1
|
Ramalho S, Alkan F, Prekovic S, Jastrzebski K, Barberà EP, Hoekman L, Altelaar M, de Heus C, Liv N, Rodríguez-Colman MJ, Yilmaz M, van der Kammen R, Fedry J, de Gooijer MC, Suijkerbuijk SJE, Faller WJ, Silva J. NAC regulates metabolism and cell fate in intestinal stem cells. SCIENCE ADVANCES 2025; 11:eadn9750. [PMID: 39772672 PMCID: PMC11708876 DOI: 10.1126/sciadv.adn9750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Intestinal stem cells (ISCs) face the challenge of integrating metabolic demands with unique regenerative functions. Studies have shown an intricate interplay between metabolism and stem cell capacity; however, it is still not understood how this process is regulated. Combining ribosome profiling and CRISPR screening in intestinal organoids, we identify the nascent polypeptide-associated complex (NAC) as a key mediator of this process. Our findings suggest that NAC is responsible for relocalizing ribosomes to the mitochondria and regulating ISC metabolism. Upon NAC inhibition, intestinal cells show decreased import of mitochondrial proteins, which are needed for oxidative phosphorylation, and, consequently, enable the cell to maintain a stem cell identity. Furthermore, we show that overexpression of NACα is sufficient to drive mitochondrial respiration and promote ISC identity. Ultimately, our results reveal the pivotal role of NAC in regulating ribosome localization, mitochondrial metabolism, and ISC function, providing insights into the potential mechanism behind it.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Katarzyna Jastrzebski
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eric Pintó Barberà
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maria J. Rodríguez-Colman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Mehmet Yilmaz
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob van der Kammen
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mark C. de Gooijer
- Division of Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - William J. Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joana Silva
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
2
|
Vind AC, Wu Z, Firdaus MJ, Snieckute G, Toh GA, Jessen M, Martínez JF, Haahr P, Andersen TL, Blasius M, Koh LF, Maartensson NL, Common JEA, Gyrd-Hansen M, Zhong FL, Bekker-Jensen S. The ribotoxic stress response drives acute inflammation, cell death, and epidermal thickening in UV-irradiated skin in vivo. Mol Cell 2024; 84:4774-4789.e9. [PMID: 39591967 DOI: 10.1016/j.molcel.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
Solar UVB light causes damage to the outermost layer of skin. This insult induces rapid local responses, such as dermal inflammation, keratinocyte cell death, and epidermal thickening, all of which have traditionally been associated with DNA damage response signaling. Another stress response that is activated by UVB light is the ribotoxic stress response (RSR), which depends on the ribosome-associated mitogen-activated protein 3 kinases (MAP3K) ZAKα and culminates in p38 and JNK activation. Using ZAK knockout mice, we here show that it is the RSR that is responsible for the early manifestation of UVB-induced skin inflammation and keratinocyte death and subsequent proliferation in vivo. We also show that the RSR controls both p38-mediated pyroptotic and JNK-mediated apoptotic programmed cell death of human keratinocytes in vitro. In sum, our work highlights that skin cells rely on a cytoplasmic and ribosomal stress signal rather than a nuclear and DNA-templated signal for rapid inflammatory responses to UV exposure.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Zhenzhen Wu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Muhammad Jasrie Firdaus
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Malin Jessen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Peter Haahr
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Thomas Levin Andersen
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, University of Southern Denmark, J.B.Winsløwsvej 25, 5000 Odense, Denmark; Molecular Bone Histology (MBH) lab, Department of Clinical Research, University of Southern Denmark, J.B.Winsløwsvej 25, 5000 Odense, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Li Fang Koh
- A(∗)STAR Skin Research Labs (A(∗)SRL), Agency for Science, Technology and Research (A(∗)STAR), & Skin Research Institute of Singapore (SRIS), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Nina Loeth Maartensson
- Department of Pathology, Diagnostic Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John E A Common
- A(∗)STAR Skin Research Labs (A(∗)SRL), Agency for Science, Technology and Research (A(∗)STAR), & Skin Research Institute of Singapore (SRIS), 8A Biomedical Grove, Singapore 138648, Singapore; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mads Gyrd-Hansen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore; Skin Research Institute of Singapore (SRIS), #17-01 Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Smith PR, Garcia G, Meyer AR, Ryazanov AG, Ma T, Loerch S, Campbell ZT. eEF2K regulates pain through translational control of BDNF. Mol Cell 2024:S1097-2765(24)00948-1. [PMID: 39694034 DOI: 10.1016/j.molcel.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
mRNA translation is integral to pain, yet the key regulatory factors and their target mRNAs are unclear. Here, we uncover a mechanism that bridges noxious insults to multiple phases of translational control in murine sensory neurons. We find that a painful cue triggers repression of peptide chain elongation through activation of elongation factor 2 kinase (eEF2K). Attenuated elongation is sensed by a ribosome-coupled mechanism that triggers the integrated stress response (ISR). Both eEF2K and the ISR are required for pain-associated behaviors in vivo. This pathway simultaneously induces biosynthesis of brain-derived neurotrophic factor (BDNF). Selective blockade of Bdnf translation has analgesic effects in vivo. Our data suggest that precise spatiotemporal regulation of Bdnf translation is critical for appropriate behavioral responses to painful stimuli. Overall, our results demonstrate that eEF2K resides at the nexus of an intricate regulatory network that links painful cues to multiple layers of translational control.
Collapse
Affiliation(s)
- Patrick R Smith
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA
| | - Guadalupe Garcia
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA
| | - Angela R Meyer
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarah Loerch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Chatterjee S, Naeli P, Onar O, Simms N, Garzia A, Hackett A, Coyle K, Harris Snell P, McGirr T, Sawant TN, Dang K, Stoichkova Z, Azam Y, Saunders M, Braun M, Alain T, Tuschl T, McDade S, Longley D, Gkogkas C, Adrain C, Knight JP, Jafarnejad SM. Ribosome Quality Control mitigates the cytotoxicity of ribosome collisions induced by 5-Fluorouracil. Nucleic Acids Res 2024; 52:12534-12548. [PMID: 39351862 PMCID: PMC11551743 DOI: 10.1093/nar/gkae849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024] Open
Abstract
Ribosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment.
Collapse
Affiliation(s)
- Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nicole Simms
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Angela Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kelsey Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tanvi Nitin Sawant
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kexin Dang
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Zornitsa Vasileva Stoichkova
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Yumna Azam
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Mark P Saunders
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Michael Braun
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon S McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Colin Adrain
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - John R P Knight
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| |
Collapse
|
6
|
Adachi Y, Williams AM, Masuda M, Taketani Y, Anderson PJ, Ivanov P. Chronic stress antagonizes formation of Stress Granules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620814. [PMID: 39554104 PMCID: PMC11565828 DOI: 10.1101/2024.10.29.620814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chronic stress mediates cellular changes that can contribute to human disease. However, fluctuations in RNA metabolism caused by chronic stress have been largely neglected in the field. Stress granules (SGs) are cytoplasmic ribonucleoprotein condensates formed in response to stress-induced inhibition of mRNA translation and polysome disassembly. Despite the broad interest in SG assembly and disassembly in response to acute stress, SG assembly in response to chronic stress has not been extensively investigated. In this study, we show that cells pre-conditioned with low dose chronic (24-hour exposure) stresses such as oxidative stress, endoplasmic reticulum stress, mitochondrial stress, and starvation, fail to assemble SGs in response to acute stress. While translation is drastically decreased by acute stress in pre-conditioned cells, polysome profiling analysis reveals the partial preservation of polysomes resistant to puromycin-induced disassembly. We showed that chronic stress slows down the rate of mRNA translation at the elongation phase and triggers phosphorylation of translation elongation factor eEF2. Polysome profiling followed by RNase treatment confirmed that chronic stress induces ribosome stalling. Chronic stress-induced ribosome stalling is distinct from ribosome collisions that are known to trigger a specific stress response pathway. In summary, chronic stress triggers ribosome stalling, which blocks polysome disassembly and SG formation by subsequent acute stress. Significant statements Stress granules (SGs) are dynamic cytoplasmic biocondensates assembled in response to stress-induced inhibition of mRNA translation and polysome disassembly. SGs have been proposed to contribute to the survival of cells exposed to toxic conditions. Although the mechanisms of SG assembly and disassembly in the acute stress response are well understood, the role of SGs in modulating the response to chronic stress is unclear. Here, we show that human cells pre-conditioned with chronic stress fail to assemble SGs in response to acute stress despite inhibition of mRNA translation. Mechanistically, chronic stress induces ribosome stalling, which prevents polysome disassembly and subsequent SG formation. This finding suggests that chronically stressed or diseased human cells may have a dysfunctional SG response that could inhibit cell survival and promote disease.
Collapse
|
7
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F, Chaveroux C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J 2024; 291:4867-4889. [PMID: 38879870 DOI: 10.1111/febs.17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 11/14/2024]
Abstract
Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.
Collapse
Affiliation(s)
- Marie Piecyk
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, University Lyon I, Oullins, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, Plateforme AURAGEN, France
| | - David Laville
- Department of Pathology, Hospices Civils de Lyon, East Hospital Group, Bron, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, University of Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
8
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
9
|
Douglas T, Zhang J, Wu Z, Abdallah K, McReynolds M, Gilbert WV, Iwai K, Peng J, Young LH, Crews CM. An atypical E3 ligase safeguards the ribosome during nutrient stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617692. [PMID: 39416039 PMCID: PMC11482868 DOI: 10.1101/2024.10.10.617692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic stress must be effectively mitigated for the survival of cells and organisms. Ribosomes have emerged as signaling hubs that sense metabolic perturbations and coordinate responses that either restore homeostasis or trigger cell death. As yet, the mechanisms governing these cell fate decisions are not well understood. Here, we report an unexpected role for the atypical E3 ligase HOIL-1 in safeguarding the ribosome. We find HOIL-1 mutations associated with cardiomyopathy broadly sensitize cells to nutrient and translational stress. These signals converge on the ribotoxic stress sentinel ZAKα. Mechanistically, mutant HOIL-1 excludes a ribosome quality control E3 ligase from its functional complex and remodels the ribosome ubiquitin landscape. This quality control failure renders glucose starvation ribotoxic, precipitating a ZAKα-ATF4-xCT-driven noncanonical cell death. We further show HOIL-1 loss exacerbates cardiac dysfunction under pressure overload. These data reveal an unrecognized ribosome signaling axis and a molecular circuit controlling cell fate during nutrient stress.
Collapse
|
10
|
Levy JL, Mirek ET, Rodriguez EM, Tolentino MJ, Zalma BA, Roepke TA, Wek RC, Cao R, Anthony TG. GCN2 drives diurnal patterns in the hepatic integrated stress response and maintains circadian rhythms in whole body metabolism during amino acid insufficiency. Am J Physiol Endocrinol Metab 2024; 327:E563-E576. [PMID: 39196798 PMCID: PMC11482268 DOI: 10.1152/ajpendo.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Disruptions in circadian rhythms are associated with an increased risk of developing metabolic diseases. General control nonderepressible 2 (GCN2), a primary sensor of amino acid insufficiency and activator of the integrated stress response (ISR), has emerged as a conserved regulator of the circadian clock in multiple organisms. The objective of this study was to examine diurnal patterns in hepatic ISR activation in the liver and whole body rhythms in metabolism. We hypothesized that GCN2 activation cues hepatic ISR signaling over a natural 24-h feeding-fasting cycle. To address our objective, wild-type (WT) and whole body Gcn2 knockout (GCN2 KO) mice were housed in metabolic cages and provided free access to either a control or leucine-devoid diet (LeuD) for 8 days in total darkness. On the last day, blood and livers were collected at CT3 (CT = circadian time) and CT15. In livers of WT mice, GCN2 phosphorylation followed a diurnal pattern that was guided by intracellular branched-chain amino acid concentrations (r2 = 0.93). Feeding LeuD to WT mice increased hepatic ISR activation at CT15 only. Diurnal oscillations in hepatic ISR signaling, the hepatic transcriptome including lipid metabolic genes, and triglyceride concentrations were substantially reduced or absent in GCN2 KO mice. Furthermore, mice lacking GCN2 were unable to maintain circadian rhythms in whole body energy expenditure, respiratory exchange ratio, and physical activity when fed LeuD. In conclusion, GCN2 activation functions to maintain diurnal ISR activation in the liver and has a vital role in the mechanisms by which nutrient stress affects whole body metabolism.NEW & NOTEWORTHY This work reveals that the eIF2 kinase GCN2 functions to support diurnal patterns in the hepatic integrated stress response during natural feeding and is necessary to maintain circadian rhythms in energy expenditure, respiratory exchange ratio, and physical activity during amino acid stress.
Collapse
Affiliation(s)
- Jordan L Levy
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Emily T Mirek
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Esther M Rodriguez
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Maria J Tolentino
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Brian A Zalma
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - Tracy G Anthony
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
| |
Collapse
|
11
|
Czajka TF, Vance DJ, Song R, Mantis NJ. A Biparatopic Intrabody Renders Vero Cells Impervious to Ricin Intoxication. Biochemistry 2024; 63:2391-2396. [PMID: 39297955 DOI: 10.1021/acs.biochem.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Expression of camelid-derived, single-domain antibodies (VHHs) within the cytoplasm of mammalian cells as "intrabodies" has opened up novel avenues for medical countermeasures against fast-acting biothreat agents. In this report, we describe a heterodimeric intrabody that renders Vero cells virtually impervious to ricin toxin (RT), a potent Category B ribosome-inactivating protein. The intrabody consists of two structurally defined VHHs that target distinct epitopes on RT's enzymatic subunit (RTA): V9E1 targets RTA's P-stalk recruitment site, and V2A11 targets RTA's active site. Resistance to RT conferred by the biparatopic VHH construct far exceeded that of either of the VHHs alone and effectively inhibited all measurable RT-induced cytotoxicity in vitro. We propose that the targeted delivery of bispecific intrabodies to lung tissues may represent a novel means to shield the airways from the effects of inhalational RT exposure.
Collapse
Affiliation(s)
- Timothy F Czajka
- Department of Biomedical Sciences, University at Albany, Albany, New York 12201, United States
| | - David J Vance
- Department of Biomedical Sciences, University at Albany, Albany, New York 12201, United States
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States of America
| | - Renji Song
- Division of Research, Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States of America
| | - Nicholas J Mantis
- Department of Biomedical Sciences, University at Albany, Albany, New York 12201, United States
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States of America
| |
Collapse
|
12
|
Xie S, Liu H, Zhu S, Chen Z, Wang R, Zhang W, Xian H, Xiang R, Xia X, Sun Y, Long J, Wang Y, Wang M, Wang Y, Yu Y, Huang Z, Lu C, Xu Z, Liu H. Arsenic trioxide and p97 inhibitor synergize against acute myeloid leukemia by targeting nascent polypeptides and activating the ZAKα-JNK pathway. Cancer Gene Ther 2024; 31:1486-1497. [PMID: 39122830 PMCID: PMC11489083 DOI: 10.1038/s41417-024-00818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML. We demonstrated that PML-RARα degradation and ROS upregulation were insufficient to cause APL cell death. Based on the protein synthesis of different AML cells and their sensitivity to ATO, we established a correlation between ATO-induced cell death and protein synthesis. Our findings indicated that ATO induced cell death by damaging nascent polypeptides and causing ribosome stalling, accompanied by the activation of the ZAKα-JNK pathway. Furthermore, ATO-induced stress activated the GCN2-ATF4 pathway, and ribosome-associated quality control cleared damaged proteins with the assistance of p97. Importantly, our data revealed that inhibiting p97 enhanced the effectiveness of ATO in killing AML cells. These explorations paved the way for identifying optimal synthetic lethal drugs to enhance ATO treatment on non-APL AML.
Collapse
Affiliation(s)
- Shufeng Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| | - Hui Liu
- Key Laboratory of Pediatric Hematology & Oncology of the Ministry of Health of China, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Zhihong Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Ruiheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Wenjie Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huajian Xian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Xia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yong Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Jinlan Long
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuanli Wang
- Department of Hematology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Minghui Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yixin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Yaoyifu Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zixuan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Chaoqun Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China
| | - Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai, China.
| |
Collapse
|
13
|
Tiano SML, Landi N, Marano V, Ragucci S, Bianco G, Cacchiarelli D, Swuec P, Silva M, De Cegli R, Sacco F, Di Maro A, Cortese M. Quinoin, type 1 ribosome inactivating protein alters SARS-CoV-2 viral replication organelle restricting viral replication and spread. Int J Biol Macromol 2024:135700. [PMID: 39288862 DOI: 10.1016/j.ijbiomac.2024.135700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
SARS-CoV-2 pandemic clearly demonstrated the lack of preparation against novel and emerging viral diseases. This prompted an enormous effort to identify antiviral to curb viral spread and counteract future pandemics. Ribosome Inactivating Proteins (RIPs) and Ribotoxin-Like Proteins (RL-Ps) are toxin enzymes isolated from edible plants and mushrooms, both able to inactivate protein biosynthesis. In the present study, we combined imaging analyses, transcriptomic and proteomic profiling to deeper investigate the spectrum of antiviral activity of quinoin, type 1 RIP from quinoa seeds. Here, we show that RIPs, but not RL-Ps, acts on a post-entry step and impair SARS-CoV-2 replication, potentially by direct degradation of viral RNA. Interestingly, the inhibitory activity of quinoin was conserved also against other members of the Coronaviridae family suggesting a broader antiviral effect. The integration of mass spectrometry (MS)-based proteomics with transcriptomics, provided a comprehensive picture of the quinoin dependent remodeling of crucial biological processes, highlighting an unexpected impact on lipid metabolism. Thus, direct and indirect mechanisms can contribute to the inhibitory mechanism of quinoin, making RIPs family a promising candidate not only for their antiviral activity, but also as an effective tool to better understand the cellular functions and factors required during SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Sofia Maria Luigia Tiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy
| | - Nicola Landi
- Institute of Crystallography, National Research Council, Caserta, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valentina Marano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Ragucci
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gennaro Bianco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Paolo Swuec
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, Milan, Italy
| | - Malan Silva
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, Milan, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca Sacco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antimo Di Maro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
14
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
15
|
Chen M, Dai S, Chen D, Chen H, Feng N, Zheng D. Unveiling the translational dynamics of lychee (Litchi chinesis Sonn.) in response to cold stress. BMC Genomics 2024; 25:686. [PMID: 38992605 PMCID: PMC11241792 DOI: 10.1186/s12864-024-10591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Cold stress poses a significant threat to the quality and productivity of lychee (Litchi chinensis Sonn.). While previous research has extensively explored the genomic and transcriptomic responses to cold stress in lychee, the translatome has not been thoroughly investigated. This study delves into the translatomic landscape of the 'Xiangjinfeng' cultivar under both control and low-temperature conditions using RNA sequencing and ribosome profiling. We uncovered a significant divergence between the transcriptomic and translatomic responses to cold exposure. Additionally, bioinformatics analyses underscored the crucial role of codon occupancy in lychee's cold tolerance mechanisms. Our findings reveal that the modulation of translation via codon occupancy is a vital strategy to abiotic stress. Specifically, the study identifies ribosome stalling, particularly at the E site AAU codon, as a key element of the translation machinery in lychee's response to cold stress. This work enhances our understanding of the molecular dynamics of lychee's reaction to cold stress and emphasizes the essential role of translational regulation in the plant's environmental adaptability.
Collapse
Affiliation(s)
- Mingming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Shuangfeng Dai
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Daming Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Haomin Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China.
- National Saline-Tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| |
Collapse
|
16
|
Czajka TF, Vance DJ, Song R, Mantis NJ. A Biparatopic Intrabody Renders Vero Cells Impervious to Ricin Intoxication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601761. [PMID: 39005371 PMCID: PMC11244990 DOI: 10.1101/2024.07.02.601761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Expression of camelid-derived, single-domain antibodies (VHHs) within the cytoplasm of mammalian cells as "intrabodies" has opened-up novel avenues for medical countermeasures against fast-acting biothreat agents. In this report, we describe a heterodimeric intrabody that renders Vero cells virtually impervious to ricin toxin (RT), a potent Category B ribosome-inactivating protein (RIP). The intrabody consists of two structurally defined VHHs that target distinct epitopes on RT's enzymatic subunit (RTA): V9E1 targets RTA's P-stalk recruitment site, and V2A11 targets RTA's active site. Resistance to RT conferred by the biparatopic VHH construct far exceeded that of either of the VHHs alone and effectively inhibited all measurable RT-induced cytotoxicty in vitro. We propose that targeted delivery of bispecific intrabodies to lung tissues may represent a novel means to shield the airways from the effects of inhalational RT exposure.
Collapse
Affiliation(s)
- Timothy F. Czajka
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201 United States
| | - David J. Vance
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201 United States
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208
| | - Renji Song
- Division of Research, Wadsworth Center, New York State Department of Health, Albany, NY, 12208
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201 United States
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, 12208
| |
Collapse
|
17
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Xi J, Snieckute G, Martínez JF, Arendrup FSW, Asthana A, Gaughan C, Lund AH, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent ribotoxic stress response by the innate immunity endoribonuclease RNase L. Cell Rep 2024; 43:113998. [PMID: 38551960 PMCID: PMC11090160 DOI: 10.1016/j.celrep.2024.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
RNase L is an endoribonuclease of higher vertebrates that functions in antiviral innate immunity. Interferons induce oligoadenylate synthetase enzymes that sense double-stranded RNA of viral origin leading to the synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L remodels the host cell transcriptome. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A is directly introduced into cells. Here, we report that RNase L activation by 2-5A causes a ribotoxic stress response involving the MAP kinase kinase kinase (MAP3K) ZAKα, MAP2Ks, and the stress-activated protein kinases JNK and p38α. RNase L activation profoundly alters the transcriptome by widespread depletion of mRNAs associated with different cellular functions but also by JNK/p38α-stimulated induction of inflammatory genes. These results show that the 2-5A/RNase L system triggers a protein kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
19
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
20
|
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K. Emerging Role of GCN1 in Disease and Homeostasis. Int J Mol Sci 2024; 25:2998. [PMID: 38474243 PMCID: PMC10931611 DOI: 10.3390/ijms25052998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Daichi Kokubu
- Diet and Well-Being Research Institute, KAGOME, Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga City 840-8502, Saga, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| |
Collapse
|
21
|
Misra J, Carlson KR, Spandau DF, Wek RC. Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions. Nucleic Acids Res 2024; 52:1830-1846. [PMID: 38281137 PMCID: PMC10899773 DOI: 10.1093/nar/gkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Diverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.
Collapse
Affiliation(s)
- Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Dan F Spandau
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Department of Dermatology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| |
Collapse
|
22
|
Rashad S, Al-Mesitef S, Mousa A, Zhou Y, Ando D, Sun G, Fukuuchi T, Iwasaki Y, Xiang J, Byrne SR, Sun J, Maekawa M, Saigusa D, Begley TJ, Dedon PC, Niizuma K. Translational response to mitochondrial stresses is orchestrated by tRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580389. [PMID: 38405984 PMCID: PMC10888749 DOI: 10.1101/2024.02.14.580389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shadi Al-Mesitef
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Abdulrahman Mousa
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku university Graduate school of Medicine, Sendai, Japan
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yuko Iwasaki
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Jingdong Xiang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Codomax Inc, 17 Briden St STE 219, Worcester, MA 01605
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, Albany, NY, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Mordente K, Ryder L, Bekker-Jensen S. Mechanisms underlying sensing of cellular stress signals by mammalian MAP3 kinases. Mol Cell 2024; 84:142-155. [PMID: 38118452 DOI: 10.1016/j.molcel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.
Collapse
Affiliation(s)
- Kelly Mordente
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
24
|
Snieckute G, Ryder L, Vind AC, Wu Z, Arendrup FS, Stoneley M, Chamois S, Martinez-Val A, Leleu M, Dreos R, Russell A, Gay DM, Genzor AV, Choi BSY, Basse AL, Sass F, Dall M, Dollet LCM, Blasius M, Willis AE, Lund AH, Treebak JT, Olsen JV, Poulsen SS, Pownall ME, Jensen BAH, Clemmensen C, Gerhart-Hines Z, Gatfield D, Bekker-Jensen S. ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging. Science 2023; 382:eadf3208. [PMID: 38060659 DOI: 10.1126/science.adf3208] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.
Collapse
Affiliation(s)
- Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zhenzhen Wu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sébastien Chamois
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ana Martinez-Val
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marion Leleu
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - David Michael Gay
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Beatrice So-Yun Choi
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lucile Chantal Marie Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper Velgaard Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
25
|
López AR, Jørgensen MH, Havelund JF, Arendrup FS, Kolapalli SP, Nielsen TM, Pais E, Beese CJ, Abdul-Al A, Vind AC, Bartek J, Bekker-Jensen S, Montes M, Galanos P, Faergeman N, Happonen L, Frankel LB. Autophagy-mediated control of ribosome homeostasis in oncogene-induced senescence. Cell Rep 2023; 42:113381. [PMID: 37930887 DOI: 10.1016/j.celrep.2023.113381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a persistent anti-proliferative response that acts as a barrier against malignant transformation. During OIS, cells undergo dynamic remodeling, which involves alterations in protein and organelle homeostasis through autophagy. Here, we show that ribosomes are selectively targeted for degradation by autophagy during OIS. By characterizing senescence-dependent alterations in the ribosomal interactome, we find that the deubiquitinase USP10 dissociates from the ribosome during the transition to OIS. This release of USP10 leads to an enhanced ribosome ubiquitination, particularly of small subunit proteins, including lysine 275 on RPS2. Both reinforcement of the USP10-ribosome interaction and mutation of RPS2 K275 abrogate ribosomal delivery to lysosomes without affecting bulk autophagy. We show that the selective recruitment of ubiquitinated ribosomes to autophagosomes is mediated by the p62 receptor. While ribophagy is not required for the establishment of senescence per se, it contributes to senescence-related metabolome alterations and facilitates the senescence-associated secretory phenotype.
Collapse
Affiliation(s)
| | | | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Frederic S Arendrup
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | - Eva Pais
- Danish Cancer Institute, 2100 Copenhagen, Denmark
| | | | | | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jiri Bartek
- Danish Cancer Institute, 2100 Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, 171 21 Stockholm, Sweden
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marta Montes
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Nils Faergeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Lisa B Frankel
- Danish Cancer Institute, 2100 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
26
|
Kelly JA, Dinman JD. Shiftless Is a Novel Member of the Ribosome Stress Surveillance Machinery That Has Evolved to Play a Role in Innate Immunity and Cancer Surveillance. Viruses 2023; 15:2296. [PMID: 38140537 PMCID: PMC10747187 DOI: 10.3390/v15122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A longstanding paradox in molecular biology has centered on the question of how very long proteins are synthesized, despite numerous measurements indicating that ribosomes spontaneously shift reading frame at rates that should preclude their ability completely translate their mRNAs. Shiftless (SFL; C19orf66) was originally identified as an interferon responsive gene encoding an antiviral protein, indicating that it is part of the innate immune response. This activity is due to its ability to bind ribosomes that have been programmed by viral sequence elements to shift reading frame. Curiously, Shiftless is constitutively expressed at low levels in mammalian cells. This study examines the effects of altering Shiftless homeostasis, revealing how it may be used by higher eukaryotes to identify and remove spontaneously frameshifted ribosomes, resolving the apparent limitation on protein length. Data also indicate that Shiftless plays a novel role in the ribosome-associated quality control program. A model is proposed wherein SFL recognizes and arrests frameshifted ribosomes, and depending on SFL protein concentrations, either leads to removal of frameshifted ribosomes while leaving mRNAs intact, or to mRNA degradation. We propose that SFL be added to the growing pantheon of proteins involved in surveilling translational fidelity and controlling gene expression in higher eukaryotes.
Collapse
Affiliation(s)
| | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
27
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Iyer KV, Müller M, Tittel LS, Winz ML. Molecular Highway Patrol for Ribosome Collisions. Chembiochem 2023; 24:e202300264. [PMID: 37382189 DOI: 10.1002/cbic.202300264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions.
Collapse
Affiliation(s)
- Kaushik Viswanathan Iyer
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Max Müller
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Lena Sophie Tittel
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Marie-Luise Winz
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
29
|
Xi J, Snieckute G, Asthana A, Gaughan C, Bekker-Jensen S, Silverman RH. Initiation of a ZAKα-dependent Ribotoxic Stress Response by the Innate Immunity Endoribonuclease RNase L. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562082. [PMID: 37873202 PMCID: PMC10592832 DOI: 10.1101/2023.10.12.562082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
RNase L is a regulated endoribonuclease in higher vertebrates that functions in antiviral innate immunity. Interferons induce OAS enzymes that sense double-stranded RNA of viral origin leading to synthesis of 2',5'-oligoadenylate (2-5A) activators of RNase L. However, it is unknown precisely how RNase L inhibits viral infections. To isolate effects of RNase L from other effects of double-stranded RNA or virus, 2-5A was directly introduced into cells. Here we report that RNase L activation by 2-5A causes a ribotoxic stress response that requires the ribosome-associated MAP3K, ZAKα. Subsequently, the stress-activated protein kinases (SAPK) JNK and p38α are phosphorylated. RNase L activation profoundly altered the transcriptome by widespread depletion of mRNAs associated with different cellular functions, but also by SAPK-dependent induction of inflammatory genes. Our findings show that 2-5A is a ribotoxic stressor that causes RNA damage through RNase L triggering a ZAKα kinase cascade leading to proinflammatory signaling and apoptosis.
Collapse
Affiliation(s)
- Jiajia Xi
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Abhishek Asthana
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Christina Gaughan
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert H Silverman
- Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
30
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555507. [PMID: 37693516 PMCID: PMC10491309 DOI: 10.1101/2023.09.01.555507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
31
|
Vind AC, Snieckute G, Bekker-Jensen S, Blasius M. Run, Ribosome, Run: From Compromised Translation to Human Health. Antioxid Redox Signal 2023; 39:336-350. [PMID: 36825529 DOI: 10.1089/ars.2022.0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Translation is an essential cellular process, and diverse signaling pathways have evolved to deal with problems arising during translation. Erroneous stalls and unresolved ribosome collisions are implicated in many pathologies, including neurodegeneration and metabolic dysregulation. Recent Advances: Many proteins involved in detection and clearance of stalled and collided ribosomes have been identified and studied in detail. Ribosome profiling techniques have revealed extensive and nonprogrammed ribosome stalling and leaky translation into the 3' untranslated regions of mRNAs. Impairment of protein synthesis has been linked to aging in yeast and mice. Critical Issues: Ribosomes act as sensors of cellular states, but the molecular mechanisms, as well as physiological relevance, remain understudied. Most of our current knowledge stems from work in yeast and simple multicellular organisms such as Caenorhabditis elegans, while we are only beginning to comprehend the role of ribosome surveillance in higher organisms. As an example, the ribotoxic stress response, a pathway responding to global translational stress, has been studied mostly in response to small translation inhibitors and ribotoxins, and has only recently been explored in physiological settings. This review focuses on ribosome-surveillance pathways and their importance for cell and tissue homeostasis upon naturally occurring insults such as oxidative stress, nutrient deprivation, and viral infections. Future Directions: A better insight into the physiological roles of ribosome-surveillance pathways and their crosstalk could lead to an improved understanding of human pathologies and aging. Antioxid. Redox Signal. 39, 336-350.
Collapse
Affiliation(s)
- Anna Constance Vind
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Goda Snieckute
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Blasius
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Wek RC, Anthony TG, Staschke KA. Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response. Antioxid Redox Signal 2023; 39:351-373. [PMID: 36943285 PMCID: PMC10443206 DOI: 10.1089/ars.2022.0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Significance: Organisms adapt to changing environments by engaging cellular stress response pathways that serve to restore proteostasis and enhance survival. A primary adaptive mechanism is the integrated stress response (ISR), which features phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2). Four eIF2α kinases respond to different stresses, enabling cells to rapidly control translation to optimize management of resources and reprogram gene expression for stress adaptation. Phosphorylation of eIF2 blocks its guanine nucleotide exchange factor, eIF2B, thus lowering the levels of eIF2 bound to GTP that is required to deliver initiator transfer RNA (tRNA) to ribosomes. While bulk messenger RNA (mRNA) translation can be sharply lowered by heightened phosphorylation of eIF2α, there are other gene transcripts whose translation is unchanged or preferentially translated. Among the preferentially translated genes is ATF4, which directs transcription of adaptive genes in the ISR. Recent Advances and Critical Issues: This review focuses on how eIF2α kinases function as first responders of stress, the mechanisms by which eIF2α phosphorylation and other stress signals regulate the exchange activity of eIF2B, and the processes by which the ISR triggers differential mRNA translation. To illustrate the synergy between stress pathways, we describe the mechanisms and functional significance of communication between the ISR and another key regulator of translation, mammalian/mechanistic target of rapamycin complex 1 (mTORC1), during acute and chronic amino acid insufficiency. Finally, we discuss the pathological conditions that stem from aberrant regulation of the ISR, as well as therapeutic strategies targeting the ISR to alleviate disease. Future Directions: Important topics for future ISR research are strategies for modulating this stress pathway in disease conditions and drug development, molecular processes for differential translation and the coordinate regulation of GCN2 and other stress pathways during physiological and pathological conditions. Antioxid. Redox Signal. 39, 351-373.
Collapse
Affiliation(s)
- Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Ryder L, Arendrup FS, Martínez JF, Snieckute G, Pecorari C, Shah RA, Lund AH, Blasius M, Bekker-Jensen S. Nitric oxide-induced ribosome collision activates ribosomal surveillance mechanisms. Cell Death Dis 2023; 14:467. [PMID: 37495584 PMCID: PMC10372077 DOI: 10.1038/s41419-023-05997-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Impairment of protein translation can cause stalling and collision of ribosomes and is a signal for the activation of ribosomal surveillance and rescue pathways. Despite clear evidence that ribosome collision occurs stochastically at a cellular and organismal level, physiologically relevant sources of such aberrations are poorly understood. Here we show that a burst of the cellular signaling molecule nitric oxide (NO) reduces translational activity and causes ribosome collision in human cell lines. This is accompanied by activation of the ribotoxic stress response, resulting in ZAKα-mediated activation of p38 and JNK kinases. In addition, NO production is associated with ZNF598-mediated ubiquitination of the ribosomal protein RPS10 and GCN2-mediated activation of the integrated stress response, which are well-described responses to the collision of ribosomes. In sum, our work implicates a novel role of NO as an inducer of ribosome collision and activation of ribosomal surveillance mechanisms in human cells.
Collapse
Affiliation(s)
- Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Frederic Schrøder Arendrup
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - José Francisco Martínez
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Chiara Pecorari
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Riyaz Ahmad Shah
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
34
|
Barros GC, Guerrero S, Silva GM. The central role of translation elongation in response to stress. Biochem Soc Trans 2023; 51:959-969. [PMID: 37318088 PMCID: PMC11160351 DOI: 10.1042/bst20220584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Protein synthesis is essential to support homeostasis, and thus, must be highly regulated during cellular response to harmful environments. All stages of translation are susceptible to regulation under stress, however, the mechanisms involved in translation regulation beyond initiation have only begun to be elucidated. Methodological advances enabled critical discoveries on the control of translation elongation, highlighting its important role in translation repression and the synthesis of stress-response proteins. In this article, we discuss recent findings on mechanisms of elongation control mediated by ribosome pausing and collisions and the availability of tRNAs and elongation factors. We also discuss how elongation intersects with distinct modes of translation control, further supporting cellular viability and gene expression reprogramming. Finally, we highlight how several of these pathways are reversibly regulated, emphasizing the dynamics of translation control during stress-response progression. A comprehensive understanding of translation regulation under stress will produce fundamental knowledge of protein dynamics while opening new avenues and strategies to overcome dysregulated protein production and cellular sensitivity to stress.
Collapse
Affiliation(s)
| | | | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC, USA
- Lead contact
| |
Collapse
|
35
|
Johansen VBI, Snieckute G, Vind AC, Blasius M, Bekker-Jensen S. Computational and Functional Analysis of Structural Features in the ZAKα Kinase. Cells 2023; 12:cells12060969. [PMID: 36980309 PMCID: PMC10047201 DOI: 10.3390/cells12060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The kinase ZAKα acts as the proximal sensor of translational impairment and ribotoxic stress, which results in the activation of the MAP kinases p38 and JNK. Despite recent insights into the functions and binding partners of individual protein domains in ZAKα, the mechanisms by which ZAKα binds ribosomes and becomes activated have remained elusive. Here, we highlight a short, thrice-repeated, and positively charged peptide motif as critical for the ribotoxic stress-sensing function of the Sensor (S) domain of ZAKα. We use this insight to demonstrate that the mutation of the SAM domain uncouples ZAKα activity from ribosome binding. Finally, we use 3D structural comparison to identify and functionally characterize an additional folded domain in ZAKα with structural homology to YEATS domains. These insights allow us to formulate a model for ribosome-templated ZAKα activation based on the re-organization of interactions between modular protein domains. In sum, our work both advances our understanding of the protein domains and 3D architecture of the ZAKα kinase and furthers our understanding of how the ribotoxic stress response is activated.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
36
|
von der Haar T, Mulroney TE, Hedayioglu F, Kurusamy S, Rust M, Lilley KS, Thaventhiran JE, Willis AE, Smales CM. Translation of in vitro-transcribed RNA therapeutics. Front Mol Biosci 2023; 10:1128067. [PMID: 36845540 PMCID: PMC9943971 DOI: 10.3389/fmolb.2023.1128067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.
Collapse
Affiliation(s)
- Tobias von der Haar
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Thomas E. Mulroney
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Hedayioglu
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Sathishkumar Kurusamy
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Maria Rust
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Thaventhiran
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Anne E. Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - C. Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
37
|
Matsuo Y, Inada T. Co-Translational Quality Control Induced by Translational Arrest. Biomolecules 2023; 13:biom13020317. [PMID: 36830686 PMCID: PMC9953336 DOI: 10.3390/biom13020317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic mutations, mRNA processing errors, and lack of availability of charged tRNAs sometimes slow down or completely stall translating ribosomes. Since an incomplete nascent chain derived from stalled ribosomes may function anomalously, such as by forming toxic aggregates, surveillance systems monitor every step of translation and dispose of such products to prevent their accumulation. Over the past decade, yeast models with powerful genetics and biochemical techniques have contributed to uncovering the mechanism of the co-translational quality control system, which eliminates the harmful products generated from aberrant translation. We here summarize the current knowledge of the molecular mechanism of the co-translational quality control systems in yeast, which eliminate the incomplete nascent chain, improper mRNAs, and faulty ribosomes to maintain cellular protein homeostasis.
Collapse
|