virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T lead to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine RANKL, suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV injected over mouse calvaria in the presence of low dose RANKL caused more osteolysis than RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukemia.
Collapse
|
4
|
Michou L, Gamache P, Guertin JR, Tarride JE, Brown JP, Jean S. Prevalence and incidence of Paget's disease of bone: Temporal trend over 20 years in the province of Quebec, Canada. Bone 2023; 176:116895. [PMID: 37683713 DOI: 10.1016/j.bone.2023.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Paget's disease of bone (PDB) is a focal bone disorder characterized by an increased bone remodeling and an anarchic bone structure. A decline of prevalence and incidence of PDB has been observed in some countries. No epidemiological data are available on PDB in Canada. AIMS We aimed at examining the evolution of the prevalence and incidence of PDB in Quebec (Canada) by analyzing health administrative databases. METHODS PDB case definition relied on one or more hospitalizations, or one or more physician-billing claims with a diagnosis code of PDB. To identify incident cases, a 'run-in' period of four years (1996-1999) was used to exclude prevalent cases. For each fiscal year from 2000 to 2001 to 2019-2020 (population size 2,914,480), crude age and sex-specific prevalence and incidence rates of PDB among individuals aged ≥55 years were determined, and sex-specific rates were also standardized to the 2011 age structure of the Quebec population. Generalized linear regressions were used to test for linear changes in standardized prevalence and incidence rates. RESULTS Over the study period, standardized prevalence of PDB has remained stable in Quebec, from 0.44 % in 2000/2001 to 0.43 % in 2019/2020 (mean change -0.002, p-value = 0.0935). For the 2019-2020 fiscal year, 13,165 men and women had been diagnosed with PDB and prevalence of PDB increased with age. Standardized incidence of PDB has decreased over time from 0.77/1000 in 2000/2001 to 0.28/1000 in 2019-2020 (mean change -0.228/year, p-value<0.0001), the incidence decreasing from 0.82/1000 to 0.37/1000 in men and from 0.76/1000 to 0.22/1000 in women, respectively. This decrease was observed in all age categories. CONCLUSION With the exception of a slight increase in PDB prevalence up to 0.55 % in years 2005 to 2007, the prevalence of PDB has remained stable in Quebec over the past 20 years, 13,160 men and women being currently diagnosed with PDB. The incidence has decreased over time. Our results support the epidemiological changes of PDB reported in other countries.
Collapse
Affiliation(s)
- Laetitia Michou
- CHU de Québec-Université Laval Research Centre, Quebec, Quebec, Canada; Department of Medicine, Université Laval, Quebec, Quebec, Canada.
| | - Philippe Gamache
- Institut national de santé publique du Québec, Quebec, Quebec, Canada
| | - Jason R Guertin
- CHU de Québec-Université Laval Research Centre, Quebec, Quebec, Canada; Department of preventive and social medicine, Université Laval, Quebec, Quebec, Canada
| | - Jean-Eric Tarride
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jacques P Brown
- CHU de Québec-Université Laval Research Centre, Quebec, Quebec, Canada; Department of Medicine, Université Laval, Quebec, Quebec, Canada
| | - Sonia Jean
- Institut national de santé publique du Québec, Quebec, Quebec, Canada; Department of preventive and social medicine, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
5
|
Miyagawa K, Tenshin H, Mulcrone PL, Delgado-Calle J, Subler MA, Windle JJ, Chirgwin JM, Roodman GD, Kurihara N. Osteoclast-derived IGF1 induces RANKL production in osteocytes and contributes to pagetic lesion formation. JCI Insight 2023; 8:e159838. [PMID: 37338990 PMCID: PMC10443794 DOI: 10.1172/jci.insight.159838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
We previously reported that measles virus nucleocapsid protein (MVNP) expression in osteoclasts (OCLs) of patients with Paget disease (PD) or targeted to the OCL lineage in MVNP-transgenic mice (MVNP mice) increases IGF1 production in osteoclasts (OCL-IGF1) and leads to development of PD OCLs and pagetic bone lesions (PDLs). Conditional deletion of Igf1 in OCLs of MVNP mice fully blocked development of PDLs. In this study, we examined whether osteocytes (OCys), key regulators of normal bone remodeling, contribute to PD. OCys in PDLs of patients and of MVNP mice expressed less sclerostin, and had increased RANKL expression compared with OCys in bones from WT mice or normal patients. To test whether increased OCL-IGF1 is sufficient to induce PDLs and PD phenotypes, we generated TRAP-Igf1 (T-Igf1) transgenic mice to determine whether increased IGF1 expression in the absence of MVNP in OCLs is sufficient to induce PDLs and pagetic OCLs. We found that T-Igf1 mice at 16 months of age developed PD OCLs, PDLs, and OCys, with decreased sclerostin and increased RANKL, similar to MVNP mice. Thus, pagetic phenotypes could be induced by OCLs expressing increased IGF1. OCL-IGF1 in turn increased RANKL production in OCys to induce PD OCLs and PDLs.
Collapse
Affiliation(s)
- Kazuaki Miyagawa
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hirofumi Tenshin
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Patrick L. Mulcrone
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jesus Delgado-Calle
- Department of Physiology & Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John M. Chirgwin
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
- Research Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - G. David Roodman
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Noriyoshi Kurihara
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Gheorghe AM, Stanescu LS, Petrova E, Carsote M, Nistor C, Ghemigian A. Paget's Disease of the Bone and Lynch Syndrome: An Exceptional Finding. Diagnostics (Basel) 2023; 13:2101. [PMID: 37370996 DOI: 10.3390/diagnostics13122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Our objective is to present an exceptional case of a patient diagnosed with Paget's disease of the bone (PDB) while being confirmed with Lynch syndrome (LS). A 44-year-old woman was admitted for progressive pain in the left forearm 2 years ago, and was partially relieved since admission by non-steroidal anti-inflammatory drugs. Suggestive imaging findings and increased blood bone turnover markers helped the diagnosis of PDB. She was offered zoledronate 5 mg. She had two more episodes of relapse, and a decision of new medication was taken within the following years (a second dose of zoledronate, as well as denosumab 60 mg). Her family history showed PDB (mother) and colorectal cancer (father). Whole exome sequencing was performed according to the manufacturer's standard procedure (Ion AmpliSeq™ Exome RDY S5 Kit). A heterozygous pathogenic variant in the SQSTM1 gene (c.1175C>T, p.Pro392Leu) was confirmed, consistent with the diagnosis of PDB. Additionally, a heterozygous pathogenic variant of MSH2 gene (c.2634+1G>T) was associated with LS. The patient's first-degree relatives (her brother, one of her two sisters, and her only daughter) underwent specific genetic screening and found negative results, except for her daughter, who tested positive for both pathogenic variants while being clinically asymptomatic. The phenotype influence of either mutation is still an open issue. To our current knowledge, no similar case has been published before. Both genetic defects that led to the two conditions appeared highly transmissible in the patient's family. The patient might have an increased risk of osteosarcoma and chondrosarcoma, both due to PDB and LS, and a review of the literature was introduced in this particular matter. The phenotypic expression of the daughter remains uncertain and is yet to be a lifelong follow-up as the second patient harbouring this unique combination of gene anomalies.
Collapse
Affiliation(s)
- Ana-Maria Gheorghe
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
| | - Laura-Semonia Stanescu
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- PhD Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Eugenia Petrova
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mara Carsote
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, Carol Davila University of Medicine and Pharmacy & Thoracic Surgery Department, Dr. Carol Davila Central Emergency University Military Hospital, 050474 Bucharest, Romania
| | - Adina Ghemigian
- C.I. Parhon National Institute of Endocrinology, 020021 Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Russo S, Scotto di Carlo F, Maurizi A, Fortunato G, Teti A, Licastro D, Settembre C, Mello T, Gianfrancesco F. A mutation in the ZNF687 gene that is responsible for the severe form of Paget's disease of bone causes severely altered bone remodeling and promotes hepatocellular carcinoma onset in a knock-in mouse model. Bone Res 2023; 11:16. [PMID: 36918542 PMCID: PMC10014847 DOI: 10.1038/s41413-023-00250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 03/16/2023] Open
Abstract
Paget's disease (PDB) is a late-onset bone remodeling disorder with a broad spectrum of symptoms and complications. One of the most aggressive forms is caused by the P937R mutation in the ZNF687 gene. Although the genetic involvement of ZNF687 in PDB has been extensively studied, the molecular mechanisms underlying this association remain unclear. Here, we describe the first Zfp687 knock-in mouse model and demonstrate that the mutation recapitulates the PDB phenotype, resulting in severely altered bone remodeling. Through microcomputed tomography analysis, we observed that 8-month-old mutant mice showed a mainly osteolytic phase, with a significant decrease in the trabecular bone volume affecting the femurs and the vertebrae. Conversely, osteoblast activity was deregulated, producing disorganized bone. Notably, this phenotype became pervasive in 16-month-old mice, where osteoblast function overtook bone resorption, as highlighted by the presence of woven bone in histological analyses, consistent with the PDB phenotype. Furthermore, we detected osteophytes and intervertebral disc degeneration, outlining for the first time the link between osteoarthritis and PDB in a PDB mouse model. RNA sequencing of wild-type and Zfp687 knockout RAW264.7 cells identified a set of genes involved in osteoclastogenesis potentially regulated by Zfp687, e.g., Tspan7, Cpe, Vegfc, and Ggt1, confirming its role in this process. Strikingly, in this mouse model, the mutation was also associated with a high penetrance of hepatocellular carcinomas. Thus, this study established an essential role of Zfp687 in the regulation of bone remodeling, offering the potential to therapeutically treat PDB, and underlines the oncogenic potential of ZNF687.
Collapse
Affiliation(s)
- Sharon Russo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Federica Scotto di Carlo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, Naples, Italy
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Tommaso Mello
- Gastroenterology Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, Naples, Italy. .,IRCCS INM Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
8
|
Gennari L, Rendina D, Merlotti D, Cavati G, Mingiano C, Cosso R, Materozzi M, Pirrotta F, Abate V, Calabrese M, Falchetti A. Update on the pathogenesis and genetics of Paget’s disease of bone. Front Cell Dev Biol 2022; 10:932065. [PMID: 36035996 PMCID: PMC9412102 DOI: 10.3389/fcell.2022.932065] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Studies over the past two decades have led to major advances in the pathogenesis of Paget’s disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome “Inclusion Body Myopathy, PDB, Fronto-temporal Dementia,” characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Daniela Merlotti
- Department of Medical Sciences, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Cavati
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Christian Mingiano
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Roberta Cosso
- Unit of Rehabilitation Medicine, San Giuseppe Hospital, Istituto Auxologico Italiano, Piancavallo, Italy
| | - Maria Materozzi
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Filippo Pirrotta
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Veronica Abate
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marco Calabrese
- Department of Medicine Surgery and Neurosciences, University of Siena Italy, Siena, Italy
| | - Alberto Falchetti
- Experimental Research Laboratory on Bone Metabolism, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milano, Italy
- *Correspondence: Luigi Gennari, ; Alberto Falchetti,
| |
Collapse
|
9
|
Keller C, Yorgan TA, Rading S, Schinke T, Karsak M. Impact of the Endocannabinoid System on Bone Formation and Remodeling in p62 KO Mice. Front Pharmacol 2022; 13:858215. [PMID: 35392569 PMCID: PMC8980328 DOI: 10.3389/fphar.2022.858215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Several studies have shown that the G-protein coupled cannabinoid receptor CB2 and its interaction partner p62 are molecularly involved in bone remodeling processes. Pharmacological activation of the CB2 receptor enhanced bone volume in postmenopausal osteoporosis and arthritis models in rodents, whereas knockout or mutation of the p62 protein in aged mice led to Paget’s disease of bone-like conditions. Studies of pharmacological CB2 agonist effects on bone metabolism in p62 KO mice have not been performed to date. Here, we assessed the effect of the CB2-specific agonist JWH133 after a short-term (5 days in 3-month-old mice) or long-term (4 weeks in 6-month-old mice) treatment on structural, dynamic, and cellular bone morphometry obtained by μCT of the femur and histomorphometry of the vertebral bodies in p62 KO mice and their WT littermates in vivo. A genotype-independent stimulatory effect of CB2 on bone formation, trabecular number, and trabecular thickness after short-term treatment and on tissue mineral density after long-term treatment was detected, indicating a weak osteoanabolic function of this CB2 agonist. Moreover, after short-term systemic CB2 receptor activation, we found significant differences at the cellular level in the number of osteoblasts and osteoclasts only in p62 KO mice, together with a weak increase in trabecular number and a decrease in trabecular separation. Long-term treatment showed an opposite JWH133 effect on osteoclasts in WT versus p62 KO animals and decreased cortical thickness only in treated p62 KO mice. Our results provide new insights into CB2 receptor signaling in vivo and suggest that CB2 agonist activity may be regulated by the presence of its macromolecular binding partner p62.
Collapse
Affiliation(s)
- Christina Keller
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Dessay M, Couture E, Maaroufi H, Fournier F, Gagnon E, Droit A, Brown JP, Michou L. Attenuated clinical and osteoclastic phenotypes of Paget's disease of bone linked to the p.Pro392Leu/SQSTM1 mutation by a rare variant in the DOCK6 gene. BMC Med Genomics 2022; 15:41. [PMID: 35241069 PMCID: PMC8895793 DOI: 10.1186/s12920-022-01198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background We identified two families with Paget's disease of bone (PDB) linked to the p.Pro392Leu mutation within the SQSTM1 gene displaying a possible digenism. This study aimed at identifying this second genetic variant cosegregating with the p.Pro392Leu mutation and at characterizing its impact on the clinical and cellular phenotypes of PDB. Methods Whole exome sequencing was performed in one patient per family and two healthy controls. We compared clinical characteristics of PDB in 14 relatives from the two families. The osteoclastic phenotype was compared in in vitro differentiated osteoclasts from 31 participants carrying the DOCK6 and/or SQSTM1 variants. Tridimensional models of SQSTM1 and DOCK6 proteins were generated to evaluate the impact of these variants on their stability and flexibility. Statistical analyses were performed with Graphpad prism. Results Whole-exome sequencing allowed us to identify the p.Val45Ile missense variant in the DOCK6 gene in patients. In both families, the mean age at PDB diagnosis was delayed in pagetic patients carrier of the p.Val45Ile variant alone compared to those carrying the p.Pro392Leu mutation alone (67 vs. 44 years, P = 0.03). Although both p.Val45Ile and p.Pro392Leu variants gave rise to a pagetic phenotype of osteoclast versus healthy controls, the p.Val45Ile variant was found to attenuate the severity of the osteoclastic phenotype of PDB caused by the p.Pro392Leu mutation when both variants were present. The DOCK6 mRNA expression was higher in carriers of the p.Val45Ile variant than in pagetic patients without any mutations and healthy controls. Structural bioinformatics analyses suggested that the p.Pro392Leu mutation might rigidify the UBA domain and thus decrease its possible intramolecular interaction with a novel domain, the serum response factor–transcription factor (SRF-TF)-like domain, whereas the p.Val45Ile variant may decrease SRF-TF-like activity. Conclusion The p.Val45Ile variant may attenuate the severity of the clinical phenotype of PDB in patient carriers of both variants. In vitro, the rare variant of the DOCK6 may have a modifier effect on the p.Pro392Leu mutation, possibly via its effect on the SRF-TF-like. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01198-9.
Collapse
Affiliation(s)
- Mariam Dessay
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Emile Couture
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC, Canada
| | - Frédéric Fournier
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Edith Gagnon
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Arnaud Droit
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada
| | - Jacques P Brown
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada.,Department of Medicine, Université Laval, Quebec, QC, Canada
| | - Laëtitia Michou
- CHU de Québec-Université Laval Research Centre, Quebec City, QC, Canada. .,Department of Medicine, Université Laval, Quebec, QC, Canada. .,Department of Rheumatology-R4774, CHU de Québec-Université Laval, 2705 boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
11
|
Liu ZZ, Hong CG, Hu WB, Chen ML, Duan R, Li HM, Yue T, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Xu L, Tang SY, Hu RG, Xie H. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2021. [PMID: 33143524 DOI: 10.1080/15548627.2020.18392-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; μCT: micro computed tomography.
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wen-Bao Hu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Xu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Rong-Gui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,Institue of Molecular Precision Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
12
|
Liu ZZ, Hong CG, Hu WB, Chen ML, Duan R, Li HM, Yue T, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Xu L, Tang SY, Hu RG, Xie H. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2021. [PMID: 33143524 DOI: 10.1080/15548627.2020.18392861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; μCT: micro computed tomography.
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wen-Bao Hu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Xu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Rong-Gui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institue of Molecular Precision Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
13
|
Barale M, Sigrist S, Bioletto F, Maiorino F, Ghigo E, Mazzetti R, Procopio M. Long-Term Efficacy of Intensive Zoledronate Therapy and Predictors of Retreatment in Paget's Disease of Bone. Calcif Tissue Int 2021; 109:383-392. [PMID: 33876253 PMCID: PMC8429167 DOI: 10.1007/s00223-021-00848-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 11/03/2022]
Abstract
Despite the current debate on the best therapeutic approach, i.e. symptomatic vs intensive strategy, one zoledronate (Zol) infusion is effective in most patients with Paget's disease of bone (PDB), whereas few need retreatment, whose predictors are not well established. We aimed to evaluate long-term efficacy of intensive Zol therapy and predictors of retreatment in PDB. Pagetic complications, clinical and biochemical response to Zol together with frequency of retreatment were retrospectively assessed in forty-seven PDB patients (age, mean ± SD: 72.5 ± 8.9 years, M/F: 24/23; symptomatic/asymptomatic: 16/31). Statistical analysis for retreatment prediction were based on Mann-Whitney U test, Pearson's Χ2 and ROC curve analysis. During seven-year follow-up, all patients achieved pain relief and only one underwent arthroplasty. Bone alkaline phosphatase (BAP) detected three non-responder (6%) and six relapsing (13%) patients needing retreatment. Retreated patients had less old age (66.1 ± 11.2 vs 74.0 ± 7.7 years), higher frequency of polyostotic disease (78% vs 40%) and higher baseline (96.5 ± 24.8 vs 44.9 ± 27.7 mcg/l) and post-Zol nadir BAP levels (24.7 ± 24.1 vs 8.1 ± 4.1 mcg/l) than patients treated once (p < 0.05 for all comparisons). In multivariate analysis both serum baseline and post-Zol nadir BAP significantly predicted retreatment (OR 1.09, 95%CI 1.01-1.17 and 1.29, 1.03-1.62, respectively), with ROC curve analysis showing the greatest accuracies for threshold values of 75.6 and 9.9 mcg/l (sensitivity 88 and 90%, specificity 94 and 86%, AUC 0.92 and 0.93, respectively). Our data in mostly asymptomatic, metabolically active PDB patients treated with intensive Zol therapy show a negligible incidence of pagetic complications and long-term optimal disease control, with BAP being the best predictor of retreatment.
Collapse
Affiliation(s)
- Marco Barale
- Division of Endocrinology, Department of General and Specialty Medicine, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin, Cso Dogliotti, 14, 10126, Turin, Italy.
| | - Sarah Sigrist
- Division of Endocrinology, Diabetology, Osteology and Metabolic Diseases, Kantonsspital St.Gallen, Rorschacher Strasse, 95, 9007, St.Gallen, CH, Switzerland
| | - Fabio Bioletto
- Division of Endocrinology, Department of General and Specialty Medicine, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin, Cso Dogliotti, 14, 10126, Turin, Italy
| | - Federica Maiorino
- Division of Endocrinology, Department of General and Specialty Medicine, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin, Cso Dogliotti, 14, 10126, Turin, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Department of General and Specialty Medicine, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin, Cso Dogliotti, 14, 10126, Turin, Italy
| | - Riccardo Mazzetti
- Radiology Unit, Department of Diagnostic Imaging and Interventional Radiology, Molinette Hospital, University of Turin, Cso Dogliotti, 14, 10126, Turin, Italy
| | - Massimo Procopio
- Division of Endocrinology, Department of General and Specialty Medicine, Diabetology and Metabolic Diseases, Molinette Hospital, University of Turin, Cso Dogliotti, 14, 10126, Turin, Italy
| |
Collapse
|
14
|
Diboun I, Wani S, Ralston SH, Albagha OM. Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status. eLife 2021; 10:65715. [PMID: 33929316 PMCID: PMC8184208 DOI: 10.7554/elife.65715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Paget's disease of bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB-associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease.
Collapse
Affiliation(s)
- Ilhame Diboun
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sachin Wani
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar Me Albagha
- Division of Genomic and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.,Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Liu ZZ, Hong CG, Hu WB, Chen ML, Duan R, Li HM, Yue T, Cao J, Wang ZX, Chen CY, Hu XK, Wu B, Liu HM, Tan YJ, Liu JH, Luo ZW, Zhang Y, Rao SS, Luo MJ, Yin H, Wang YY, Xia K, Xu L, Tang SY, Hu RG, Xie H. Autophagy receptor OPTN (optineurin) regulates mesenchymal stem cell fate and bone-fat balance during aging by clearing FABP3. Autophagy 2020; 17:2766-2782. [PMID: 33143524 DOI: 10.1080/15548627.2020.1839286] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; μCT: micro computed tomography.
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Wen-Bao Hu
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Yue
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao-Ming Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Juan Tan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lang Xu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Rong-Gui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,Institue of Molecular Precision Medicine, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Xiangya Hospital, Changsha, Hunan 410008, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network; Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai 200031, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
16
|
Nagata Y, Miyagawa K, Ohata Y, Petrusca DN, Pagnotti GM, Mohammad KS, Guise TA, Windle JJ, David Roodman G, Kurihara N. Increased S1P expression in osteoclasts enhances bone formation in an animal model of Paget's disease. J Cell Biochem 2020; 122:335-348. [PMID: 33107091 PMCID: PMC7887003 DOI: 10.1002/jcb.29861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 01/11/2023]
Abstract
Paget's disease (PD) is characterized by increased numbers of abnormal osteoclasts (OCLs) that drive exuberant bone formation, but the mechanisms responsible for the increased bone formation remain unclear. We previously reported that OCLs from 70% of PD patients express measles virus nucleocapsid protein (MVNP), and that transgenic mice with targeted expression of MVNP in OCLs (MVNP mice) develop bone lesions and abnormal OCLs characteristic of PD. In this report, we examined if OCL-derived sphingosine-1-phosphate (S1P) contributed to the abnormal bone formation in PD, since OCL-derived S1P can act as a coupling factor to increase normal bone formation via binding S1P-receptor-3 (S1PR3) on osteoblasts (OBs). We report that OCLs from MVNP mice and PD patients expressed high levels of sphingosine kinase-1 (SphK-1) compared with wild-type (WT) mouse and normal donor OCLs. SphK-1 production by MVNP-OCLs was interleukin-6 (IL-6)-dependent since OCLs from MVNP/IL-6-/- mice expressed lower levels of SphK-1. Immunohistochemistry of bone biopsies from a normal donor, a PD patient, WT and MVNP mice confirmed increased expression levels of SphK-1 in OCLs and S1PR3 in OBs of the PD patient and MVNP mice compared with normal donor and WT mice. Further, MVNP-OCLs cocultured with OBs from MVNP or WT mice increased OB-S1PR3 expression and enhanced expression of OB differentiation markers in MVNP-OBs precursors compared with WT-OBs, which was mediated by IL-6 and insulin-like growth factor 1 secreted by MVNP-OCLs. Finally, the addition of an S1PR3 antagonist (VPC23019) to WT or MVNP-OBs treated with WT and MVNP-OCL-conditioned media (CM) blocked enhanced OB differentiation of MVNP-OBs treated with MVNP-OCL-CM. In contrast, the addition of the SIPR3 agonist, VPC24191, to the cultures enhanced osterix and Col-1A expression in MVNP-OBs treated with MVNP-OCL-CM compared with WT-OBs treated with WT-OCL-CM. These results suggest that IL-6 produced by PD-OCLs increases S1P in OCLs and S1PR3 on OBs, to increase bone formation in PD.
Collapse
Affiliation(s)
- Yuki Nagata
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Kazuaki Miyagawa
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Yasuhisa Ohata
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Daniela N Petrusca
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Gabriel M Pagnotti
- Department of Medicine/Endocrinology, Indiana University, Indianapolis, Indiana, USA
| | - Khalid S Mohammad
- Department of Medicine/Endocrinology, Indiana University, Indianapolis, Indiana, USA
| | - Theresa A Guise
- Department of Medicine/Endocrinology, Indiana University, Indianapolis, Indiana, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - G David Roodman
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Noriyoshi Kurihara
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Ralston SH. Bisphosphonates in the management of Paget's disease. Bone 2020; 138:115465. [PMID: 32512166 DOI: 10.1016/j.bone.2020.115465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
The first clinical use of bisphosphonates was in Paget's disease of bone (PDB) when disodium etidronate was found to be effective at suppressing metabolic activity of the disease. Subsequently, PDB became a testing ground for many bisphosphonates using changes in alkaline phosphatase (ALP) as the primary outcome measure in clinical trials. Bisphosphonates are now considered to be the treatment of choice for PDB since they are highly effective at suppressing the elevations in bone turnover that are characteristic of the disease. Short term studies have shown that treatment with alendronate and risedronate can promote formation of lamellar bone in affected sites and improve x-ray appearances in some patients. Bisphosphonates have also been shown to improve bone pain in PDB and within the bisphosphonates, zoledronic acid (ZA) is most likely to give a favourable pain response. Many patients with PDB do not have pain however, even when there is increased metabolic activity and more research is needed to find out why this is the case. The effects of bisphosphonates on complications of PDB such as deformity, pathological fractures and deafness have not been adequately studied since most clinical trials have been short term and have not collected information on these important outcomes. The PRISM and PRISM-EZ studies investigated the long-term effects of bisphosphonates in patients with established PDB using a treat-to-target approach and showed that intensive bisphosphonate therapy aimed at normalising ALP was no more effective than symptom directed treatment with bisphosphonates at preventing complications of PDB. The Zoledronate in the Prevention of Paget's Disease (ZiPP) trial, which is currently in progress, seeks to determine whether early intervention with this potent bisphosphonate might be effective in preventing disease progression. Should the ZiPP study yield positive results, genetic testing coupled to prophylactic bisphosphonate therapy might represent a new indication for these highly effective inhibitors of bone resorption in future years.
Collapse
Affiliation(s)
- Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, UK.
| |
Collapse
|
18
|
Whyte MP, Campeau PM, McAlister WH, Roodman GD, Kurihara N, Nenninger A, Duan S, Gottesman GS, Bijanki VN, Sedighi H, Veis DJ, Mumm S. Juvenile Paget's Disease From Heterozygous Mutation of SP7 Encoding Osterix (Specificity Protein 7, Transcription Factor SP7). Bone 2020; 137:115364. [PMID: 32298837 PMCID: PMC8054448 DOI: 10.1016/j.bone.2020.115364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Juvenile Paget's disease (JPD) became in 1974 the commonly used name for ultra-rare heritable occurrences of rapid bone remodeling throughout of the skeleton that present in infancy or early childhood as fractures and deformity hallmarked biochemically by marked elevation of serum alkaline phosphatase (ALP) activity (hyperphosphatasemia). Untreated, JPD can kill during childhood or young adult life. In 2002, we reported that homozygous deletion of the gene called tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B) encoding osteoprotegerin (OPG) explained JPD in Navajos. Soon after, other bi-allelic loss-of-function TNFRSF11B defects were identified in JPD worldwide. OPG inhibits osteoclastogenesis and osteoclast activity by decoying receptor activator of nuclear factor κ-B (RANK) ligand (RANKL) away from its receptor RANK. Then, in 2014, we reported JPD in a Bolivian girl caused by a heterozygous activating duplication within TNFRSF11A encoding RANK. Herein, we identify mutation of a third gene underlying JPD. An infant girl began atraumatic fracturing of her lower extremity long-bones. Skull deformity and mild hearing loss followed. Our single investigation of the patient, when she was 15 years-of-age, showed generalized osteosclerosis and hyperostosis. DXA revealed a Z-score of +5.1 at her lumbar spine and T-score of +3.3 at her non-dominant wrist. Biochemical studies were consistent with positive mineral balance and several markers of bone turnover were elevated and included striking hyperphosphatasemia. Iliac crest histopathology was consistent with rapid skeletal remodeling. Measles virus transcripts, common in classic Paget's disease of bone, were not detected in circulating mononuclear cells. Then, reportedly, she responded to several months of alendronate therapy with less skeletal pain and correction of hyperphosphatasemia but had been lost to our follow-up. After we detected no defect in TNFRSF11A or B, trio exome sequencing revealed a de novo heterozygous missense mutation (c.926C>G; p.S309W) within SP7 encoding the osteoblast transcription factor osterix (specificity protein 7, transcription factor SP7). Thus, mutation of SP7 represents a third genetic cause of JPD.
Collapse
Affiliation(s)
- Michael P Whyte
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - G David Roodman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nori Kurihara
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Angela Nenninger
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Homer Sedighi
- Department of Plastic Surgery, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Deborah J Veis
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven Mumm
- Center For Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Panuccio VA, Tripepi R. Paget's Disease and Secondary Hyperparathyroidism: Is Healing Possible? Front Cell Dev Biol 2020; 8:399. [PMID: 32548119 PMCID: PMC7273920 DOI: 10.3389/fcell.2020.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Paget bone disease (PDB) is often asymptomatic and incidentally diagnosed. It is a cause of osteoporosis and bone fragility and exposes patients to a high incidence of bone fractures. In Europe the prevalence varies according to the geographical area of origin, and increases with age. In patients with chronic renal disease, the prevalence is unknown and only few cases with PDB have been reported. We present a challenging case in an elderly patient with chronic kidney disease on peritoneal dialysis treatment. Our patients presented extremely high levels of alkaline phosphatase, suggesting a Paget bone disease. Secondary hyperparathyroidism was confirmed by the bone histological examination. The surprising biochemical and clinical response to active vitamin D confirms the well-known role on hyperparathyroidism and may indicate an additional role in the pathogenesis of Paget’s disease.
Collapse
Affiliation(s)
- Vincenzo Antonio Panuccio
- Nephrology, Dialysis and Transplantation Unit G.O.M. "Bianchi Melacrino Morelli", Reggio Calabria, Italy
| | - Rocco Tripepi
- Institute of Clinical Physiology (IFC-CNR), Research Unit of Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
20
|
Abstract
Paget's disease of bone is a localized skeletal disorder, which is more common in England and in countries to which the English migrated. In recent decades, the prevalence in most countries has decreased. A family history of the disorder is present in approximately 15% of patients. Patients may be asymptomatic and may be diagnosed accidently as a consequence of an elevated serum alkaline phosphatase level or a finding on an x-ray or nuclear bone scan. The diagnosis is made by x-ray but nuclear bone scans define the extent of the disease. Salmon calcitonin and bisphosphonate drugs have proven effective, but by far, the most effective therapy is a single 5 mg intravenous infusion of zoledronic acid. This can normalize alkaline phosphatase levels for up to 6.5 years. A variety of gene mutations may predispose individuals to develop the disease but environmental factors such as measles virus likely play an important role.
Collapse
Affiliation(s)
- Frederick R Singer
- Endocrine/Bone Disease Program, John Wayne Cancer Institute at Providence Saint Johns Health Center, Santa Monica, 2200 Santa Monica Blvd. Santa Monica, CA, 90404, USA; Clinical Professor of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Miyagawa K, Ohata Y, Delgado-Calle J, Teramachi J, Zhou H, Dempster DD, Subler MA, Windle JJ, Chirgwin JM, Roodman GD, Kurihara N. Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo. JCI Insight 2020; 5:133113. [PMID: 32078587 PMCID: PMC7213785 DOI: 10.1172/jci.insight.133113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/19/2020] [Indexed: 01/12/2023] Open
Abstract
We report that transgenic mice expressing measles virus nucleocapsid protein (MVNP) in osteoclasts (OCLs) (MVNP mice) are Paget's disease (PD) models and that OCLs from patients with PD and MVNP mice express high levels of OCL-derived IGF1 (OCL-IGF1). To determine OCL-IGF1's role in PD and normal bone remodeling, we generated WT and MVNP mice with targeted deletion of Igf1 in OCLs (Igf1-cKO) and MVNP/Igf1-cKO mice, and we assessed OCL-IGF1's effects on bone mass, bone formation rate, EphB2/EphB4 expression on OCLs and osteoblasts (OBs), and pagetic bone lesions (PDLs). A total of 40% of MVNP mice, but no MVNP/Igf1-cKO mice, had PDLs. Bone volume/tissue volume (BV/TV) was decreased by 60% in lumbar vertebrae and femurs of MVNP/Igf1-cKO versus MVNP mice with PDLs and by 45% versus all MVNP mice tested. Bone formation rates were decreased 50% in Igf1-cKO and MVNP/Igf1-cKO mice versus WT and MVNP mice. MVNP mice had increased EphB2 and EphB4 levels in OCLs/OBs versus WT and MVNP/Igf1-cKO, with none detectable in OCLs/OBs of Igf1-cKO mice. Mechanistically, IL-6 induced the increased OCL-IGF1 in MVNP mice. These results suggest that high OCL-IGF1 levels increase bone formation and PDLs in PD by enhancing EphB2/EphB4 expression in vivo and suggest OCL-IGF1 may contribute to normal bone remodeling.
Collapse
Affiliation(s)
- Kazuaki Miyagawa
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
| | - Yasuhisa Ohata
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
| | - Jesus Delgado-Calle
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
| | - Jumpei Teramachi
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, USA
| | - David D Dempster
- Department of Clinical Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University (VCU), Richmond, Virginia, USA
| | - John M Chirgwin
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
| | - G David Roodman
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Noriyoshi Kurihara
- Division of Hematology and Oncology, Department of Medicine, Indiana University (IU), Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone 2019; 127:315-323. [PMID: 31233933 DOI: 10.1016/j.bone.2019.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
Abstract
Bone is a highly adaptive tissue with regenerative properties that is subject to numerous diseases. Infection is one of the causes of altered bone homeostasis. Bone infection happens subsequently to bone surgery or to systemic spreading of microorganisms. In addition to osteoblasts, osteoclasts (OCs) also constitute cell targets for pathogens. OCs are multinucleated cells that have the exclusive ability to resorb bone mineral tissue. However, the OC is much more than a bone eater. Beyond its role in the control of bone turnover, the OC is an immune cell that produces and senses inflammatory cytokines, ingests microorganisms and presents antigens. Today, increasing evidence shows that several pathogens use OC as a host cell to grow, generating debilitating bone defects. In this review, we exhaustively inventory the bacteria and viruses that infect OC and report the present knowledge in this topic. We point out that most of the microorganisms enhance the bone resorption activity of OC. We notice that pathogen interactions with the OC require further investigation, in particular to validate the OC as a host cell in vivo and to identify the cellular mechanisms involved in altered bone resorption. Thus, we conclude that the OC is a new cell target for pathogens; this new research area paves the way for new therapeutic strategies in the infections causing bone defects.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
23
|
Haridy Y, Witzmann F, Asbach P, Reisz RR. Permian metabolic bone disease revealed by microCT: Paget's disease-like pathology in vertebrae of an early amniote. PLoS One 2019; 14:e0219662. [PMID: 31390345 PMCID: PMC6685605 DOI: 10.1371/journal.pone.0219662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/29/2019] [Indexed: 01/22/2023] Open
Abstract
Bone remodeling is an essential physiological process in growth and healing. In modern systems deviations from normal bone physiology in the form of pathologies aid in the understanding of normal bone metabolism. Here we use external morphology and X-ray microtomography to diagnose and describe a metabolic bone disease in an amniote from the early Permian. The specimen consists of two fused tail vertebrae of a small varanopid from early Permian (289 million years old) cave deposits near Richards Spur, Oklahoma, USA. Inspection of the outer morphology reveals that the fusion encompasses the vertebral centra, zygopophyses and haemal arches, with the fusion zones distinctly swollen on the left side of the specimen. With visualization of its internal structure by microCT, this specimen is diagnosed as a complex metabolic bone disease. The radiological imaging suggests a pathologically high bone turnover rate, as shown by abnormal bone formation in some areas and increased bone resorption in others. This supports that the varanopid suffered from a metabolic bone disease similar to Paget’s disease of bone as seen in humans today, which is linked to both genetic and viral factors. This finding extends the occurrence of Paget-like disease to the early Permian, and–provided a viral component was present–would also be by far the oldest evidence of viral infection in the fossil record.
Collapse
Affiliation(s)
- Yara Haridy
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
- * E-mail:
| | - Florian Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Patrick Asbach
- Institut für Radiologie, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Robert R. Reisz
- International Center of Future Science, Dinosaur Evolution Research Centre, Jilin University, Changchun, China
- Department of Biology University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
24
|
Gennari L, Rendina D, Falchetti A, Merlotti D. Paget's Disease of Bone. Calcif Tissue Int 2019; 104:483-500. [PMID: 30671590 DOI: 10.1007/s00223-019-00522-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/30/2018] [Indexed: 01/04/2023]
Abstract
Paget's disease of bone (PDB) is a chronic and focal bone disorder, characterized by increased osteoclast-mediated bone resorption and a subsequent compensatory increase in bone formation, resulting in a disorganized mosaic of woven and lamellar bone at one or more affected skeletal sites. As a result, bone pain, noticeable deformities, arthritis at adjacent joints, and fractures can occur. In a small proportion of cases neoplastic degeneration in osteosarcoma, or, less frequently, giant cell tumor has been also described at PDB sites. While recent epidemiological evidences clearly indicate a decrease in the prevalence and the severity of PDB, over the past 2 decades there have been consistent advances on the genetic mechanisms of disease. It is now clear that PDB is a genetically heterogeneous disorder, with mutations in at least two different genes (SQSTM1, ZNF687) and more common predisposing variants. As a counterpart to the genetic hypothesis, the focal nature of lesions, the decline in prevalence rates, and the incomplete penetrance of the disease among family members suggest that one or more environmental triggers may play a role in the pathophysiology of PDB. The exact nature of these triggers and how they might interact with the genetic factors are less understood, but recent experimental data from mice models suggest the implication of paramixoviral infections. The clinical management of PDB has also evolved considerably, with the development of potent aminobisphosphonates such as zoledronic acid which, given as a single intravenous infusion, now allows a long-term disease remission in the majority of patients.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - Domenico Rendina
- Department of Medicine and Surgery, Federico II University, Naples, Italy
| | - Alberto Falchetti
- Centro Hercolani and Villa Alba (GVM), 40123 Bologna and EndOsMet, Villa Donatello Private Hospital, 50132, Florence, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
25
|
Wang W, Feng W, Li D, Liu S, Gao Y, Zhao Z, Fu Q, Yan L, Zheng W, Li M, Zheng X. Fusion and hemagglutinin proteins of canine distemper virus promote osteoclast formation through NF-κB dependent and independent mechanisms. Exp Cell Res 2019; 378:171-181. [PMID: 30880029 DOI: 10.1016/j.yexcr.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
Paget's disease (PD) features abnormal osteoclasts (OC) which sharply increase in number and size and then intensely induce bone resorption. The purpose of this study was to determine the direct effects of canine distemper virus (CDV) and its fusion protein and hemagglutinin protein (F + H) on receptor activator of nuclear factor kappa-B ligand (RANKL) induced OC formation in vitro. Immunofluorescence assay, OC morphological and functional detection, intracellular signaling pathway detection, Real-time PCR analysis and ELISA were applied in this study. Immunofluorescence assay provided the conclusive proof that CDV can infect and replicate in RAW264.7 mouse monocyte cell line, primary human peripheral blood mononuclear cells (PBMC) and their further fused OC. Both CDV and F + H significantly promoted OC formation and bone resorption ability induced by RANKL. Meanwhile, intracellular signaling transduction analysis revealed CDV and F + H specifically upregulated the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) induced by RANKL, respectively. Furthermore, without RANKL stimulation, both CDV and F + H slightly induced OC-like cells formation in RAW264.7 cell line even in the presence of NF-κB inhibitor. F + H upregulate OC differentiation and activity through modulation of NF-κB signaling pathway, and induce OC precursor cells merging dependent on the function of glycoproteins themselves. These results meant that F and H proteins play a pivotal role in CDV supporting OC formation. Moreover, this work further provide a new research direction that F and H proteins in CDV should be considered as a trigger during the pathogenesis of PD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Wei Feng
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Dongfang Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Shanshan Liu
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Yuan Gao
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Zhongxin Zhao
- School of Public Health, Shandong University, Jinan, China
| | - Qianyun Fu
- School of Public Health, Shandong University, Jinan, China
| | - Lina Yan
- School of Public Health, Shandong University, Jinan, China
| | - Wenwen Zheng
- School of Public Health, Shandong University, Jinan, China
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| | - Xuexing Zheng
- School of Public Health, Shandong University, Jinan, China.
| |
Collapse
|
26
|
Sanchez-Garrido J, Sancho-Shimizu V, Shenoy AR. Regulated proteolysis of p62/SQSTM1 enables differential control of autophagy and nutrient sensing. Sci Signal 2018; 11:11/559/eaat6903. [PMID: 30514811 DOI: 10.1126/scisignal.aat6903] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multidomain scaffold protein p62 (also called sequestosome-1) is involved in autophagy, antimicrobial immunity, and oncogenesis. Mutations in SQSTM1, which encodes p62, are linked to hereditary inflammatory conditions such as Paget's disease of the bone, frontotemporal dementia (FTD), amyotrophic lateral sclerosis, and distal myopathy with rimmed vacuoles. Here, we report that p62 was proteolytically trimmed by the protease caspase-8 into a stable protein, which we called p62TRM We found that p62TRM, but not full-length p62, was involved in nutrient sensing and homeostasis through the mechanistic target of rapamycin complex 1 (mTORC1). The kinase RIPK1 and caspase-8 controlled p62TRM production and thus promoted mTORC1 signaling. An FTD-linked p62 D329G polymorphism and a rare D329H variant could not be proteolyzed by caspase-8, and these noncleavable variants failed to activate mTORC1, thereby revealing the detrimental effect of these mutations. These findings on the role of p62TRM provide new insights into SQSTM1-linked diseases and mTORC1 signaling.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Vanessa Sancho-Shimizu
- Section of Paediatrics, Imperial College London, London W21 PG, UK.,Section of Virology, Imperial College London, London W21 PG, UK
| | - Avinash R Shenoy
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Sánchez-Martín P, Komatsu M. p62/SQSTM1 - steering the cell through health and disease. J Cell Sci 2018; 131:131/21/jcs222836. [PMID: 30397181 DOI: 10.1242/jcs.222836] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SQSTM1 (also known as p62) is a multifunctional stress-inducible scaffold protein involved in diverse cellular processes. Its functions are tightly regulated through an extensive pattern of post-translational modifications, and include the isolation of cargos degraded by autophagy, induction of the antioxidant response by the Keap1-Nrf2 system, as well as the regulation of endosomal trafficking, apoptosis and inflammation. Accordingly, malfunction of SQSTM1 is associated with a wide range of diseases, including bone and muscle disorders, neurodegenerative and metabolic diseases, and multiple forms of cancer. In this Review, we summarize current knowledge regarding regulation, post-translational modifications and functions of SQSTM1, as well as how they are dysregulated in various pathogenic contexts.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan .,Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
28
|
Kravets I. Paget's Disease of Bone: Diagnosis and Treatment. Am J Med 2018; 131:1298-1303. [PMID: 29752905 DOI: 10.1016/j.amjmed.2018.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Paget's disease of bone is a common bone disorder characterized by disorganized bone remodeling. The most likely etiology is a slow paramyxoviral infection in genetically susceptible individuals; however, the exact cause is unknown. Enhanced bone resorption due to an increased activity of osteoclasts recruits numerous osteoblasts to resorption sites, with large quantities of new bone matrix produced as a result. The accelerated bone resorption and formation are not as closely coupled as in a healthy bone; a disorganized bone tissue is formed. Many patients are asymptomatic; rising serum alkaline phosphatase or incidental finding of characteristic radiographic lesions are often the only diagnostic clues. Common clinical manifestations include bone pain, bowing of long bones, enlarged skull, and hearing loss. An elevated serum alkaline phosphatase level correlates with the disease activity. The diagnosis is confirmed by characteristic radiographic findings and by nuclear scintigraphy of the bone (the most sensitive test). Bisphosphonates, such as zoledronic acid, pamidronate, alendronate, and risedronate, are the mainstay of treatment. Patients who do not tolerate bisphosphonates can be treated with calcitonin.
Collapse
Affiliation(s)
- Igor Kravets
- Assistant Professor of Medicine, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY.
| |
Collapse
|
29
|
Abstract
Paget's disease of bone is a focal disorder of bone remodelling that progresses slowly and leads to changes in the shape and size of affected bones and to skeletal, articular and vascular complications. In some parts of the world it is the second most common bone disorder after osteoporosis though in recent years its prevalence and severity appear to decrease. The disease is easily diagnosed and effectively treated but its pathogenesis remains incompletely understood.
Collapse
|
30
|
Gennari L, Rendina D, Picchioni T, Bianciardi S, Materozzi M, Nuti R, Merlotti D. Paget’s disease of bone: an update on epidemiology, pathogenesis and pharmacotherapy. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1500691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Domenico Rendina
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Tommaso Picchioni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Simone Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Materozzi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Abstract
Paget's disease is a chronic focal high turnover bone disorder that is primarily present in middle-aged or older adults. It seems to be restricted to humans and has no clear parallels with other diseases. Although much has been learnt about its pathology and epidemiology, and treatment is now highly effective we still lack a complete understanding of its etiology and biology. This review focusses on the natural history of the disorder, in particular its changing epidemiology, recent discoveries about its genetic basis and current approaches to diagnosis and treatment. While there is strong evidence for genetic predisposition to Paget's disease, there is also compelling evidence that it is becoming less prevalent, the age of patients at presentation is increasing and that the extent of skeletal involvement is diminishing, implying that there is an important, but as yet unidentified, environmental factor in its etiology. Contemporary patients are typically elderly and have few bones involved. Treatment with potent intravenous bisphosphonates provides prolonged remission and many will require only once in a lifetime treatment.
Collapse
Affiliation(s)
- Tim Cundy
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
32
|
Abstract
Measles is an acute systemic viral disease with initial amplification of infection in lymphoid tissue and subsequent spread over 10–14 days to multiple organs. Failure of the innate response to control initial measles virus (MeV) replication is associated with the ability of MeV to inhibit the induction of type I interferon and interferon-stimulated antiviral genes. Rather, the innate response is characterized by the expression of proteins regulated by nuclear factor kappa B and the inflammasome. With eventual development of the adaptive response, the rash appears with immune cell infiltration into sites of virus replication to initiate the clearance of infectious virus. However, MeV RNA is cleared much more slowly than recoverable infectious virus and remains present in lymphoid tissue for at least 6 months after infection. Persistence of viral RNA and protein suggests persistent low-level replication in lymphoid tissue that may facilitate maturation of the immune response, resulting in lifelong protection from reinfection, while persistence in other tissues (for example, the nervous system) may predispose to development of late disease such as subacute sclerosing panencephalitis. Further studies are needed to identify mechanisms of viral clearance and to understand the relationship between persistence and development of lifelong immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Wen-Hsuan W Lin
- Department of Pathology, Columbia University School of Medicine, New York, NY, 10032, USA
| | - Ashley N Nelson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Laurier E, Amiable N, Gagnon E, Brown JP, Michou L. Effect of a rare genetic variant of TM7SF4 gene on osteoclasts of patients with Paget's disease of bone. BMC MEDICAL GENETICS 2017; 18:133. [PMID: 29145829 PMCID: PMC5693359 DOI: 10.1186/s12881-017-0495-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) is involved in osteoclastogenesis with a key role in mononucleated osteoclasts fusion. We reported in patients with Paget's disease of bone (PDB) a rare variant (rs62620995) in the TM7SF4 gene, encoding for DC-STAMP, which changes a highly conserved amino acid, possibly damaging according to in silico predictions. This study aimed at determining the functional effects of this variant on osteoclast phenotype in PDB. METHODS Fifty ml of peripheral blood were collected in pagetic patients carrier of this variant (n = 4) or not (n = 4) and healthy controls (n = 4). Monocytes were collected after Ficoll gradient and cultured in a medium containing RANKL (40 ng/ml) and hMCSF (25 ng/ml). At the end of the differentiation period, we assessed the osteoclast morphology and bone resorption abilities. We quantified gene expression of SQSTM1, DC-STAMP, OS9, CREB3, LAMP1, OC-STAMP, and NFATC1 genes from cell lysates. Proteins encoded by these genes were investigated by Western Blot. Statistical analyses relied on ANOVA followed by Tukey post-tests. RESULTS After 21 days of differentiation, the mean number of nuclei per multinucleated cell was significantly higher in pagetic patients carrier of the variant than in healthy controls. Bone resorption abilities were not modified by the variant. qPCR and Western Blot analyses did not provide any differences, but DC-STAMP expression was higher in patients carrier of the variant than in patients non carrier. CONCLUSIONS This TM7SF4 rare variant may have an impact on osteoclast morphology and on DC-STAMP expression during osteoclastogenesis. Further analyses are required to understand the role of this variant during osteoclastogenesis in PDB.
Collapse
Affiliation(s)
- Emilie Laurier
- CHU de Québec-Université Laval Research Centre, Quebec, QC Canada
| | - Nathalie Amiable
- CHU de Québec-Université Laval Research Centre, Quebec, QC Canada
| | - Edith Gagnon
- CHU de Québec-Université Laval Research Centre, Quebec, QC Canada
| | - Jacques P. Brown
- CHU de Québec-Université Laval Research Centre, Quebec, QC Canada
- Department of Medicine, Université Laval, Quebec, QC Canada
| | - Laëtitia Michou
- CHU de Québec-Université Laval Research Centre, Quebec, QC Canada
- Department of Medicine, Université Laval, Quebec, QC Canada
- Department of Rheumatology, CHU de Québec-Université Laval, Quebec, QC Canada
- Rhumatologie- R4774, CHU de Québec-Université Laval, 2705 boulevard Laurier, Québec, Québec G1V 4G2 Canada
| |
Collapse
|
34
|
Silva IAL, Conceição N, Gagnon É, Caiado H, Brown JP, Gianfrancesco F, Michou L, Cancela ML. Effect of genetic variants of OPTN in the pathophysiology of Paget's disease of bone. Biochim Biophys Acta Mol Basis Dis 2017; 1864:143-151. [PMID: 28993189 DOI: 10.1016/j.bbadis.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/14/2023]
Abstract
Paget's disease of bone (PDB) is the second most frequent metabolic bone disease after osteoporosis. Genetic factors play an important role in PDB, but to date PDB causing mutations were identified only in the Sequestosome 1 gene at the PDB3 locus. OPTN has been recently associated with PDB, however little is known about the effect of genetic variants in this gene in PDB pathophysiology. By sequencing OPTN in SQSTM1 non-carriers PDB patients we found 16 SNPs in regulatory, coding and non-coding regions. One of those was found to be associated with PDB in our cohort - rs2234968. Our results show that rs2238968 effect may be explained by a change in OPTN splicing that give rise to a predicted truncated protein. We also performed functional studies on the variants located in OPTN promoter - rs3829923 and the rare variant -9906 - to investigate putative regulators of OPTN. Our results show that OPTN expression seems to be regulated by SP1, RXR, E47, and the E2F family. In conclusion, our work suggests a potential pathophysiological role of SNPs in OPTN, giving a new perspective about the regulatory mechanisms of this gene. Ultimately we discovered a new variant associated with PDB in OPTN, reinforcing the relevance of this gene for the development of this bone disease.
Collapse
Affiliation(s)
- Iris A L Silva
- PhD program in Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Édith Gagnon
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Helena Caiado
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; PhD program in Regenerative Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Jacques P Brown
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval and Department of Rheumatology, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council of Italy, 80131 Naples, Italy
| | - Laëtitia Michou
- Research centre of the CHU de Québec-Université Laval, Québec City, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval and Department of Rheumatology, CHU de Québec-Université Laval, Québec City, QC, Canada.
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal.
| |
Collapse
|
35
|
Visconti MR, Usategui-Martín R, Ralston SH. Antibody Response to Paramyxoviruses in Paget's Disease of Bone. Calcif Tissue Int 2017; 101:141-147. [PMID: 28361207 PMCID: PMC5498588 DOI: 10.1007/s00223-017-0265-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/02/2017] [Indexed: 01/29/2023]
Abstract
Paget's disease of bone (PDB) is a common skeletal disorder characterised by focal abnormalities of increased and disorganised bone turnover. Genetic factors play a central role in the pathogenesis of PDB but environmental factors also contribute. Measles virus (MV), respiratory syncytial virus (RSV) and canine distemper virus (CDV) have all been implicated as potential disease triggers but the data are conflicting. Since chronic paramyxovirus infection with measles is known to be accompanied by increased production of antiviral antibodies, we have analysed circulating concentrations of antibodies to MV, CDV, and RSV as well as mumps, rubella and varicella zoster virus (VZV) in 463 patients with PDB and 220 aged and gender-matched controls. We also studied the relation between viral antibody concentrations and various markers of disease severity and extent in 460 PDB patients. A high proportion of cases and controls tested positive for antiviral antibodies but there was no significant difference in circulating antibody concentrations between PDB cases and controls for MV, CDV, RSV, rubella or VZV. However, mumps virus antibody levels were significantly higher in the PDB cases (mean ± SD = 3.1 ± 0.84 vs. 2.62 ± 0.86. p < 0.001). There was no association between disease severity and circulating antibody concentrations to any of the viruses. In conclusion, we found no evidence to suggest that PDB is associated with abnormalities of immune response to measles or other paramyxoviruses, although there was evidence of a greater antibody response to mumps. The results do not support that hypothesis that PDB is associated with a persistent infection with measles or other paramyxoviruses.
Collapse
Affiliation(s)
- Micaela Rios Visconti
- The Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ricardo Usategui-Martín
- The Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart H Ralston
- The Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
36
|
A FKBP5 mutation is associated with Paget's disease of bone and enhances osteoclastogenesis. Exp Mol Med 2017; 49:e336. [PMID: 28524179 PMCID: PMC5454451 DOI: 10.1038/emm.2017.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.
Collapse
|
37
|
Nebot Valenzuela E, Pietschmann P. Epidemiology and pathology of Paget's disease of bone - a review. Wien Med Wochenschr 2017; 167:2-8. [PMID: 27600564 PMCID: PMC5266784 DOI: 10.1007/s10354-016-0496-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Paget's disease of bone (PDB) is a noninflammatory, metabolic, skeletal disorder characterized by localized excessive osteoclastic bone resorption that is followed by compensatory increased osteoblastic activity leading to unstructured, fibroblastic, and biomechanically unstable bone. As a result, there is deformity and enlargement of the bone with a defective and disorganized pattern. Here, we review the epidemiology, etiology, pathology, macrostructure, histology, and quantitative histomorphometry findings of PDB. Hyperosteoclastosis and poor definition of the boundary between cortical and medullary bone are the main histological findings in PDB. Additionally, Pagetic bone is also characterized by hypertrophy and alteration of trabecular parameters.
Collapse
Affiliation(s)
- Elena Nebot Valenzuela
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Physiology, School of Pharmacy, and Institute of Nutrition and Food Technology, University of Granada, Granada, Spain.
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
38
|
Abstract
Paget’s disease of bone (PDB) is the second most common metabolic bone disorder, after osteoporosis. It is characterised by focal areas of increased and disorganised bone turnover, coupled with increased bone formation. This disease usually appears in the late stages of life, being slightly more frequent in men than in women. It has been reported worldwide, but primarily affects individuals of British descent. Majority of PDB patients are asymptomatic, but clinical manifestations include pain, bone deformity and complications, like pathological fractures and deafness. The causes of the disease are poorly understood and it is considered as a complex trait, combining genetic predisposition with environmental factors. Linkage analysis identified SQSTM1, at chromosome 5q35, as directly related to the disease. A number of mutations in this gene have been reported, pP392L being the most common variant among different populations. Most of these variants affect the ubiquitin-associated (UBA) domain of the protein, which is involved in autophagy processes. Genome-wide association studies enlarged the number of loci associated with PDB, and further fine-mapping studies, combined with functional analysis, identified OPTN and RIN3 as causal genes for Paget’s disease. A combination of risk alleles identified by genome-wide association studies led to the development of a score to predict disease severity, which could improve the management of the disease. Further studies need to be conducted to elucidate other important aspects of the trait, such as its focal nature and the epidemiological changes found in some populations. In this review, we summarize the clinical characteristics of the disease and the latest genetic advances to identify susceptibility genes. We also list current available treatments and prospective options.
Collapse
|
39
|
Sundaram K, Sambandam Y, Shanmugarajan S, Rao DS, Reddy SV. Measles virus nucleocapsid protein modulates the Signal Regulatory Protein-β1 (SIRPβ1) to enhance osteoclast differentiation in Paget's disease of bone. Bone Rep 2016; 7:26-32. [PMID: 28840181 PMCID: PMC5558424 DOI: 10.1016/j.bonr.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 10/28/2022] Open
Abstract
Paget's disease of bone (PDB) is a chronic localized bone disorder in an elderly population. Environmental factors such as paramyxovirus are implicated in PDB and measles virus nucleocapsid protein (MVNP) has been shown to induce pagetic osteoclasts (OCLs). However, the molecular mechanisms underlying MVNP stimulation of OCL differentiation in the PDB are unclear. We therefore determined the MVNP regulated gene expression profiling during OCL differentiation. Agilent microarray analysis of gene expression identified high levels of SIRPβ1 (353-fold) expression in MVNP transduced human bone marrow mononuclear cells stimulated with RANKL. Real-time PCR analysis further confirmed that MVNP alone upregulates SIRPβ1 mRNA expression in these cells. Also, bone marrow mononuclear cells derived from patients with PDB showed high levels of SIRPβ1 mRNA expression compared to normal subjects. We further show that MVNP increases SIRPβ1 interaction with DAP12 adaptor protein in the presence and absence of RANKL stimulation. shRNA knockdown of SIRPβ1 expression in normal human bone marrow monocytes decreased the levels of MVNP enhanced p-Syk and c-Fos expression. In addition, SIRPβ1 knockdown significantly decreased MVNP stimulated dendritic cell-specific transmembrane protein (DC-STAMP) and connective tissue growth factor (CTGF) mRNA expression during OCL differentiation. Furthermore, we demonstrated the contribution of SIRPβ1 in MVNP induced OCL formation and bone resorption. Thus, our results suggest that MVNP modulation of SIRPβ1 provides new insights into the molecular mechanisms which control high bone turnover in PDB.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Sakamuri V Reddy
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
40
|
Guay-Bélanger S, Simonyan D, Bureau A, Gagnon E, Albert C, Morissette J, Siris ES, Orcel P, Brown JP, Michou L. Development of a molecular test of Paget's disease of bone. Bone 2016; 84:213-221. [PMID: 26772620 DOI: 10.1016/j.bone.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 01/08/2023]
Abstract
Depending on populations, 15 to 40% of patients have a familial form of Paget's disease of bone (PDB), which is transmitted in an autosomal-dominant mode of inheritance with incomplete penetrance. To date, only SQSTM1 gene mutations have been linked to the disease. Several single nucleotide polymorphisms (SNPs) have been associated with PDB in patient non-carriers of SQSTM1 mutations, but they have minor size effects. The current clinical practice guidelines still recommend to measure total serum alkaline phosphatase (sALP) for PDB screening. However, genetic or bone biomarkers alone may lack sensitivity to detect PDB. Thus, the objective of this study was to develop a molecular test of PDB, combining genetic and bone biomarkers, in order to detect PDB, which is frequently asymptomatic. We genotyped 35 SNPs previously associated with PDB in 305 patients, and 292 healthy controls. In addition, serum levels of 14 bone biomarkers were assayed in 51 patients and 151 healthy controls. Bivariate and multivariate logistic regression models with adjustment for age and sex were fitted to search for a combination of SNPs and/or bone biomarkers that could best detect PDB in patient non-carriers of SQSTM1 mutations. First, a combination of five genetic markers gave rise to the highest area under the ROC curve (AUC) with 95% confidence interval [95% CI] of 0.731 [0.688; 0.773], which allowed us to detect 81.5% of patients with PDB. Second, a combination of two bone biomarkers had an AUC of 0.822 [0.726; 0.918], and was present in 81.5% of patients with PDB. Then, the combination of the five genetic markers and the two bone biomarkers increased the AUC up to 0.892 [0.833; 0.951], and detected 88.5% of patients with PDB. These results suggested that an algorithm integrating first a screen for SQSTM1 gene mutations, followed by either a genetic markers combination or a combined genetic and biochemical markers test in patients non-carrier of any SQSTM1 mutation, may detect the PDB phenotype better than biomarkers already available in the clinical practice.
Collapse
Affiliation(s)
- Sabrina Guay-Bélanger
- CHU de Québec Research Centre, Quebec, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval, Quebec, QC, Canada
| | | | - Alexandre Bureau
- Département de Médecine Sociale et Préventive, Université Laval, Québec, QC, Canada; Centre de Recherche du Centre Intégré Universitaire de Santé et de Services Sociaux de la Capitale-Nationale, Quebec, QC, Canada
| | - Edith Gagnon
- CHU de Québec Research Centre, Quebec, QC, Canada
| | | | | | - Ethel S Siris
- Columbia University Medical Centre, New York City, NY, USA
| | - Philippe Orcel
- Pôle Appareil Locomoteur, Service de Rhumatologie B, Hôpital Lariboisière, AP-HP, Paris, France
| | - Jacques P Brown
- CHU de Québec Research Centre, Quebec, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval, Quebec, QC, Canada; Department of Rheumatology, CHU de Québec, Quebec, QC, Canada
| | - Laëtitia Michou
- CHU de Québec Research Centre, Quebec, QC, Canada; Division of Rheumatology, Department of Medicine, Université Laval, Quebec, QC, Canada; Department of Rheumatology, CHU de Québec, Quebec, QC, Canada.
| |
Collapse
|
41
|
Teramachi J, Nagata Y, Mohammad K, Inagaki Y, Ohata Y, Guise T, Michou L, Brown JP, Windle JJ, Kurihara N, Roodman GD. Measles virus nucleocapsid protein increases osteoblast differentiation in Paget's disease. J Clin Invest 2016; 126:1012-22. [PMID: 26878170 DOI: 10.1172/jci82012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023] Open
Abstract
Paget's disease (PD) is characterized by focal and dramatic bone resorption and formation. Treatments that target osteoclasts (OCLs) block both pagetic bone resorption and formation; therefore, PD offers key insights into mechanisms that couple bone resorption and formation. Here, we evaluated OCLs from 3 patients with PD and determined that measles virus nucleocapsid protein (MVNP) was expressed in 70% of these OCLs. Moreover, transgenic mice with OCL-specific expression of MVNP (MVNP mice) developed PD-like bone lesions that required MVNP-dependent induction of high IL-6 expression levels in OCLs. In contrast, mice harboring a knockin of p62P394L (p62-KI mice), which is the most frequent PD-associated mutation, exhibited increased bone resorption, but not formation. Evaluation of OCLs from MVNP, p62-KI, and WT mice revealed increased IGF1 expression in MVNP-expressing OCLs that resulted from the high IL-6 expression levels in these cells. IL-6, in turn, increased the expression of coupling factors, specifically ephrinB2 on OCLs and EphB4 on osteoblasts (OBs). IGF1 enhanced ephrinB2 expression on OCLs and OB differentiation. Importantly, ephrinB2 and IGF1 levels were increased in MVNP-expressing OCLs from patients with PD and MVNP-transduced human OCLs compared with levels detected in controls. Further, anti-IGF1 or anti-IGF1R blocked Runx2 and osteocalcin upregulation in OBs cocultured with MVNP-expressing OCLs. These results suggest that in PD, MVNP upregulates IL-6 and IGF1 in OCLs to increase ephrinB2-EphB4 coupling and bone formation.
Collapse
|
42
|
Abstract
Paget's disease of bone is generally diagnosed in individuals aged >50 years, usually manifests in one or several bones and is initiated by osteoclast-induced osteolytic lesions. Subsequently, over a period of many years, osteoblastic activity can result in sclerosis and deformation of bone. The prevalence of Paget's disease is highest in the UK and in countries where a large number of residents have ancestors from the UK. Currently, in many countries, the prevalence of the disorder has decreased. A considerable number of affected patients have a family history of Paget's disease and the disorder has an autosomal dominant pattern of inheritance but with incomplete penetrance. A large number of mutations in SQSTM1 (which encodes sequestosome-1; also known as ubiquitin-binding protein p62) seem to account for the susceptibility to develop Paget's disease in some families; the involvement of other genes is currently under investigation. In addition to a genetic cause, environmental factors have been proposed to have a role in the pathogenesis of Paget's disease. Although most evidence has been presented for measles virus as an aetiologic factor, some studies have not confirmed its involvement. The decreasing incidence of Paget's disease, which could be attributed to measles vaccination along with the measles virus nucleocapsid protein induction of Paget's disease lesions in transgenic mice, supports an aetiologic role of the virus.
Collapse
Affiliation(s)
- Frederick R Singer
- John Wayne Cancer Institute, Providence Saint Johns Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| |
Collapse
|
43
|
Abstract
A 59-year-old man suffering from Paget's disease of bone and periodontal disease was examined in anticipation of bisphosphonate treatment. The previous therapy with clodronate resulted ineffective and markers of bone turnover were markedly elevated. Periodontal disease was correctly approached and treated with an excellent outcome. 5 mg zoledronate iv infusion induced a remarkable reduction of bone markers which persisted on time within the normal range. After zoledronate treatment no signs of osteonecrosis of the jaw (ONJ) were observed. A correct management of periodontal disease is mandatory in pagetic patients on bisphosphonate treatment.
Collapse
Affiliation(s)
- Niccolò Nuti
- Odontostomathologic Unit, Policlinico "Le Scotte" University of Siena, Siena, Italy
| | - Marco Ferrari
- Odontostomathologic Unit, Policlinico "Le Scotte" University of Siena, Siena, Italy
| |
Collapse
|
44
|
Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo. Leukemia 2015; 30:390-8. [PMID: 26286116 PMCID: PMC4740189 DOI: 10.1038/leu.2015.229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
Abstract
We reported that p62 (sequestosome 1) serves as a signaling hub in bone marrow stromal cells (BMSC) for the formation of signaling complexes, including NFκB, p38MAPK, and JNK, that are involved in the increased osteoclastogenesis and multiple myeloma (MM) cell growth induced by BMSC that are key contributors to myeloma bone disease (MMBD), and demonstrated that the ZZ-domain of p62 (p62-ZZ) is required for BMSC enhancement of MMBD. We recently identified a novel p62-ZZ inhibitor, XRK3F2, that inhibits MM cell growth and BMSC growth enhancement of human MM cells. In the current study we evaluate the relative specificity of XRK3F2 for p62-ZZ, characterize XRK3F2’s capacity to inhibit growth of primary MM cells and human MM cell lines, and test the in vivo effects of XRK3F2 in the immunocompetent 5TGM1 MM model. We found that XRK3F2 induces dramatic cortical bone formation that is restricted to MM containing bones and blocked the effects and upregulation of TNFα, an OBL differentiation inhibitor that is increased in the MM bone marrow microenvironment and utilizes signaling complexes formed on p62-ZZ, in BMSC. Interestingly, XRK3F2 had no effect on non-MM bearing bone. These results demonstrate that targeting p62 in MM models has profound effects on MMBD.
Collapse
|
45
|
Greenblatt MB, Park KH, Oh H, Kim JM, Shin DY, Lee JM, Lee JW, Singh A, Lee KY, Hu D, Xiao C, Charles JF, Penninger JM, Lotinun S, Baron R, Ghosh S, Shim JH. CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts. ACTA ACUST UNITED AC 2015. [PMID: 26195726 PMCID: PMC4516796 DOI: 10.1084/jem.20150407] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Physiological bone remodeling requires that bone formation by osteoblasts be tightly coupled to bone resorption by osteoclasts. However, relatively little is understood about how this coupling is regulated. Here, we demonstrate that modulation of NF-κB signaling in osteoclasts via a novel activity of charged multivesicular body protein 5 (CHMP5) is a key determinant of systemic rates of bone turnover. A conditional deletion of CHMP5 in osteoclasts leads to increased bone resorption by osteoclasts coupled with exuberant bone formation by osteoblasts, resembling an early onset, polyostotic form of human Paget's disease of bone (PDB). These phenotypes are reversed by haploinsufficiency for Rank, as well as by antiresorptive treatments, including alendronate, zolendronate, and OPG-Fc. Accordingly, CHMP5-deficient osteoclasts display increased RANKL-induced NF-κB activation and osteoclast differentiation. Biochemical analysis demonstrated that CHMP5 cooperates with the PDB genetic risk factor valosin-containing protein (VCP/p97) to stabilize the inhibitor of NF-κBα (IκBα), down-regulating ubiquitination of IκBα via the deubiquitinating enzyme USP15. Thus, CHMP5 tunes NF-κB signaling downstream of RANK in osteoclasts to dampen osteoclast differentiation, osteoblast coupling and bone turnover rates, and disruption of CHMP5 activity results in a PDB-like skeletal disorder.
Collapse
Affiliation(s)
- Matthew B Greenblatt
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Kwang Hwan Park
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hwanhee Oh
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Jung-Min Kim
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Dong Yeon Shin
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Jae Myun Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jin Woo Lee
- Department of Microbiology, Brain Korea 21 PLUS Project for Medical Sciences and Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Anju Singh
- National Center for Advancing Translational Sciences/National Institutes of Health, Rockville, MD 20850
| | - Ki-young Lee
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Dorothy Hu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Julia F Charles
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Sutada Lotinun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115 Department of Physiology and STAR on Craniofacial and Skeletal Disorders, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Jae-Hyuck Shim
- Department of Medicine and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
46
|
Paget disease of bone. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Nash AA, Dalziel RG, Fitzgerald JR. Mechanisms of Cell and Tissue Damage. MIMS' PATHOGENESIS OF INFECTIOUS DISEASE 2015. [PMCID: PMC7158287 DOI: 10.1016/b978-0-12-397188-3.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many infections are associated with damage inflicted either directly or indirectly by invading pathogens. Although some infections do not result in host damage, it is often a natural consequence of the activities of virulence factors produced by the pathogens in order to facilitate survival, and proliferation in the host or onward transmission to another host. The damage often manifests itself as the symptoms of disease which can be useful for diagnosis and for informing appropriate treatments. A wide array of different types of toxins which cause damage to the host are produced by different bacterial pathogens. Here we provide examples of well-characterised toxins and describe their mechanisms of action, and potential function with regard to pathogenesis. In addition we describe indirect damage to the host in the form of inflammation or immunopathology, typically the result of the host's own immune response. Finally, we discuss diarrhoea as a special case and list some of the major pathogens and the toxins associated with this devastating disease.
Collapse
|
48
|
Guay-Bélanger S, Picard S, Gagnon E, Morissette J, Siris ES, Orcel P, Brown JP, Michou L. Detection of SQSTM1/P392L post-zygotic mutations in Paget's disease of bone. Hum Genet 2014; 134:53-65. [PMID: 25241215 PMCID: PMC4282700 DOI: 10.1007/s00439-014-1488-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 09/10/2014] [Indexed: 01/30/2023]
Abstract
Paget’s disease of bone (PDB) is transmitted, in one-third of cases, in an autosomal dominant mode of inheritance with incomplete penetrance. The SQSTM1/P392L germinal mutation is the most common mutation associated with PDB. Given the focal nature of PDB, one team of investigators showed that SQSTM1/P392L somatic mutations could occur in pagetic bone lesions in the absence of germinal mutations detectable in the peripheral blood. The objectives of this study were to develop a reliable method to detect SQSTM1/P392L post-zygotic mutations, by optimizing a polymerase chain reaction (PCR)-clamping method reported to be effective in detecting post-zygotic mutations in peripheral blood from patients with fibrous dysplasia; and to evaluate the frequency of this post-zygotic mutation in PDB patients. We used a locked nucleic acid (LNA) specifically designed for the SQSTM1/P392L mutation, which blocks the wild-type allele amplification during the PCR. DNA from 376 pagetic patients and 297 controls, all without any SQSTM1/P392L germinal mutation, was analyzed. We found that 4.8 % of PDB patients and 1.4 % of controls were carriers of this post-zygotic mutation [p = 0.013, OR 3.68 (1.23; 11.00)]. PDB patient carriers of a post-zygotic mutation had a lower number of affected bones and Renier’s index than patients carrying a germinal mutation, suggesting a lower disease extension. We also demonstrated that this post-zygotic mutation was restricted to the monocytic lineage. These results confirmed that LNA PCR clamping is effective for the detection of SQSTM1/P392L post-zygotic mutations, which may occur in patients with PDB.
Collapse
Affiliation(s)
- Sabrina Guay-Bélanger
- CHU de Québec Research Centre, Rhumatologie-R4774, CHU de Québec, 2705 boulevard Laurier, Québec, QC, G1V 4G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Klinck R, Laberge G, Bisson M, McManus S, Michou L, Brown JP, Roux S. Alternative splicing in osteoclasts and Paget's disease of bone. BMC MEDICAL GENETICS 2014; 15:98. [PMID: 25115182 PMCID: PMC4143580 DOI: 10.1186/s12881-014-0098-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/07/2014] [Indexed: 01/12/2023]
Abstract
Background Mutations in the SQSTM1/p62 gene have been reported in Paget’s disease of bone (PDB), but they are not sufficient to induce the pagetic osteoclast (OC) phenotype. We hypothesized that specific RNA isoforms of OC-related genes may contribute to the overactivity of pagetic OCs, along with other genetic predisposing factors. Methods Alternative splicing (AS) events were studied using a PCR-based screening strategy in OC cultures from 29 patients with PDB and 26 healthy donors (HD), all genotyped for the p62P392L mutation. Primer pairs targeting 5223 characterized AS events were used to analyze relative isoform ratios on pooled cDNA from samples of the four groups (PDB, PDBP392L, HD, HDP392L). Of the 1056 active AS events detected in the screening analysis, 192 were re-analyzed on non-amplified cDNA from each subject of the whole cohort. Results This analysis led to the identification of six AS events significantly associated with PDB, but none with p62P392L. The corresponding genes included LGALS8, RHOT1, CASC4, USP4, TBC1D25, and PIDD. In addition, RHOT1 and LGALS8 genes were upregulated in pagetic OCs, as were CASC4 and RHOT1 genes in the presence of p62P392L. Finally, we showed that the proteins encoded by LGALS8, RHOT1, USP4, TBC1D25, and PIDD were expressed in human OCs. Conclusion This study allowed the identification of hitherto unknown players in OC biology, and our findings of a differential AS in pagetic OCs may generate new concepts in the pathogenesis of PDB.
Collapse
|
50
|
Teramachi J, Zhou H, Subler MA, Kitagawa Y, Galson DL, Dempster DW, Windle JJ, Kurihara N, Roodman GD. Increased IL-6 expression in osteoclasts is necessary but not sufficient for the development of Paget's disease of bone. J Bone Miner Res 2014; 29:1456-65. [PMID: 24339057 PMCID: PMC4361000 DOI: 10.1002/jbmr.2158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023]
Abstract
Measles virus nucleocapsid protein (MVNP) expression in osteoclasts (OCLs) and mutation of the SQSTM1 (p62) gene contribute to the increased OCL activity in Paget's disease (PD). OCLs expressing MVNP display many of the features of PD OCLs. Interleukin-6 (IL-6) production is essential for the pagetic phenotype, because transgenic mice with MVNP targeted to OCLs develop pagetic OCLs and lesions, but this phenotype is absent when MVNP mice are bred to IL-6(-/-) mice. In contrast, mutant p62 expression in OCL precursors promotes receptor activator of NF-κB ligand (RANKL) hyperresponsivity and increased OCL production, but OCLs that form have normal morphology, are not hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3 ), nor produce elevated levels of IL-6. We previously generated p62(P394L) knock-in mice (p62KI) and found that although OCL numbers were increased, the mice did not develop pagetic lesions. However, mice expressing both MVNP and p62KI developed more exuberant pagetic lesions than mice expressing MVNP alone. To examine the role of elevated IL-6 in PD and determine if MVNP mediates its effects primarily through elevation of IL-6, we generated transgenic mice that overexpress IL-6 driven by the tartrate-resistant acid phosphatase (TRAP) promoter (TIL-6 mice) and produce IL-6 at levels comparable to MVNP mice. These were crossed with p62KI mice to determine whether IL-6 overexpression cooperates with mutant p62 to produce pagetic lesions. OCL precursors from p62KI/TIL-6 mice formed greater numbers of OCLs than either p62KI or TIL-6 OCL precursors in response to 1,25-(OH)2 D3 . Histomorphometric analysis of bones from p62KI/TIL-6 mice revealed increased OCL numbers per bone surface area compared to wild-type (WT) mice. However, micro-quantitative CT (µQCT) analysis did not reveal significant differences between p62KI/TIL-6 and WT mice, and no pagetic OCLs or lesions were detected in vivo. Thus, increased IL-6 expression in OCLs from p62KI mice contributes to increased responsivity to 1,25-(OH)2 D3 and increased OCL numbers, but is not sufficient to induce Paget's-like OCLs or bone lesions in vivo.
Collapse
Affiliation(s)
- Jumpei Teramachi
- Department of Medicine, Hematology Oncology, Indiana University, Indianapolis, IN
| | | | | | | | | | | | | | | | | |
Collapse
|