1
|
Xie AX, Tansey W, Reznik E. UnitedMet harnesses RNA-metabolite covariation to impute metabolite levels in clinical samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307903. [PMID: 38826234 PMCID: PMC11142294 DOI: 10.1101/2024.05.24.24307903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Comprehensively studying metabolism requires the measurement of metabolite levels. However, in contrast to the broad availability of gene expression data, metabolites are rarely measured in large molecularly-defined cohorts of tissue samples. To address this basic barrier to metabolic discovery, we propose a Bayesian framework ("UnitedMet") which leverages the empirical strength of RNA-metabolite covariation to impute otherwise unmeasured metabolite levels from widely available transcriptomic data. We demonstrate that UnitedMet is equally capable of imputing whole pool sizes as well as the outcomes of isotope tracing experiments. We apply UnitedMet to investigate the metabolic impact of driver mutations in kidney cancer, identifying a novel association between BAP1 and a highly oxidative tumor phenotype. We similarly apply UnitedMet to determine that advanced kidney cancers upregulate oxidative phosphorylation relative to early-stage disease, that oxidative metabolism in kidney cancer is associated with inferior outcomes to combination therapy, and that kidney cancer metastases themselves demonstrate elevated oxidative phosphorylation relative to primary tumors. UnitedMet therefore enables the assessment of metabolic phenotypes in contexts where metabolite measurements were not taken or are otherwise infeasible, opening new avenues for the generation and evaluation of metabolite-centered hypotheses. UnitedMet is open source and publicly available ( https://github.com/reznik-lab/UnitedMet ).
Collapse
|
2
|
Narváez-Bandera I, Lui A, Mekonnen YA, Rubio V, Sulman N, Wilson C, Ackerman HD, Ospina OE, Gonzalez-Calderon G, Flores E, Li Q, Chen A, Fridley B, Stewart P. iModMix: Integrative Module Analysis for Multi-omics Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623208. [PMID: 39605665 PMCID: PMC11601443 DOI: 10.1101/2024.11.12.623208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The integration of metabolomics with other omics ("multi-omics") offers complementary insights into disease biology. However, this integration remains challenging due to the fragmented landscape of current methodologies, which often require programming experience or bioinformatics expertise. Moreover, existing approaches are limited in their ability to accommodate unidentified metabolites, resulting in the exclusion of a significant portion of data from untargeted metabolomics experiments. Here, we introduce iModMix, a novel approach that uses a graphical lasso to construct network modules for integration and analysis of multi-omics data. iModMix uses a horizontal integration strategy, allowing metabolomics data to be analyzed alongside proteomics or transcriptomics to explore complex molecular associations within biological systems. Importantly, it can incorporate both annotated and unidentified metabolites, addressing a key limitation of existing methodologies. iModMix is available as a user-friendly R Shiny application that requires no programming experience (https://imodmix.moffitt.org), and it includes example data from several publicly available multi-omic studies for exploration. An R package is available for advanced users (https://github.com/biodatalab/iModMix). Availability and implementation Shiny application: https://imodmix.moffitt.org. The R package and source code: https://github.com/biodatalab/iModMix.
Collapse
Affiliation(s)
- Isis Narváez-Bandera
- Department of Biostatistics and Bioinformatics, Children’s Mercy Research Institute, Kansas City
| | - Ashley Lui
- Department of Molecular Oncology, Children’s Mercy Research Institute, Kansas City
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Children’s Mercy Research Institute, Kansas City
| | | | - Vanessa Rubio
- Department of Molecular Oncology, Children’s Mercy Research Institute, Kansas City
| | - Noah Sulman
- Health Informatics Institute, University of South Florida, Children’s Mercy Research Institute, Kansas City
| | - Christopher Wilson
- Department of Biostatistics and Bioinformatics, Children’s Mercy Research Institute, Kansas City
| | - Hayley D. Ackerman
- Department of Molecular Oncology, Children’s Mercy Research Institute, Kansas City
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Children’s Mercy Research Institute, Kansas City
| | - Oscar E. Ospina
- Department of Biostatistics and Bioinformatics, Children’s Mercy Research Institute, Kansas City
| | | | - Elsa Flores
- Department of Molecular Oncology, Children’s Mercy Research Institute, Kansas City
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Children’s Mercy Research Institute, Kansas City
| | - Qian Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Children’s Mercy Research Institute, Kansas City
| | - Ann Chen
- Huntsman Cancer Institute, University of Utah, Children’s Mercy Research Institute, Kansas City
| | - Brooke Fridley
- Division of Health Services and Outcome Research, Children’s Mercy Research Institute, Kansas City
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, Children’s Mercy Research Institute, Kansas City
| |
Collapse
|
3
|
Zhang Y, Li J, Feng L, Cheng Y, Shi L, Yang Q, Wang Z, Yi X, Zhong G, Sun X, Cheng Z, Guo M. STAC3 as a poor prognostic biomarker in renal clear cell carcinoma: relationship with immune infiltration. Am J Cancer Res 2024; 14:3294-3316. [PMID: 39113874 PMCID: PMC11301302 DOI: 10.62347/eaqw3113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Calcium ions (Ca2+) are crucial in tumorigenesis and progression, with their elevated levels indicating a negative prognosis in Kidney Renal Clear Cell Carcinoma (KIRC). The influence of genes regulating calcium ions on the survival outcomes of KIRC patients and their interaction with the tumor's immune microenvironment is yet to be fully understood. This study analyzed gene expression data from KIRC tumor and adjacent non-tumor tissues using the TCGA-KIRC dataset to pinpoint genes that are differentially expressed in KIRC. Intersection of these genes with those regulating calcium ions highlighted specific calcium ion-regulating genes that exhibit differential expression in KIRC. Subsequently, prognostic risk models were developed using univariate Cox and LASSO-Cox regression analyses to verify their diagnostic precision. Additionally, the study investigated the correlation between tumor immunity and KIRC patient outcomes, assessing the contribution of STAC3 genes to tumor immunity. Further exploration entailed SSGASE, single-cell analysis, pseudotime analysis and both in vivo and in vitro experiments to evaluate STAC3's role in tumor immunity and progression. Notably, STAC3 was significantly overexpressed in tumor specimens and positively correlated with the degree of malignancy of KIRC, affecting patients' prognosis. Elevated STAC3 expression correlated with enhanced immune infiltration in KIRC tumors. Furthermore, silencing STAC3 curtailed KIRC cell proliferation, migration, invasion, and stemness properties. Experimental models in mice confirmed that STAC3 knockdown led to a reduction in tumor growth. Elevated STAC3 expression is intricately linked with immune infiltration in KIRC tumors, as well as with the aggressive biological behaviors of tumor cells, including their proliferation, migration, and invasion. Targeting STAC3 presents a promising strategy to augment the efficacy of current therapeutic approaches and to better the survival outcomes of patients with KIRC.
Collapse
Affiliation(s)
- Yingnan Zhang
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Jingtao Li
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Luwen Feng
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Yue Cheng
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Linlin Shi
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Qian Yang
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Zhaoyang Wang
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Xuan Yi
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Guocai Zhong
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Xueying Sun
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Zhifeng Cheng
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| | - Min Guo
- The Fourth Affiliated Hospital of Harbin Medical University Harbin 150001, Heilongjiang, China
| |
Collapse
|
4
|
Li J, Feng J, Li Z, Ni Y, Liu L, Lei X, Chai Z, Zhuang N, Xu J, He Y, Shan J, Qian C. B cell lymphoma 6 promotes hepatocellular carcinoma progression by inhibiting tumor infiltrating CD4 +T cell cytotoxicity through ESM1. NPJ Precis Oncol 2024; 8:139. [PMID: 38956432 PMCID: PMC11220024 DOI: 10.1038/s41698-024-00625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/02/2024] [Indexed: 07/04/2024] Open
Abstract
Immunotherapy exhibited potential effects for advanced hepatocellular carcinoma, unfortunately, the clinical benefits are often countered by cancer adaptive immune suppressive response. Uncovering the mechanism how cancer cells evade immune surveillance would help to develop new immunotherapy approaches and combination therapy. In this article, by analyzing the transcriptional factors which modulate the differentially expressed genes between T cell infiltration high group and low group, we identified oncoprotein B cell lymphoma 6 (BCL6) suppresses the infiltration and activation of tumor infiltrating T lymphocytes, thus correlated with poorer clinical outcome. By using antibody deletion experiment, we further demonstrated that CD4+T cells but not CD8+T cells are the main lymphocyte population suppressed by Bcl6 to promote HCC development. Mechanistically, BCL6 decreases cancer cell expression of pro-inflammatory cytokines and T lymphocyte chemokines such as IL6, IL1F6, and CCL5. Moreover, BCL6 upregulates Endothelial cell-specific molecule 1 (ESM1) to inhibit T lymphocyte recruitment and activation possibly through ICAM-1/LFA-1 signaling pathway. Our findings uncovered an unappreciated paracrine mechanism how cancer cell-derived BCL6 assists cancer cell immune evasion, and highlighted the role of CD4+T cells in HCC immune surveillance.
Collapse
Affiliation(s)
- Jiatao Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Feng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ziyong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Yuanli Ni
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Limei Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xia Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
- School of Medicine Chongqing University, Chongqing, 400030, China
| | - Zixuan Chai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Na Zhuang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiake Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juanjuan Shan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| | - Cheng Qian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
- School of Medicine Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
5
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
6
|
Schütz V, Lin H, Kaczorowski A, Zschäbitz S, Jäger D, Stenzinger A, Duensing A, Debus J, Hohenfellner M, Duensing S. Long-Term Survival of Patients with Stage T1N0M1 Renal Cell Carcinoma. Cancers (Basel) 2023; 15:5715. [PMID: 38136261 PMCID: PMC10741977 DOI: 10.3390/cancers15245715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) is among the most lethal urological malignancies. However, small, localized RCCs (≤7 cm, stage T1) have an excellent prognosis. There is a rare patient subgroup diagnosed with synchronous distant metastasis (T1N0M1), of which very little is known in terms of survival outcomes and underlying disease biology. Herein, we examined the long-term survival of 27 patients with clear cell RCC (ccRCC) stage T1N0M1 in comparison to 18 patients without metastases (T1N0M0). Tumor tissue was stained by immunohistochemistry for CD8+ tumor infiltrating lymphocytes (TILs). As expected, patients with stage T1N0M1 showed a significantly worse median cancer specific survival (CSS; 2.8 years) than patients with stage T1N0M0 (17.7 years; HR 0.077; 95% CI, 0.022-0.262). However, eight patients (29.6%) with ccRCC stage T1N0M1 survived over five years, and three of those patients (11.1%) survived over a decade. Some of these patients benefitted from an intensified, multimodal treatment including metastasis-directed therapy. The number of CD8+ TILs was substantially higher in stage T1N0M1 ccRCCs than in stage T1N0M0 ccRCCs, suggesting a more aggressive tumor biology. In conclusion, long-term survival is possible in patients with ccRCC stage T1N0M1, with some patients benefitting from an intensified, multimodal treatment approach.
Collapse
Affiliation(s)
- Viktoria Schütz
- Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Huan Lin
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Zhao D, Meng Y, Dian Y, Zhou Q, Sun Y, Le J, Zeng F, Chen X, He Y, Deng G. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy. Redox Biol 2023; 68:102966. [PMID: 38035663 PMCID: PMC10698012 DOI: 10.1016/j.redox.2023.102966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The mystery about the mechanistic basis of disulfidptosis has recently been unraveled and shows promise as an effective treatment modality for triggering cancer cell death. However, the limited understanding of the role of disulfidptosis in tumor progression and drug sensitivity has hindered the development of disulfidptosis-targeted therapy and combinations with other therapeutic strategies. Here, we established a disulfidptosis signature model to estimate tumor disulfidptosis status in approximately 10,000 tumor samples across 33 cancer types and revealed its prognostic value. Then, we characterized disulfidptosis-associated molecular features and identified various types of molecular alterations that correlate with both drug-resistant and drug-sensitive responses to anti-tumor drugs. We further showed the vast heterogeneity in disulfidptosis status among 760 cancer cell lines across 25 cancer types. We experimentally validated that disulfidptosis score-high cell lines are more susceptible to glucose starvation-induced disulfidptosis compared to their counterparts with low scores. Finally, we investigated the impact of disulfidptosis status on drug response and revealed that disulfidptosis induction may enhance sensitivity to anti-cancer drugs, but in some cases, it could also lead to drug resistance in cultured cells. Overall, our multi-omics analysis firstly elucidates a comprehensive profile of disulfidptosis-related molecular alterations, prognosis, and potential therapeutic therapies at a pan-cancer level. These findings may uncover opportunities to utilize multiple drug sensitivities induced by disulfidptosis, thereby offering practical implications for clinical cancer therapy.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
8
|
Bantug GR, Hess C. The immunometabolic ecosystem in cancer. Nat Immunol 2023; 24:2008-2020. [PMID: 38012409 DOI: 10.1038/s41590-023-01675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Our increased understanding of how key metabolic pathways are activated and regulated in malignant cells has identified metabolic vulnerabilities of cancers. Translating this insight to the clinics, however, has proved challenging. Roadblocks limiting efficacy of drugs targeting cancer metabolism may lie in the nature of the metabolic ecosystem of tumors. The exchange of metabolites and growth factors between cancer cells and nonmalignant tumor-resident cells is essential for tumor growth and evolution, as well as the development of an immunosuppressive microenvironment. In this Review, we will examine the metabolic interplay between tumor-resident cells and how targeted inhibition of specific metabolic enzymes in malignant cells could elicit pro-tumorigenic effects in non-transformed tumor-resident cells and inhibit the function of tumor-specific T cells. To improve the efficacy of metabolism-targeted anticancer strategies, a holistic approach that considers the effect of metabolic inhibitors on major tumor-resident cell populations is needed.
Collapse
Affiliation(s)
- Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|