1
|
Rashid A, Kang L, Yi F, Chu Q, Shah SA, Mahmood SF, Getaneh Y, Wei M, Chang S, Abidi SH, Shao Y. Human Immunodeficiency Virus Type-1 Genetic Diversity and Drugs Resistance Mutations among People Living with HIV in Karachi, Pakistan. Viruses 2024; 16:962. [PMID: 38932254 PMCID: PMC11209141 DOI: 10.3390/v16060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The human immunodeficiency virus type-1 epidemic in Pakistan has significantly increased over the last two decades. In Karachi, Pakistan, there is a lack of updated information on the complexity of HIV-1 genetic diversity and the burden of drug resistance mutations (DRMs) that can contribute to ART failure and poor treatment outcomes. This study aimed to determine HIV-1 genetic diversity and identify drug-resistance mutations among people living with HIV in Karachi. A total of 364 HIV-positive individuals, with a median age of 36 years, were enrolled in the study. The HIV-1 partial pol gene was successfully sequenced from 268 individuals. The sequences were used to generate phylogenetic trees to determine clade diversity and also to assess the burden of DRMs. Based on the partial pol sequences, 13 distinct HIV-1 subtypes and recombinant forms were identified. Subtype A1 was the most common clade (40%), followed by CRF02_AG (33.2%). Acquired DRMs were found in 30.6% of the ART-experienced patients, of whom 70.7%, 20.7%, and 8.5% were associated with resistance to NNRTIs, NRTIs, and PIs, respectively. Transmitted DRMs were found in 5.6% of the ART-naïve patients, of whom 93% were associated with resistance against NNRTIs and 7% to PIs. The high prevalence of DRMs in ART-experienced patients poses significant challenges to the long-term benefits and sustainability of the ART program. This study emphasizes the importance of continuous HIV molecular epidemiology and drug resistance surveillance to support evidence-based HIV prevention, precise ART, and targeted AIDS care.
Collapse
Affiliation(s)
- Abdur Rashid
- School of Medicine, Nankai University, Tianjin 300071, China; (A.R.); (M.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
| | - Li Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Yi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
| | - Qingfei Chu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | | | | | - Yimam Getaneh
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
- Ethiopian Public Health Institute, Addis Ababa P.O. Box 1242, Ethiopia
| | - Min Wei
- School of Medicine, Nankai University, Tianjin 300071, China; (A.R.); (M.W.)
| | - Song Chang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin 300071, China; (A.R.); (M.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.K.); (Q.C.); (S.C.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| |
Collapse
|
2
|
El Bouzidi K, Datir RP, Kwaghe V, Roy S, Frampton D, Breuer J, Ogbanufe O, Murtala-Ibrahim F, Charurat M, Dakum P, Sabin CA, Ndembi N, Gupta RK. Deep sequencing of HIV-1 reveals extensive subtype variation and drug resistance after failure of first-line antiretroviral regimens in Nigeria. J Antimicrob Chemother 2021; 77:474-482. [PMID: 34741609 PMCID: PMC8809188 DOI: 10.1093/jac/dkab385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Deep sequencing could improve understanding of HIV treatment failure and viral population dynamics. However, this tool is often inaccessible in low- and middle-income countries. OBJECTIVES To determine the genetic patterns of resistance emerging in West African HIV-1 subtypes during first-line virological failure, and the implications for future antiretroviral options. PATIENTS AND METHODS Participants were selected from a Nigerian cohort of people living with HIV who had failed first-line ART and subsequently switched to second-line therapy. Whole HIV-1 genome sequences were generated from first-line virological failure samples with Illumina MiSeq. Mutations detected at ≥2% frequency were analysed and compared by subtype. RESULTS HIV-1 sequences were obtained from 101 participants (65% female, median age 30 years, median 32.9 months of nevirapine- or efavirenz-based ART). Thymidine analogue mutations (TAMs) were detected in 61%, other core NRTI mutations in 92% and NNRTI mutations in 99%. Minority variants (<20% frequency) comprised 18% of all mutations. K65R was more prevalent in CRF02_AG than G subtypes (33% versus 7%; P = 0.002), and ≥3 TAMs were more common in G than CRF02_AG (52% versus 24%; P = 0.004). Subtype G viruses also contained more RT cleavage site mutations. Cross-resistance to at least one of the newer NNRTIs, doravirine, etravirine or rilpivirine, was predicted in 81% of participants. CONCLUSIONS Extensive drug resistance had accumulated in people with West African HIV-1 subtypes, prior to second-line ART. Deep sequencing significantly increased the detection of resistance-associated mutations. Caution should be used if considering newer-generation NNRTI agents in this setting.
Collapse
Affiliation(s)
- Kate El Bouzidi
- Division of Infection & Immunity, University College London, London, UK.,Institute for Global Health, University College London, London, UK
| | - Rawlings P Datir
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Vivian Kwaghe
- University of Abuja Teaching Hospital, Abuja, Nigeria
| | - Sunando Roy
- Division of Infection & Immunity, University College London, London, UK
| | - Dan Frampton
- Division of Infection & Immunity, University College London, London, UK.,Farr Institute of Health Informatics Research, University College London, London, UK
| | - Judith Breuer
- Division of Infection & Immunity, University College London, London, UK
| | - Obinna Ogbanufe
- U.S. Centers for Disease Control and Prevention, U.S. Embassy, Abuja, Nigeria
| | | | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Caroline A Sabin
- Institute for Global Health, University College London, London, UK
| | - Nicaise Ndembi
- Institute of Human Virology Nigeria, Abuja, Nigeria.,Africa Centres for Disease Control and Prevention, African Union Commission, Addis Ababa, Ethiopia
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.,Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
3
|
Scheibe K, Urbańska A, Jakubowski P, Hlebowicz M, Bociąga-Jasik M, Raczyńska A, Szymczak A, Szetela B, Łojewski W, Parczewski M. Low prevalence of doravirine-associated resistance mutations among polish human immunodeficiency-1 (HIV-1)–infected patients. Antivir Ther 2021; 26:69-78. [DOI: 10.1177/13596535211043044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction Doravirine (DOR) is a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) that retains activity against common NNRTI resistance mutations. In this study, we aimed to investigate the prevalence of DOR resistance mutations compared with that of resistance mutations for other NNRTIs among HIV-1-infected treatment‐experienced and -naïve patients from Poland. Methods Resistance to DOR and other NNRTIs was assessed in two datasets: 1760 antiretroviral treatment-naïve HIV-1 patients and 200 treatment‐experienced patients. All 1960 sequences were derived from the patients using bulk sequencing. For resistance analyses, Stanford HIV drug resistance database scores were used. Results Overall, DOR resistance was present in 32 patients (1.62%), of whom 13 (0.74%) were naïve and 19 (9.50%) were treatment-experienced. The most common DOR resistance mutations observed among the naïve patients were A98G and K101E (0.2% each), and those among cART-experienced patients were L100I (2.0%), K101E, V108I, H221Y, and P225H (1.5% each). Furthermore, among the naïve patients, less common resistance to DOR (0.7%) compared with that to nevirapine (NVP) (2.1%; p = 0.0013) and rilpivirine (5.40%; p < 0.0001) was observed. For sequences obtained from treatment-experienced patients, the frequency of resistance to DOR (9.5%) was lower than that for efavirenz (25.5%; p < 0.0001) and NVP (26.0%; p < 0.0001). Conclusions The frequency of transmitted drug resistance to DOR is low, allowing for effective treatment of antiretroviral treatment-naïve patients and rapid treatment initiation. In cART-experienced patients, this agent remains an attractive NNRTI option with a higher genetic barrier to resistance.
Collapse
Affiliation(s)
- Kaja Scheibe
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Maria Hlebowicz
- Department of Infectious Diseases, Medical University of Gdansk, Gdańsk, Poland
| | - Monika Bociąga-Jasik
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Raczyńska
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Szymczak
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, Wrocław, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, Wrocław, Poland
| | - Władysław Łojewski
- Department of Infectious Diseases, Regional Hospital in Zielona Gora, Zielona Góra, Poland
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
4
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
5
|
Penrose KJ, Brumme CJ, Scoulos-Hanson M, Hamanishi K, Gordon K, Viana RV, Wallis CL, Harrigan PR, Mellors JW, Parikh UM. Frequent cross-resistance to rilpivirine among subtype C HIV-1 from first-line antiretroviral therapy failures in South Africa. Antivir Chem Chemother 2019; 26:2040206618762985. [PMID: 29566538 PMCID: PMC5890541 DOI: 10.1177/2040206618762985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Rilpivirine (TMC278LA) is a promising drug for pre-exposure prophylaxis of HIV-1 because of its sub-nanomolar potency and long-acting formulation; however, increasing transmission of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 with potential cross-resistance to rilpivirine could reduce its preventive efficacy. This study investigated rilpivirine cross-resistance among recombinant subtype C HIV-1 derived from 100 individuals failing on first-line non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy in South Africa whose samples were sent for routine HIV-1 drug resistance testing to Lancet Laboratories (Johannesburg, South Africa). Methods Plasma samples were selected from individuals with HIV-1 RNA > 10,000 copies/ml and ≥1 non-nucleoside reverse transcriptase inhibitor-resistance mutation in reverse transcriptase. Recombinant HIV-1LAI-containing bulk-cloned full-length reverse transcriptase sequences from plasma were assayed for susceptibility to nevirapine (NVP), efavirenz (EFV) and rilpivirine in TZM-bl cells. Fold-change (FC) decreases in drug susceptibility were calculated against a mean IC50 from 12 subtype C HIV-1 samples from treatment-naïve individuals in South Africa. Cross-resistance was evaluated based on biological cutoffs established for rilpivirine (2.5-FC) and the effect of mutation combinations on rilpivirine phenotype. Results Of the 100 samples from individuals on failing antiretroviral therapy, 69 had 2.5- to 75-fold decreased susceptibility to rilpivirine and 11 had >75-fold resistance. Rilpivirine resistance was strongly associated with K103N especially in combination with other rilpivirine-associated mutations. Conclusion The frequently observed cross-resistance of HIV-1 suggests that the preventive efficacy of TMC278LA pre-exposure prophylaxis could be compromised by transmission of HIV-1 from individuals with failure of first-line non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy.
Collapse
Affiliation(s)
- Kerri J Penrose
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chanson J Brumme
- 2 Laboratory Program, 198129 British Columbia Centre for Excellence in HIV/AIDS , Vancouver, British Columbia, Canada
| | - Maritsa Scoulos-Hanson
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen Hamanishi
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelley Gordon
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raquel V Viana
- 3 Specialty Molecular Division, BARC-SA and Lancet Laboratories, Johannesburg, South Africa
| | - Carole L Wallis
- 3 Specialty Molecular Division, BARC-SA and Lancet Laboratories, Johannesburg, South Africa
| | - P Richard Harrigan
- 2 Laboratory Program, 198129 British Columbia Centre for Excellence in HIV/AIDS , Vancouver, British Columbia, Canada
| | - John W Mellors
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Urvi M Parikh
- 1 Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW With prolonged life expectancy in HIV-positive patients on combination antiretroviral therapy, the quest for reducing lifelong drug exposure and minimizing or avoiding the toxicities of combination antiretroviral therapy while maintaining viral suppression has emerged when coformulations of antiretroviral agents with improved convenience, and better tolerability and efficacy became available. This review aims to update the current experience with the novel two-drug combination of dolutegravir (DTG) and rilpivirine (RPV) and elucidate the possible applications and limitations of coformulated DTG-RPV in the future. RECENT FINDINGS Five observational studies and two randomized, noninferiority trials (SWORD-1 and SWORD-2) evaluated the use of DTG and RPV in treatment-experienced patients. Despite variable inclusion criteria, 95-100% of the included patients maintained plasma HIV RNA load less than 50 copies/ml at the end of 24-48 weeks of observation. Overall, this regimen was well tolerated and only 0.8-7.9% of the patients discontinued the regimen due to adverse events. SUMMARY DTG and RPV is a novel two-drug antiretroviral combination regimen that can be effectively and safely used in patients with viral suppression for 6 months or longer. However, its use in patients with a previous history of virological failure and/or antiretroviral resistance warrants further investigation.
Collapse
|
7
|
Capetti A, Rizzardini G. Choosing appropriate pharmacotherapy for drug-resistant HIV. Expert Opin Pharmacother 2019; 20:667-678. [DOI: 10.1080/14656566.2019.1570131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amedeo Capetti
- Divisione Malattie Infettive, Aziende Socio Sanitarie Territoriale Fatebenefratelli Sacco, Milano, Italy
| | - Giuliano Rizzardini
- Divisione Malattie Infettive, Aziende Socio Sanitarie Territoriale Fatebenefratelli Sacco, Milano, Italy
- Faculty of Health Sciences, School of Clinical Medicine, Whitwaterstrand University, Johannesburg, South Africa
| |
Collapse
|
8
|
Capetti AF, Cossu MV, Paladini L, Rizzardini G. Dolutegravir plus rilpivirine dual therapy in treating HIV-1 infection. Expert Opin Pharmacother 2017; 19:65-77. [PMID: 29246084 DOI: 10.1080/14656566.2017.1417984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The HIV-infected population is aging and comorbidities and polypharmacological regimens are increasing. To reduce toxicity and drug burden researchers are evaluating the efficacy, safety and durability of dual therapies as a switch option in subjects who have achieved stable virologic suppression. Initially effective dual combinations relied on protease inhibitors but when dolutegravir, the first integrase inhibitor to display a high genetic barrier, became commercially available, many physicians began to use it in a variety of dual regimens, generating several observational cohorts. Areas covered: This review covers the most recent data from observational cohorts and randomized clinical trials concerning the switch to the dual combination of dolutegravir plus rilpivirine and the reasons that lead to consider this option. Also, viral failures, due to poor adherence or to other factors, and drug resistance are investigated. Articles which are searchable on MEDLINE/PubMed and from the main national/international congresses in the field of HIV therapy are reviewed. Expert opinion: The observation period for this regimen is getting longer and data showing its efficacy in maintaining HIV-1 RNA < 50 copies/mL are now consolidated. Metabolic data suggest some benefit in the lipid profile, improvement in bone mineral density and reduced bone reabsorption.
Collapse
Affiliation(s)
- Amedeo F Capetti
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Maria V Cossu
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Laura Paladini
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Giuliano Rizzardini
- a First Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy.,b School of Clinical Medicine, Faculty of Health Sciences , Whitwaterstrand University , Johannesburg , South Africa
| |
Collapse
|
9
|
Capetti AF, Astuti N, Cattaneo D, Rizzardini G. Pharmacokinetic drug evaluation of dolutegravir plus rilpivirine for the treatment of HIV. Expert Opin Drug Metab Toxicol 2017; 13:1183-1192. [PMID: 28854832 DOI: 10.1080/17425255.2017.1361929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The search for simple, potent, metabolic-friendly and nucleoside/nucleotide sparing antiretroviral regimens has led clinical investigators to move steps towards dual therapies. Among these the association of rilpivirine and dolutegravir is emerging as a twin randomized clinical trial (SWORD1&2) and at least three observational cohort describe it as a safe and highly effective regimen for switch from other therapies Areas covered: We review the evidence supporting the use of dolutegravir plus rilpivirine for the treatment of HIV in virologically suppressed patients taking other antiretroviral regimens. The reasons for the switch in clinical practice may range from simplification to tolerability/toxicity issues, to the prevention of future metabolic damage, to predicted drug-drug interactions when treatment of HCV co-infection is planned. Articles searchable on MEDLINE/PubMed and from the main international congresses in the field of HIV therapy were reviewed to provide context for use of dolutegravir plus rilpivirine Expert opinion: This treatment is highly effective in maintaining HIV-1 RNA <50 copies/mL. Although the studies up to date requested patient to switch to drugs they had no experience of, a predictable 'radical change' effect did not impact negatively on the results. Further data from these studies may help elucidate the possible advantage in terms of safety and metabolic effect in the next few months.
Collapse
Affiliation(s)
- Amedeo F Capetti
- a 1st Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Noemi Astuti
- a 1st Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Dario Cattaneo
- b Clinical Pharmacology Unit , ASST Fatebenefratelli-Sacco , Milano , Italy
| | - Giuliano Rizzardini
- a 1st Division of Infectious Diseases , ASST Fatebenefratelli-Sacco , Milano , Italy.,c Whitwaterstrand University , Johannesburg , South Africa
| |
Collapse
|
10
|
Efavirenz Is Predicted To Accumulate in Brain Tissue: an In Silico, In Vitro, and In Vivo Investigation. Antimicrob Agents Chemother 2016; 61:AAC.01841-16. [PMID: 27799216 DOI: 10.1128/aac.01841-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/22/2016] [Indexed: 01/15/2023] Open
Abstract
Adequate concentrations of efavirenz in the central nervous system (CNS) are necessary to suppress viral replication, but high concentrations may increase the likelihood of CNS adverse drug reactions. The aim of this investigation was to evaluate the efavirenz distribution in the cerebrospinal fluid (CSF) and the brain by using a physiologically based pharmacokinetic (PBPK) simulation for comparison with rodent and human data. The efavirenz CNS distribution was calculated using a permeability-limited model on a virtual cohort of 100 patients receiving efavirenz (600 mg once daily). Simulation data were then compared with human data from the literature and with rodent data. Wistar rats were administered efavirenz (10 mg kg of body weight-1) once daily over 5 weeks. Plasma and brain tissue were collected for analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The median maximum concentrations of drug (Cmax) were predicted to be 3,184 ng ml-1 (interquartile range [IQR], 2,219 to 4,851 ng ml-1), 49.9 ng ml-1 (IQR, 36.6 to 69.7 ng ml-1), and 50,343 ng ml-1 (IQR, 38,351 to 65,799 ng ml-1) in plasma, CSF, and brain tissue, respectively, giving a tissue-to-plasma ratio of 15.8. Following 5 weeks of oral dosing of efavirenz (10 mg kg-1), the median plasma and brain tissue concentrations in rats were 69.7 ng ml-1 (IQR, 44.9 to 130.6 ng ml-1) and 702.9 ng ml-1 (IQR, 475.5 to 1,018.0 ng ml-1), respectively, and the median tissue-to-plasma ratio was 9.5 (IQR, 7.0 to 10.9). Although it is useful, measurement of CSF concentrations may give an underestimation of the penetration of antiretrovirals into the brain. The limitations associated with obtaining tissue biopsy specimens and paired plasma and CSF samples from patients make PBPK modeling an attractive tool for probing drug distribution.
Collapse
|
11
|
Gill VC, Lynch T, Ramazani S, Krentz HB. Reporting on the prevalence of antiretroviral drug resistance in a regional HIV population over 20 years: a word of caution. Antivir Ther 2016; 22:277-286. [PMID: 27805572 DOI: 10.3851/imp3105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Failure to achieve complete viral suppression with antiretroviral drugs (ARV) may lead to uncontrolled HIV replication, ARV resistance and negative outcomes. Monitoring and reporting of HIV resistance trends is important but problematic. We examined prevalent resistance rates in an HIV population over 20 years and document how rates may appear to vary greatly based solely on which parameters are utilized. METHODS We determined the annual use of genotypic antiretroviral resistance testing (GART) from 1995 to 2014 for all patients receiving HIV care in southern Alberta, Canada, and the presence of resistance mutations in those tested. The impact on prevalent resistance rates of using cumulative or latest GART was also determined. RESULTS Between 1995 and 2014, the number of patients with GART increased from <1% to 71%. Prevalent resistance in patients with GART decreased from a high of 52% in 2003 to 25.8% in 2014. However, if prevalence rates were reported using all active patients as denominator, including those without GART, prevalence increased from 0.7% to 18.5%. Prevalence rates were 7% to 9% higher in any given year if cumulative GART rather than latest GART results were used. CONCLUSIONS While prevalence resistance rates are decreasing, the precise rates being reported may vary due to increasing number of patients tested annually, using either the entire population as denominator or only patients with GART, and using either last or cumulative GART. Defining these parameters is critical if prevalence is to be compared over time or between HIV populations.
Collapse
Affiliation(s)
| | - Tarah Lynch
- Southern Alberta Clinic, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Hartmut B Krentz
- Southern Alberta Clinic, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Rilpivirine Pharmacokinetics Without and With Darunavir/Ritonavir Once Daily in Adolescents and Young Adults. Pediatr Infect Dis J 2016; 35:e271-4. [PMID: 27187753 PMCID: PMC5245132 DOI: 10.1097/inf.0000000000001214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rilpivirine (RPV), a recently developed, once daily human immunodeficiency virus non-nucleoside reverse transcriptase inhibitor, is not currently approved for pediatric patients, but is sometimes prescribed for adolescents with multiple treatment failures, for regimen simplification or to minimize toxicity. Darunavir/ritonavir (DRV/r) administered once daily is also increasingly used in adolescents and may alter RPV pharmacokinetics (PK). We evaluated the PK interactions between RPV and DRV/r once daily in adolescents and young adults. METHODS Human immunodeficiency virus-infected subjects 12 to <24 years old receiving a stable background therapy including RPV 25 mg once daily without or combined with DRV/r 800/100 mg once daily were enrolled. Intensive 24-hour blood sampling was performed, and PK indices were determined using noncompartmental analysis. Protocol-defined target drug exposure ranges based on adult data were used to assess the adequacy of each regimen. RESULTS Fifteen subjects receiving RPV without and 14 subjects with DRV/r were enrolled. When dosed without DRV/r, the RPV geometric mean (90% confidence interval) for RPV AUC0-24, Cmax and C24 h were 2.38 μg h/mL (1.92-2.94), 0.14 μg/mL (0.12-0.18) and 0.07 μg/mL (0.03-0.10), respectively, similar to adult values. RPV concentrations were significantly increased with concomitant DRV/r use: RPV AUC24, Cmax and C24 h were 6.74 μg h/mL (4.89-9.28), 0.39 μg/mL (0.27-0.57) and 0.23 μg/mL (0.17-0.32), respectively, well above the target ranges based on adult data. DRV/r PK was not affected by coadministration of RPV. CONCLUSIONS RPV PK in this adolescent population was similar to adults when dosed without DRV/r. DRV/r coadministration increased RPV exposure 2- to 3-fold, indicating that drug-related side effects should be closely monitored.
Collapse
|
13
|
HIV-1 drug resistance and resistance testing. INFECTION GENETICS AND EVOLUTION 2016; 46:292-307. [PMID: 27587334 DOI: 10.1016/j.meegid.2016.08.031] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/23/2022]
Abstract
The global scale-up of antiretroviral (ARV) therapy (ART) has led to dramatic reductions in HIV-1 mortality and incidence. However, HIV drug resistance (HIVDR) poses a potential threat to the long-term success of ART and is emerging as a threat to the elimination of AIDS as a public health problem by 2030. In this review we describe the genetic mechanisms, epidemiology, and management of HIVDR at both individual and population levels across diverse economic and geographic settings. To describe the genetic mechanisms of HIVDR, we review the genetic barriers to resistance for the most commonly used ARVs and describe the extent of cross-resistance between them. To describe the epidemiology of HIVDR, we summarize the prevalence and patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) in both high-income and low- and middle-income countries (LMICs). We also review to two categories of HIVDR with important public health relevance: (i) pre-treatment drug resistance (PDR), a World Health Organization-recommended HIVDR surveillance metric and (ii) and pre-exposure prophylaxis (PrEP)-related drug resistance, a type of ADR that can impact clinical outcomes if present at the time of treatment initiation. To summarize the implications of HIVDR for patient management, we review the role of genotypic resistance testing and treatment practices in both high-income and LMIC settings. In high-income countries where drug resistance testing is part of routine care, such an understanding can help clinicians prevent virological failure and accumulation of further HIVDR on an individual level by selecting the most efficacious regimens for their patients. Although there is reduced access to diagnostic testing and to many ARVs in LMIC, understanding the scientific basis and clinical implications of HIVDR is useful in all regions in order to shape appropriate surveillance, inform treatment algorithms, and manage difficult cases.
Collapse
|
14
|
Penrose KJ, Parikh UM, Hamanishi KA, Else L, Back D, Boffito M, Jackson A, Mellors JW. Selection of Rilpivirine-Resistant HIV-1 in a Seroconverter From the SSAT 040 Trial Who Received the 300-mg Dose of Long-Acting Rilpivirine (TMC278LA). J Infect Dis 2015; 213:1013-7. [PMID: 26563240 DOI: 10.1093/infdis/jiv528] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
The injectable long-acting formulation of rilpivirine (TMC278LA) is a promising preexposure prophylaxis (PrEP) candidate for prevention of human immunodeficiency virus type 1 (HIV-1) infection. We evaluated HIV-1 in plasma obtained from an unexpected seroconverter in the 300-mg arm of the SSAT040 TMC278LA pharmacokinetic study for rilpivirine (RPV) resistance. Infection with wild-type HIV-1 was confirmed on day 84 after TMC278LA injection, and the K101E mutation was detected on day 115. Plasma-derived HIV-1 clones containing K101E had 4-fold increased resistance to RPV and 4-8-fold increased cross-resistance to etravirine, nevirapine, and efavirenz compared with wild type HIV-1 plasma-derived clones from the same individual. This case is a unique instance of infection with wild-type HIV-1 and subsequent selection of resistant virus by persistent exposure to long-acting PrEP.
Collapse
Affiliation(s)
- Kerri J Penrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Kristen A Hamanishi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| | - Laura Else
- Liverpool Bioanalytical Facility, Department of Molecular and Clinical Pharmacology, University of Liverpool
| | - David Back
- Liverpool Bioanalytical Facility, Department of Molecular and Clinical Pharmacology, University of Liverpool
| | - Marta Boffito
- Department of HIV/Genito-Urinary Medicine, St. Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - Akil Jackson
- Department of HIV/Genito-Urinary Medicine, St. Stephen's Centre, Chelsea and Westminster Hospital, London, United Kingdom
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|