1
|
Colman RE, Seifert M, De la Rossa A, Georghiou SB, Hoogland C, Uplekar S, Laurent S, Rodrigues C, Kambli P, Tukvadze N, Maghradze N, Omar SV, Joseph L, Suresh A, Rodwell TC. Evaluating culture-free targeted next-generation sequencing for diagnosing drug-resistant tuberculosis: a multicentre clinical study of two end-to-end commercial workflows. THE LANCET. INFECTIOUS DISEASES 2025; 25:325-334. [PMID: 39486428 PMCID: PMC11871994 DOI: 10.1016/s1473-3099(24)00586-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Drug-resistant tuberculosis remains a major obstacle in ending the global tuberculosis epidemic. Deployment of molecular tools for comprehensive drug resistance profiling is imperative for successful detection and characterisation of tuberculosis drug resistance. We aimed to assess the diagnostic accuracy of a new class of molecular diagnostics for drug-resistant tuberculosis. METHODS We conducted a prospective, cross-sectional, multicentre clinical evaluation of the performance of two targeted next-generation sequencing (tNGS) assays for drug-resistant tuberculosis at reference laboratories in three countries (Georgia, India, and South Africa) to assess diagnostic accuracy and index test failure rates. Eligible participants were aged 18 years or older, with molecularly confirmed pulmonary tuberculosis, and at risk for rifampicin-resistant tuberculosis. Sensitivity and specificity for both tNGS index tests (GenoScreen Deeplex Myc-TB and Oxford Nanopore Technologies [ONT] Tuberculosis Drug Resistance Test) were calculated for rifampicin, isoniazid, fluoroquinolones (moxifloxacin, levofloxacin), second line-injectables (amikacin, kanamycin, capreomycin), pyrazinamide, bedaquiline, linezolid, clofazimine, ethambutol, and streptomycin against a composite reference standard of phenotypic drug susceptibility testing and whole-genome sequencing. FINDINGS Between April 1, 2021, and June 30, 2022, 832 individuals were invited to participate in the study, of whom 720 were included in the final analysis (212, 376, and 132 participants in Georgia, India, and South Africa, respectively). Of 720 clinical sediment samples evaluated, 658 (91%) and 684 (95%) produced complete or partial results on the GenoScreen and ONT tNGS workflows, respectively, with 593 (96%) and 603 (98%) of 616 smear-positive samples producing tNGS sequence data. Both workflows had sensitivities and specificities of more than 95% for rifampicin and isoniazid, and high accuracy for fluoroquinolones (sensitivity approximately ≥94%) and second line-injectables (sensitivity 80%) compared with the composite reference standard. Importantly, these assays also detected mutations associated with resistance to critical new and repurposed drugs (bedaquiline, linezolid) not currently detectable by any other WHO-recommended rapid diagnostics on the market. We note that the current format of assays have low sensitivity (≤50%) for linezolid and more work on mutations associated with drug resistance is needed. INTERPRETATION This multicentre evaluation demonstrates that culture-free tNGS can provide accurate sequencing results for detection and characterisation of drug resistance from Mycobacterium tuberculosis clinical sediment samples for timely, comprehensive profiling of drug-resistant tuberculosis. FUNDING Unitaid.
Collapse
Affiliation(s)
- Rebecca E Colman
- FIND, Geneva, Switzerland; Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, University of San Diego, San Diego, CA, USA.
| | - Marva Seifert
- FIND, Geneva, Switzerland; Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, University of San Diego, San Diego, CA, USA
| | | | | | | | | | | | | | - Priti Kambli
- Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Nino Maghradze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Shaheed V Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lavania Joseph
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Timothy C Rodwell
- FIND, Geneva, Switzerland; Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, University of San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Leo S, Narasimhan M, Rathinam S, Banerjee A. Biomarkers in diagnosing and therapeutic monitoring of tuberculosis: a review. Ann Med 2024; 56:2386030. [PMID: 39097795 PMCID: PMC11299445 DOI: 10.1080/07853890.2024.2386030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 08/05/2024] Open
Abstract
Tuberculosis (TB) continues to pose a significant health challenge worldwide, emphasizing the importance of prompt diagnosis and efficient monitoring of treatment outcomes for effective disease control. Biomarkers have become increasingly important in the realm of TB diagnoses and treatment. The objective of this comprehensive review is to examine the present state of biomarkers employed in the diagnosis of TB, monitoring the response to treatment, and predicting treatment outcomes. In this study, we undertake a comprehensive examination of the diverse biomarkers utilized in TB diagnoses, spanning molecular, immunological, and other novel methodologies. Furthermore, we examine the potential of biomarkers in the context of therapeutic monitoring, assessment of treatment effectiveness, and anticipation of drug resistance. Additionally, this paper presents future prospects regarding the utilization of biomarkers in the therapy of tuberculosis.
Collapse
Affiliation(s)
- Sneha Leo
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Meenakshi Narasimhan
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Sridhar Rathinam
- Department of Respiratory Medicine, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
3
|
Saktiawati AMI, Vasiliu A, Saluzzo F, Akkerman OW. Strategies to Enhance Diagnostic Capabilities for the New Drug-Resistant Tuberculosis (DR-TB) Drugs. Pathogens 2024; 13:1045. [PMID: 39770305 PMCID: PMC11840284 DOI: 10.3390/pathogens13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
The global burden of drug-resistant tuberculosis (DR-TB) continues to challenge healthcare systems worldwide. There is a critical need to tackle DR-TB by enhancing diagnostics and drug susceptibility testing (DST) capabilities, particularly for emerging DR-TB drugs. This endeavor is crucial to optimize the efficacy of new therapeutic regimens and prevent the resistance and overuse of these invaluable weapons. Despite this urgency, there remains a lack of comprehensive review of public health measures aimed at improving the diagnostics and DST capabilities. In this review, we outline strategies to enhance the capabilities, especially tailored to address the challenges posed by resistance to new DR-TB drugs. We discuss the current landscape of DR-TB drugs, existing diagnostic and susceptibility testing methods, and notable gaps and challenges in these methods and explore strategies for ensuring fair access to DST while narrowing these disparities. The strategies include public health interventions aimed at strengthening laboratory infrastructure, workforce training, and quality assurance programs, technology transfer initiatives, involving drug developers in the DST development, establishing national or regional referral hubs, fostering collaboration and resources pooling with other infection control efforts, extending testing access in underserved areas through public-private partnerships, advocating for lowering costs or loans at low interest, remote technical support, and implementing mandatory molecular surveillance monitoring. This review underscores the urgent need to enhance DST capacities for new DR-TB drugs and identifies opportunities for innovation and improvement. Assessing the extent of the global health impact of these measures is crucial to ensure their effectiveness in combating DR-TB.
Collapse
Affiliation(s)
- Antonia Morita Iswari Saktiawati
- Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55584, Indonesia
- Center for Tropical Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55584, Indonesia
| | - Anca Vasiliu
- Global TB Program, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
- Clinical Tuberculosis Unit, German Center for Infection Research (DZIF), Ham-burg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | | | - Onno W. Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Tuberculosis Center Beatrixoord, University Medical Center Groningen, University of Groningen, 9751 ND Haren, The Netherlands
| |
Collapse
|
4
|
Verboven L, Callens S, Black J, Maartens G, Dooley KE, Potgieter S, Cartuyvels R, Laukens K, Warren RM, Van Rie A. A machine-learning based model for automated recommendation of individualized treatment of rifampicin-resistant tuberculosis. PLoS One 2024; 19:e0306101. [PMID: 39241084 PMCID: PMC11379382 DOI: 10.1371/journal.pone.0306101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/11/2024] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND Rifampicin resistant tuberculosis remains a global health problem with almost half a million new cases annually. In high-income countries patients empirically start a standardized treatment regimen, followed by an individualized regimen guided by drug susceptibility test (DST) results. In most settings, DST information is not available or is limited to isoniazid and fluoroquinolones. Whole genome sequencing could more accurately guide individualized treatment as the full drug resistance profile is obtained with a single test. Whole genome sequencing has not reached its full potential for patient care, in part due to the complexity of translating a resistance profile into the most effective individualized regimen. METHODS We developed a treatment recommender clinical decision support system (CDSS) and an accompanying web application for user-friendly recommendation of the optimal individualized treatment regimen to a clinician. RESULTS Following expert stakeholder meetings and literature review, nine drug features and 14 treatment regimen features were identified and quantified. Using machine learning, a model was developed to predict the optimal treatment regimen based on a training set of 3895 treatment regimen-expert feedback pairs. The acceptability of the treatment recommender CDSS was assessed as part of a clinical trial and in a routine care setting. Within the clinical trial setting, all patients received the CDSS recommended treatment. In 8 of 20 cases, the initial recommendation was recomputed because of stock out, clinical contra-indication or toxicity. In routine care setting, physicians rejected the treatment recommendation in 7 out of 15 cases because it deviated from the national TB treatment guidelines. A survey indicated that the treatment recommender CDSS is easy to use and useful in clinical practice but requires digital infrastructure support and training. CONCLUSIONS Our findings suggest that global implementation of the novel treatment recommender CDSS holds the potential to improve treatment outcomes of patients with RR-TB, especially those with 'difficult-to-treat' forms of RR-TB.
Collapse
Affiliation(s)
- Lennert Verboven
- Torch Consortium FAMPOP Faculty of Medicine and Health Sciences, University of Antwerp, Antwerpen, Belgium
- Department of Computer Science, ADReM Data Lab, University of Antwerp, Antwerpen, Belgium
| | - Steven Callens
- Department of Internal Medicine & Infectious diseases, Ghent University Hospital, Ghent, Belgium
| | - John Black
- Department of Internal Medicine, University of Cape Town and Livingstone Hospital, Port Elizabeth, South Africa
| | - Gary Maartens
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Kelly E Dooley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Samantha Potgieter
- Department of Internal Medicine, Division of Infectious Diseases, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | - Kris Laukens
- Department of Computer Science, ADReM Data Lab, University of Antwerp, Antwerpen, Belgium
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Torch Consortium FAMPOP Faculty of Medicine and Health Sciences, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
5
|
Puyén ZM, Santos-Lázaro D, Vigo AN, Cotrina VV, Ruiz-Nizama N, Alarcón MJ, Asto B, Huamán T, Moore DAJ. Whole Genome Sequencing of Mycobacterium tuberculosis under routine conditions in a high-burden area of multidrug-resistant tuberculosis in Peru. PLoS One 2024; 19:e0304130. [PMID: 38861531 PMCID: PMC11166294 DOI: 10.1371/journal.pone.0304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Whole Genome Sequencing (WGS) is a promising tool in the global fight against tuberculosis (TB). The aim of this study was to evaluate the use of WGS in routine conditions for detection of drug resistance markers and transmission clusters in a multidrug-resistant TB hot-spot area in Peru. For this, 140 drug-resistant Mycobacterium tuberculosis strains from Lima and Callao were prospectively selected and processed through routine (GenoType MTBDRsl and BACTEC MGIT) and WGS workflows, simultaneously. Resistance was determined in accordance with the World Health Organization mutation catalogue. Agreements between WGS and BACTEC results were calculated for rifampicin, isoniazid, pyrazinamide, moxifloxacin, levofloxacin, amikacin and capreomycin. Transmission clusters were determined using different cut-off values of Single Nucleotide Polymorphism differences. 100% (140/140) of strains had valid WGS results for 13 anti-TB drugs. However, the availability of final, definitive phenotypic BACTEC MGIT results varied by drug with 10-17% of invalid results for the seven compared drugs. The median time to obtain results of WGS for the complete set of drugs was 11.5 days, compared to 28.6-52.6 days for the routine workflow. Overall categorical agreement by WGS and BACTEC MGIT for the compared drugs was 96.5%. Kappa index was good (0.65≤k≤1.00), except for moxifloxacin, but the sensitivity and specificity values were high for all cases. 97.9% (137/140) of strains were characterized with only one sublineage (134 belonging to "lineage 4" and 3 to "lineage 2"), and 2.1% (3/140) were mixed strains presenting two different sublineages. Clustering rates of 3.6% (5/140), 17.9% (25/140) and 22.1% (31/140) were obtained for 5, 10 and 12 SNP cut-off values, respectively. In conclusion, routine WGS has a high diagnostic accuracy to detect resistance against key current anti-TB drugs, allowing results to be obtained through a single analysis and helping to cut quickly the chain of transmission of drug-resistant TB in Peru.
Collapse
Affiliation(s)
- Zully M. Puyén
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
- Escuela de Medicina, Universidad Privada de Ciencias Aplicadas, Lima, Perú
| | - David Santos-Lázaro
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Aiko N. Vigo
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Vidia V. Cotrina
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Nathaly Ruiz-Nizama
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Miriam J. Alarcón
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Belisa Asto
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Teresa Huamán
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - David A. J. Moore
- Universidad Peruana Cayetano Heredia, Lima, Perú
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Solanki P, Elton L, Honeyborne I, Park M, Satta G, McHugh TD. Improving the diagnosis of tuberculosis: old and new laboratory tools. Expert Rev Mol Diagn 2024; 24:487-496. [PMID: 38832527 DOI: 10.1080/14737159.2024.2362165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Despite recent advances in diagnostic technologies and new drugs becoming available, tuberculosis (TB) remains a major global health burden. If detected early, screened for drug resistance, and fully treated, TB could be easily controlled. AREAS COVERED Here the authors discuss M. tuberculosis culture methods which are considered the definitive confirmation of M. tuberculosis infection, and limited advances made to build on these core elements of TB laboratory diagnosis. Literature searches showed that molecular techniques provide enhanced speed of turnaround, sensitivity, and richness of data. Sequencing of the whole genome, is becoming well established for identification and inference of drug resistance. PubMed® literature searches were conducted (November 2022-March 2024). EXPERT OPINION This section highlights future advances in diagnosis and infection control. Prevention of prolonged hospital admissions and rapid TAT are of the most benefit to the overall patient experience. Host transcriptional blood markers have been used in treatment monitoring studies and, with appropriate evaluation, could be rolled out in a diagnostic setting. Additionally, the MBLA is being incorporated into latest clinical trial designs. Whole genome sequencing has enhanced epidemiological evidence. Artificial intelligence, along with machine learning, have the ability to revolutionize TB diagnosis and susceptibility testing within the next decade.
Collapse
Affiliation(s)
- Priya Solanki
- UCL-TB and Centre for Clinical Microbiology, Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Linzy Elton
- UCL-TB and Centre for Clinical Microbiology, Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Isobella Honeyborne
- UCL-TB and Centre for Clinical Microbiology, Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Mirae Park
- Respiratory Medicine, Imperial Healthcare NHS Trust, London, UK
| | - Giovanni Satta
- UCL-TB and Centre for Clinical Microbiology, Division of Infection & Immunity, Royal Free Campus, London, UK
| | - Timothy D McHugh
- UCL-TB and Centre for Clinical Microbiology, Division of Infection & Immunity, Royal Free Campus, London, UK
| |
Collapse
|
7
|
Murphy SG, Smith C, Lapierre P, Shea J, Patel K, Halse TA, Dickinson M, Escuyer V, Rowlinson MC, Musser KA. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing. Front Public Health 2023; 11:1206056. [PMID: 37457262 PMCID: PMC10340549 DOI: 10.3389/fpubh.2023.1206056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) infections are treated with combinations of antibiotics; however, these regimens are not as efficacious against multidrug and extensively drug resistant MTBC. Phenotypic (growth-based) drug susceptibility testing on slow growing bacteria like MTBC requires many weeks to months to complete, whereas sequencing-based approaches can predict drug resistance (DR) with reduced turnaround time. We sought to develop a multiplexed, targeted next generation sequencing (tNGS) assay that can predict DR and can be performed directly on clinical respiratory specimens. A multiplex PCR was designed to amplify a group of thirteen full-length genes and promoter regions with mutations known to be involved in resistance to first- and second-line MTBC drugs. Long-read amplicon libraries were sequenced with Oxford Nanopore Technologies platforms and high-confidence resistance mutations were identified in real-time using an in-house developed bioinformatics pipeline. Sensitivity, specificity, reproducibility, and accuracy of the tNGS assay was assessed as part of a clinical validation study. In total, tNGS was performed on 72 primary specimens and 55 MTBC-positive cultures and results were compared to clinical whole genome sequencing (WGS) performed on paired patient cultures. Complete or partial susceptibility profiles were generated from 82% of smear positive primary specimens and the resistance mutations identified by tNGS were 100% concordant with WGS. In addition to performing tNGS on primary clinical samples, this assay can be used to sequence MTBC cultures mixed with other mycobacterial species that would not yield WGS results. The assay can be effectively implemented in a clinical/diagnostic laboratory with a two to three day turnaround time and, even if batched weekly, tNGS results are available on average 15 days earlier than culture-derived WGS results. This study demonstrates that tNGS can reliably predict MTBC drug resistance directly from clinical specimens or cultures and provide critical information in a timely manner for the appropriate treatment of patients with DR tuberculosis.
Collapse
|
8
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
9
|
Finci I, Albertini A, Merker M, Andres S, Bablishvili N, Barilar I, Cáceres T, Crudu V, Gotuzzo E, Hapeela N, Hoffmann H, Hoogland C, Kohl TA, Kranzer K, Mantsoki A, Maurer FP, Nicol MP, Noroc E, Plesnik S, Rodwell T, Ruhwald M, Savidge T, Salfinger M, Streicher E, Tukvadze N, Warren R, Zemanay W, Zurek A, Niemann S, Denkinger CM. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study. THE LANCET. MICROBE 2022; 3:e672-e682. [PMID: 35907429 PMCID: PMC9436784 DOI: 10.1016/s2666-5247(22)00116-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) of Mycobacterium tuberculosis complex has become an important tool in diagnosis and management of drug-resistant tuberculosis. However, data correlating resistance genotype with quantitative phenotypic antimicrobial susceptibility testing (AST) are scarce. METHODS In a prospective multicentre observational study, 900 clinical M tuberculosis complex isolates were collected from adults with drug-resistant tuberculosis in five high-endemic tuberculosis settings around the world (Georgia, Moldova, Peru, South Africa, and Viet Nam) between Dec 5, 2014, and Dec 12, 2017. Minimum inhibitory concentrations (MICs) and resulting binary phenotypic AST results for up to nine antituberculosis drugs were determined and correlated with resistance-conferring mutations identified by WGS. FINDINGS Considering WHO-endorsed critical concentrations as reference, WGS had high accuracy for prediction of resistance to isoniazid (sensitivity 98·8% [95% CI 98·5-99·0]; specificity 96·6% [95% CI 95·2-97·9]), levofloxacin (sensitivity 94·8% [93·3-97·6]; specificity 97·1% [96·7-97·6]), kanamycin (sensitivity 96·1% [95·4-96·8]; specificity 95·0% [94·4-95·7]), amikacin (sensitivity 97·2% [96·4-98·1]; specificity 98·6% [98·3-98·9]), and capreomycin (sensitivity 93·1% [90·0-96·3]; specificity 98·3% [98·0-98·7]). For rifampicin, pyrazinamide, and ethambutol, the specificity of resistance prediction was suboptimal (64·0% [61·0-67·1], 83·8% [81·0-86·5], and 40·1% [37·4-42·9], respectively). Specificity for rifampicin increased to 83·9% when borderline mutations with MICs overlapping with the critical concentration were excluded. Consequently, we highlighted mutations in M tuberculosis complex isolates that are often falsely identified as susceptible by phenotypic AST, and we identified potential novel resistance-conferring mutations. INTERPRETATION The combined analysis of mutations and quantitative phenotypes shows the potential of WGS to produce a refined interpretation of resistance, which is needed for individualised therapy, and eventually could allow differential drug dosing. However, variability of MIC data for some M tuberculosis complex isolates carrying identical mutations also reveals limitations of our understanding of the genotype and phenotype relationships (eg, including epistasis and strain genetic background). FUNDING Bill & Melinda Gates Foundation, German Centre for Infection Research, German Research Foundation, Excellence Cluster Precision Medicine of Inflammation (EXC 2167), and Leibniz ScienceCampus EvoLUNG.
Collapse
Affiliation(s)
- Iris Finci
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; Evolution of the Resistome, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Nino Bablishvili
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Tatiana Cáceres
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Valeriu Crudu
- Phthisiopneumology Institute Chiril Draganiuc, Chisinau, Moldova
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Nchimunya Hapeela
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Harald Hoffmann
- SYNLAB Gauting, SYNLAB MVZ Dachau, Gauting, Germany; Institute of Microbiology and Laboratory Medicine (IML Red), WHO Supranational TB Reference Laboratory, Gauting, Germany
| | | | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Katharina Kranzer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Biomedical Research and Training Institute, Harare, Zimbabwe
| | | | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark P Nicol
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Ecaterina Noroc
- Phthisiopneumology Institute Chiril Draganiuc, Chisinau, Moldova
| | - Sara Plesnik
- Institute of Microbiology and Laboratory Medicine (IML Red), WHO Supranational TB Reference Laboratory, Gauting, Germany
| | - Timothy Rodwell
- FIND, Geneva, Switzerland; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Theresa Savidge
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, CO, USA; Alaska State Public Health Laboratories, Anchorage, AK, USA
| | - Max Salfinger
- College of Public Health, University of South Florida, Tampa, FL, USA; Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elizabeth Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Widaad Zemanay
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna Zurek
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, CO, USA
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Claudia M Denkinger
- FIND, Geneva, Switzerland; German Center for Infection Research, Heidelberg, Germany; Division of Clinical Tropical Medicine and German Centre for Infection Research, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
10
|
Surgical site infections by atypical mycobacteria: prevalence and species characterization using MALDI-TOF and molecular LCD chip array. Infection 2022; 50:1557-1563. [PMID: 35716342 PMCID: PMC9705499 DOI: 10.1007/s15010-022-01864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Surgical site infection (SSI) is a post-operative complication of high concern with adverse impact on patient prognosis and public health systems. Recently, SSI pathogens have experienced a change in microbial profile with increasing reports of non-tuberculous mycobacteria (NTM) as important pathogens. AIM of the study The study aimed to detect the prevalence of NTM among cases with SSIs and describe their species using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and PCR-based microarray. METHODS The study was conducted with 192 pus samples collected from patients with SSI. Mycobacterial investigations were done in the form of Ziehl-Neelsen (ZN) smears for acid-fast bacilli, automated mycobacterial culture to isolate mycobacteria, followed by immunochromatography test to predict NTM. NTM-positive cultures were tested by MALDI -TOF MS and PCR-based microarray to reach species-level identification. RESULTS Mycobacterial growth was found in 11/192 samples (5.7%) and identified as 4 NTM and 7 M. tuberculosis isolates with prevalence of 2.1% and 3.64%, respectively. The NTM species were described by MALDI-TOF as M. abscessus, M. porcinum, M. bacteremicum, and M. gordonae. Microarray agreed with MALDI-TOF in identifying one isolate (M. abscessus), while two isolates were classified as belonging to broad groups and one isolate failed to be identified. CONCLUSIONS The prevalence of NTM among SSI was found to be low, yet have to be considered in the diagnosis of mycobacteria. Employing advanced technologies in diagnosis is recommended to guide for appropriate treatment.
Collapse
|
11
|
Evaluating the clinical impact of routine whole genome sequencing in tuberculosis treatment decisions and the issue of isoniazid mono-resistance. BMC Infect Dis 2022; 22:349. [PMID: 35392842 PMCID: PMC8991524 DOI: 10.1186/s12879-022-07329-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background The UK has implemented routine use of whole genome sequencing (WGS) in TB diagnostics. The WHO recommends addition of a fluoroquinolone for isoniazid mono-resistance, so early detection may be of use. The aim of this study was to describe the clinical utility and impact of WGS on treatment decisions for TB in a low incidence high resource clinical setting. The clinical turnaround time (TAT) for WGS was analysed in comparison to TB PCR using Xpert MTB/RIF (Cepheid, Sunnyvale, CA) results where available and subsequent phenotypic drug susceptibility testing (DST) when required. Methods This was a retrospective analysis of TB cases from January 2018 to March 2019 in London. Susceptibility and TAT by WGS, phenotypic DST, TB PCR using Xpert MTB/RIF were correlated to drug changes in order to describe the utility of WGS on treatment decisions on isoniazid mono-resistance in a low incidence high resource setting. Results 189 TB cases were identified; median age 44 years (IQR 28–60), m:f ratio 112:77, 7 with HIV and 6 with previous TB. 80/189 cases had a positive culture and WGS result. 50/80 were fully sensitive to 1st line treatment on WGS, and the rest required additional DST. 20/80 cases required drug changes; 12 were defined by WGS: 8 cases had isoniazid mono-resistance, 2 had MDR-TB, 1 had isoniazid and pyrazinamide resistance and 1 had ethambutol resistance. The median TAT for positive culture was 16 days (IQR 12.5–20.5); for WGS was 35 days (IQR 29.5–38.75) and for subsequent DST was 86 days (IQR 69.5–96.75), resulting in non-WHO regimens for a median of 50.5 days (IQR 28.0–65.0). 9/12 has TB PCRs (Xpert MTB/RIF), with a median TAT of 1 day. Conclusion WGS clearly has a substantial role in our routine UK clinical settings with faster turnaround times in comparison to phenotypic DST. However, the majority of treatment changes defined by WGS were related to isoniazid resistance and given the 1 month TAT for WGS, it would be preferable to identify isoniazid resistance more quickly. Therefore if resources allow, diagnostic pathways should be optimised by parallel use of WGS and new molecular tests to rapidly identify isoniazid resistance in addition to rifampicin resistance and to minimise delays in starting WHO isoniazid resistance treatment.
Collapse
|
12
|
Resendiz-Sharpe A, Merckx R, Verweij PE, Maertens J, Lagrou K. Stable prevalence of triazole-resistance in Aspergillus fumigatus complex clinical isolates in a Belgian tertiary care center from 2016 to 2020. J Infect Chemother 2021; 27:1774-1778. [PMID: 34518094 DOI: 10.1016/j.jiac.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prevalence reports of triazole-resistance in Aspergillus fumigatus differ between countries and centers and may likewise vary over time. Continuous local surveillance programs to establish the evolving epidemiology of triazole-resistance in A. fumigatus are crucial to guide therapeutic recommendations. Here, we determined the prevalence of triazole-resistance in A. fumigatus complex culture-positive patients at the tertiary care center University Hospitals Leuven in Belgium in clinical isolates from 2016 to 2020. METHODS All A. fumigatus complex isolates cultured from UZ Leuven patients between 2016 and 2020 were screened for triazole-resistance. Confirmation of resistance to voriconazole, posaconazole and itraconazole was performed with the European Committee for Antimicrobial Susceptibility Testing (EUCAST) broth microdilution method. Mutations in the cyp51A gene in triazole-resistant isolates were determined by sequencing. Patients were classified as susceptible or resistant cases based on their isolate's susceptibility phenotype. RESULTS We screened 2494 A. fumigatus complex isolates from 1600 patients (320 ± 38 [SD] patients per year). The prevalence of triazole-resistance in patients was 8.3% (28/337), 6.7% (26/386), 7.0% (21/301), 7.1% (21/294) and 7.4% (21/282) in 2016, 2017, 2018, 2019 and 2020 respectively, with an overall triazole-resistance prevalence of 7.1% (85/1192; 95% CI 6.6-7.7%). The TR34/L98H mutation was the most prevalent (83.0%, 78/94) with most isolates displaying resistance to all triazole antifungals tested (94.8%, 74/78). CONCLUSION The prevalence of triazole-resistance in A. fumigatus has remained stable from 2016 to 2020 in our center ranging between 6.7 and 8.3%, with an overall five-year prevalence of 7.1%. The environmentally associated cyp51A gene mutations were most prevalent amongst triazole-resistant isolates and conferred resistance to all antifungals tested in 73% of the isolates.
Collapse
Affiliation(s)
| | - Rita Merckx
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Radboudumc-CWZ Centre of Expertise for Mycology, Nijmegen, the Netherlands
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Chen H, Li J, Yan S, Sun H, Tan C, Liu M, Liu K, Zhang H, Zou M, Xiao X. Identification of pathogen(s) in infectious diseases using shotgun metagenomic sequencing and conventional culture: a comparative study. PeerJ 2021; 9:e11699. [PMID: 34249516 PMCID: PMC8253115 DOI: 10.7717/peerj.11699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/08/2021] [Indexed: 02/01/2023] Open
Abstract
Background Early and accurate diagnosis of microorganism(s) is important to optimize antimicrobial therapy. Shotgun metagenomic sequencing technology, an unbiased and comprehensive method for pathogen identification, seems to potentially assist or even replace conventional microbiological methodology in the diagnosis of infectious diseases. However, evidence in clinical application of this platform is relatively limited. Methods To evaluate the capability of shotgun metagenomic sequencing technology in clinical practice, both shotgun metagenomic sequencing and conventional culture were performed in the PCR-positive body fluid specimens of 20 patients with suspected infection. The sequenced data were then analyzed for taxonomic identification of microbes and antibiotic resistance gene prediction using bioinformatics pipeline. Results Shotgun metagenomic sequencing results showed a concordance of 17/20 compared with culture results in bacterial detection, and a concordance of 20/20 compared with culture results in fungal detection. Besides, drug-resistant types annotated from antibiotic resistance genes showed much similarity with antibiotic classes identified by susceptibility tests, and more than half of the specimens had consistent drug types between shotgun metagenomic sequencing and culture results. Conclusions Pathogen identification and antibiotic resistance gene prediction by shotgun metagenomic sequencing identification had the potential to diagnose microorganisms in infectious diseases, and it was especially helpful for multiple microbial co-infections and for the cases where standard culture approached failed to identify microorganisms.
Collapse
Affiliation(s)
- Huan Chen
- Postdoctoral Research Station of Clinical Medicine & Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Yan
- Department of Intensive Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Sun
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Chuyi Tan
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Meidong Liu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ke Liu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xianzhong Xiao
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
| |
Collapse
|
14
|
Lam C, Martinez E, Crighton T, Furlong C, Donnan E, Marais BJ, Sintchenko V. Value of routine whole genome sequencing for Mycobacterium tuberculosis drug resistance detection. Int J Infect Dis 2021; 113 Suppl 1:S48-S54. [PMID: 33753222 DOI: 10.1016/j.ijid.2021.03.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Routine whole genome sequencing (WGS) of pathogens is becoming more feasible as sequencing costs decrease and access to benchtop sequencing equipment and bioinformatics pipelines increases. This study examined the added value gained from implementing routine WGS of all Mycobacterium tuberculosis isolates in New South Wales, Australia. Drug resistance markers inferred from WGS data were compared to commercial genotypic drug susceptibility testing (DST) assays and conventional phenotypic DST in all isolates sequenced between 2016 and 2019. Of the 1107 clinical M. tuberculosis isolates sequenced, 29 (2.6%) were multi-drug resistant (MDR); most belonged to Beijing (336; 30.4%) or East-African Indian (332; 30%) lineages. Compared with conventional phenotypic DST, WGS identified an additional 1% of isolates which were likely drug resistant, explained by mutations previously associated with treatment failure and mixed bacterial populations. However, WGS provided a 20% increase in drug resistance detection in comparison with commercial genotypic assays by identifying mutations outside of the classic resistance determining regions in rpoB, inhA, katG, pncA and embB genes. Gains in drug resistance detection were significant (p = 0.0137, paired t-test), but varied substantially for different phylogenetic lineages. In low incidence settings, routine WGS of M. tuberculosis provides better guidance for person-centered management of drug resistant tuberculosis than commercial genotypic assays.
Collapse
Affiliation(s)
- Connie Lam
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| | - Elena Martinez
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology - Western, Sydney, New South Wales, Australia
| | - Taryn Crighton
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology - Western, Sydney, New South Wales, Australia
| | - Catriona Furlong
- New South Wales Tuberculosis Program, Health Protection NSW, Sydney, New South Wales, Australia
| | - Ellen Donnan
- New South Wales Tuberculosis Program, Health Protection NSW, Sydney, New South Wales, Australia
| | - Ben J Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity and Centre for Research Excellence in Tuberculosis (TB-CRE), The University of Sydney, Sydney, New South Wales, Australia; Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia; NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology - Western, Sydney, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity and Centre for Research Excellence in Tuberculosis (TB-CRE), The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Mohamed S, Köser CU, Salfinger M, Sougakoff W, Heysell SK. Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics? Eur Respir J 2021; 57:57/3/2004077. [PMID: 33737379 DOI: 10.1183/13993003.04077-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/09/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Sagal Mohamed
- Division of Infectious Diseases and International Health, University of Virginia Charlottesville, Charlottesville, VA, USA
| | | | - Max Salfinger
- University of South Florida College of Public Health and Morsani College of Medicine, Tampa, FL, USA
| | - Wladimir Sougakoff
- Sorbonne Université, INSERM U1135, CIMI-Paris, APHP, Hôpital Pitié-Salpêtrière, NRC-MyRMA, Paris, France
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia Charlottesville, Charlottesville, VA, USA
| |
Collapse
|
16
|
Kizny Gordon A, Marais B, Walker TM, Sintchenko V. Clinical and public health utility of Mycobacterium tuberculosis whole genome sequencing. Int J Infect Dis 2021; 113 Suppl 1:S40-S42. [PMID: 33716192 DOI: 10.1016/j.ijid.2021.02.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The World Health Organization (WHO) estimates that around 10 million people develop tuberculosis (TB) every year, with 1.5 million deaths attributed to TB in 2019 (World Health Organization, 2020). The majority of the disease burden occurs in low-income countries, where access to diagnostics and tailored treatment remains problematic. The current COVID-19 pandemic further threatens to impact global TB control by diverting resources, reducing notifications and hence significantly increasing deaths attributable to TB (World Health Organization, 2020). Whole genome sequencing (WGS) is becoming increasingly accessible, and has particular value in the diagnosis and management of TB disease (Cabibbe et al., 2018; Meehan et al., 2019). Not only does it have the potential to give more rapid and complete information on drug-resistance, but the high discriminatory power it offers allows detection of clusters and transmission pathways, as well as likely contamination events, mixed infections and to differentiate between re-infection and relapse with much greater confidence than previous typing methods.
Collapse
Affiliation(s)
- Alice Kizny Gordon
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
| | - Ben Marais
- WHO Collaborating Centre for Tuberculosis, The University of Sydney, Sydney, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy M Walker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia; WHO Collaborating Centre for Tuberculosis, The University of Sydney, Sydney, New South Wales, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Banaei N, Musser KA, Salfinger M, Somoskovi A, Zelazny AM. Novel Assays/Applications for Patients Suspected of Mycobacterial Diseases. Clin Lab Med 2020; 40:535-552. [DOI: 10.1016/j.cll.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Whole-genome sequencing in drug susceptibility testing of Mycobacterium tuberculosis in routine practice in Lyon, France. Int J Antimicrob Agents 2020; 55:105912. [DOI: 10.1016/j.ijantimicag.2020.105912] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/08/2020] [Accepted: 01/18/2020] [Indexed: 11/23/2022]
|
19
|
Esmail H, Lipman MC, Nunn A, Walker TM. Individualising therapy for drug-sensitive tuberculosis. THE LANCET RESPIRATORY MEDICINE 2019; 7:834-835. [PMID: 31427253 DOI: 10.1016/s2213-2600(19)30247-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Hanif Esmail
- Medical Research Council Clinical Trials Unit, University College London, London, UK; Institute for Global Health, University College London, London, UK; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| | - Marc C Lipman
- University College London Respiratory, Division of Medicine, University College London, London, UK
| | - Andrew Nunn
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Timothy M Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Unubol N, Kizilkaya IT, Okullu SO, Koksalan K, Kocagoz T. Simple Identification of Mycobacterial Species by Sequence-Specific Multiple Polymerase Chain Reactions. Curr Microbiol 2019; 76:791-798. [PMID: 31073733 DOI: 10.1007/s00284-019-01661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/28/2019] [Indexed: 12/29/2022]
Abstract
Several species of mycobacteria cause infections in humans. Species identification of clinical isolates of mycobacteria is very important for the decision of treatment and in choosing the appropriate treatment regimen. We have developed a multiplex PCR method that can identify practically all known species of mycobacteria, by determination of single-nucleotide differences at a total of 13 different polymorphic regions in the genes of rRNA and hsp65, in four PCR mixes. To achieve this goal, single-nucleotide differences in these polymorphic regions were used to divide mycobacterial species into two groups, than four, eight, etc., in an algorithmic manner. It was sufficient to reach single species level by evaluating 13 polymorphic regions. Evaluation of the multiplex PCR patterns by observable real-time electrophoresis (ORTE) simplified species identification. This new method may enable easy, rapid, and cost-effective identification of all species of mycobacteria.
Collapse
Affiliation(s)
- Nihan Unubol
- Department of Medical Microbiology, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | | | - Sinem Oktem Okullu
- Department of Medical Microbiology, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Kaya Koksalan
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Tanil Kocagoz
- Department of Medical Microbiology, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| |
Collapse
|
21
|
Mintzer V, Moran-Gilad J, Simon-Tuval T. Operational models and criteria for incorporating microbial whole genome sequencing in hospital microbiology - A systematic literature review. Clin Microbiol Infect 2019; 25:1086-1095. [PMID: 31039443 DOI: 10.1016/j.cmi.2019.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microbial whole genome sequencing (WGS) has many advantages over standard microbiological methods. However, it is not yet widely implemented in routine hospital diagnostics due to notable challenges. OBJECTIVES The aim was to extract managerial, financial and clinical criteria supporting the decision to implement WGS in routine diagnostic microbiology, across different operational models of implementation in the hospital setting. METHODS This was a systematic review of literature identified through PubMed and Web of Science. English literature studies discussing the applications of microbial WGS without limitation on publication date were eligible. A narrative approach for categorization and synthesis of the sources identified was adopted. RESULTS A total of 98 sources were included. Four main alternative operational models for incorporating WGS in clinical microbiology laboratories were identified: full in-house sequencing and analysis, full outsourcing of sequencing and analysis and two hybrid models combining in-house/outsourcing of the sequencing and analysis components. Six main criteria (and multiple related sub-criteria) for WGS implementation emerged from our review and included cost (e.g. the availability of resources for capital and operational investment); manpower (e.g. the ability to provide training programmes or recruit trained personnel), laboratory infrastructure (e.g. the availability of supplies and consumables or sequencing platforms), bioinformatics requirements (e.g. the availability of valid analysis tools); computational infrastructure (e.g. the availability of storage space or data safety arrangements); and quality control (e.g. the existence of standardized procedures). CONCLUSIONS The decision to incorporate WGS in routine diagnostics involves multiple, sometimes competing, criteria and sub-criteria. Mapping these criteria systematically is an essential stage in developing policies for adoption of this technology, e.g. using a multicriteria decision tool. Future research that will prioritize criteria and sub-criteria that were identified in our review in the context of operational models will inform decision-making at clinical and managerial levels with respect to effective implementation of WGS for routine use. Beyond WGS, similar decision-making challenges are expected with respect to future integration of clinical metagenomics.
Collapse
Affiliation(s)
- V Mintzer
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; Leumit Health Services, Israel
| | - J Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - T Simon-Tuval
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
22
|
Huh HJ, Kim SY, Jhun BW, Shin SJ, Koh WJ. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. INFECTION GENETICS AND EVOLUTION 2018; 72:169-182. [PMID: 30315892 DOI: 10.1016/j.meegid.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests that human infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, indicating that NTM disease is no longer uncommon in many countries. As a result of an increasing emphasis on the importance of differential identification of NTM species, several molecular tools have recently been introduced in clinical and experimental settings. These advances have led to a much better understanding of the diversity of NTM species with regard to clinical aspects and the potential factors responsible for drug resistance that influence the different outcomes of NTM disease. In this paper, we review currently available molecular diagnostics for identification and differentiation of NTM species by summarizing data from recently applied methods, including commercially available assays, and their relevant strengths and weaknesses. We also highlight drug resistance-associated genes in clinically important NTM species. Understanding the basis for different treatment outcomes with different causative species and drug-resistance mechanisms will eventually improve current treatment regimens and facilitate the development of better control measures for NTM diseases.
Collapse
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
23
|
McNerney R, Zignol M, Clark TG. Use of whole genome sequencing in surveillance of drug resistant tuberculosis. Expert Rev Anti Infect Ther 2018; 16:433-442. [PMID: 29718745 DOI: 10.1080/14787210.2018.1472577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The threat of resistance to anti-tuberculosis drugs is of global concern. Current efforts to monitor resistance rely on phenotypic testing where cultured bacteria are exposed to critical concentrations of the drugs. Capacity for such testing is low in TB endemic countries. Drug resistance is caused by mutations in the Mycobacterium tuberculosis genome and whole genome sequencing to detect these mutations offers an alternative means of assessing resistance. Areas covered: The challenges of assessing TB drug resistance are discussed. Progress in elucidating the M. tuberculosis resistome and evidence of the accuracy of next generation sequencing for detecting resistance is reviewed. Expert Commentary: There are considerable advantages to using next generation sequencing for TB drug resistance surveillance. Accuracy is high for detecting resistance to the major first-line drugs but is currently lower for the second-line drugs due to our incomplete knowledge regarding resistance causing mutations. With the advances in sequencing technology and the opportunity to replace phenotypic drug susceptibility testing with safer and more cost effective methods it would appear that the question is when to implement. Current bottlenecks are sample extraction to allow whole genome sequencing directly from sputum and the lack of bioinformatics expertise in some TB endemic countries.
Collapse
Affiliation(s)
- Ruth McNerney
- a Division of Pulmonary Medicine, Department of Medicine , University of Cape Town , Cape Town , South Africa
| | - Matteo Zignol
- b Global Tuberculosis Programme , World Health Organization , Geneva , Switzerland
| | - Taane G Clark
- c Faculty of Infectious and Tropical Diseases and Faculty of Epidemiology and Population Health , London School of Hygiene & Tropical Medicine , London , United Kingdom
| |
Collapse
|