1
|
Caméléna F, Merimèche M, Liberge M, Maubaret C, Donay JL, Taha MK, Fouéré S, Berçot B. Detection of CTX-M-15 ESBL in XDR Haemophilus parainfluenzae from a urethral swab. J Antimicrob Chemother 2024; 79:539-545. [PMID: 38197448 DOI: 10.1093/jac/dkad408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
OBJECTIVES Haemophilus parainfluenzae is an opportunistic pathogen causing respiratory tract infection and sexually transmitted diseases. The emergence of multidrug resistance in this species is particularly worrisome, especially since the recent description of CTX-M-15 ESBL-producing isolates in Spain. The aim of this study was to characterize a CTX-M-15-producing H. parainfluenzae clinical isolate, HP01, obtained from a urethral swab. METHODS MICs were determined with gradient strips for this isolate. Hydrolysis assays were performed with the β LACTA test. Genomic DNA from HP01 was subjected to Illumina and Oxford Nanopore sequencing to investigate the genetic environment of blaCTX-M-15. Phylogenetic analysis was performed with available H. parainfluenzae genomes from the NCBI database, including CTX-M-15 producers. RESULTS HP01, an XDR isolate, was resistant to penicillin, third-generation cephalosporins, fluoroquinolones, macrolides, cyclines and co-trimoxazole and susceptible only to carbapenems and rifampicin. HP01 carried blaTEM-1, blaCTX-M-15, tet(M), catS and mef(E)/mel and harboured amino acid substitutions in PBP3, PBP5, GyrA, ParC and FolA implicated in resistance. Genomic analysis revealed that blaCTX-M-15 was carried by a Tn3-like transposon inserted into a novel integrative and conjugative element (ICE), ICEHpaSLS, present on the chromosome and belonging to the ICEHin1056 family described in Haemophilus influenzae. The tet(M)-MEGA element was also detected on the chromosome. No plasmid was found. The phylogenetic analysis showed that four H. parainfluenzae producing CTX-M-15 clustered in the same clade. CONCLUSIONS Here we report the description of an XDR H. parainfluenzae producing blaCTX-M-15 isolated from a urethral swab. The blaCTX-M-15 gene was inserted into an ICE structure similar to those recently described in CTX-M-15 producers in Spain. The emergence of XDR H. parainfluenzae producing blaCTX-M-15 is a matter of great concern. Careful surveillance is required to prevent its spread.
Collapse
Affiliation(s)
- François Caméléna
- Université de Paris Cité, INSERM, IAME, Paris F-75018, France
- Department of Bacteriology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
- French National Reference Centre for Bacterial STIs, Associated Laboratory for Gonococci, Paris F-75010, France
| | - Manel Merimèche
- Université de Paris Cité, INSERM, IAME, Paris F-75018, France
- Department of Bacteriology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
- French National Reference Centre for Bacterial STIs, Associated Laboratory for Gonococci, Paris F-75010, France
| | - Mathilde Liberge
- Université de Paris Cité, INSERM, IAME, Paris F-75018, France
- Department of Bacteriology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| | - Clara Maubaret
- Université de Paris Cité, INSERM, IAME, Paris F-75018, France
- Department of Bacteriology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| | - Jean-Luc Donay
- Department of Bacteriology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infections Unit and National Reference Centre for Haemophilus influenzae, Institut Pasteur, Paris F-75015, France
| | - Sébastien Fouéré
- SFD/GRIDIST and Centre for Genital and Sexually Transmitted Diseases, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
| | - Béatrice Berçot
- Université de Paris Cité, INSERM, IAME, Paris F-75018, France
- Department of Bacteriology, Saint-Louis-Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris F-75010, France
- French National Reference Centre for Bacterial STIs, Associated Laboratory for Gonococci, Paris F-75010, France
| |
Collapse
|
2
|
Su PY, Cheng WH, Ho CH. Molecular characterization of multidrug-resistant non-typeable Haemophilus influenzae with high-level resistance to cefuroxime, levofloxacin, and trimethoprim-sulfamethoxazole. BMC Microbiol 2023; 23:178. [PMID: 37407940 DOI: 10.1186/s12866-023-02926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Non-typeable Haemophilus influenzae (NTHi) has become the major cause of invasive H. influenzae diseases in the post-H. influenzae type b vaccine era. The emergence of multidrug-resistant (MDR) NTHi is a growing public health problem. Herein, we investigated the molecular basis of MDR in NTHi. The isolated NTHi were subjected to antimicrobial susceptibility testing for 12 agents. Whole genome and plasmid sequencing were conducted and analyzed to identify significant genetic variations and plasmid-encoded genes conferred antibiotic resistance. RESULTS Thirteen (50%) MDR NTHi isolates were obtained; of these, 92.3% were non-susceptible to ampicillin, 30.8% to amoxicillin-clavulanate, 61.5% to cefuroxime, 61.5% to ciprofloxacin/levofloxacin, 92.3% to trimethoprim-sulfamethoxazole, 30.8% to tetracycline, and 7.7% to azithromycin. Eight ampicillin-resistant isolates were β-lactamase positive; of these, 6 carried blaTEM-1 and 2 carried blaROB-1, whereas 4 were β-lactamase negative. Genetic variations in mrdA, mepA, and pbpG were correlated with amoxicillin-clavulanate non-susceptibility, whereas variations in ftsI and lpoA conferred cefuroxime resistance. Five variations in gyrA, 2 in gyrB, 3 in parC, 1 in parE, and 1 in the parC-parE intergenic region were associated with levofloxacin/ciprofloxacin non-susceptibility. Among these genes, 8 variations were linked to high-level levofloxacin resistance. Six variations in folA were associated with trimethoprim-sulfamethoxazole resistance. Plasmid-bearing tet(B) and mef(A) genes were responsible for tetracycline and azithromycin resistance in 4 and 1 MDR isolates, respectively. CONCLUSIONS This study clarified the molecular epidemiology of MDR in NTHi. This can benefit the monitoring of drug resistance trends in NTHi and the adequate medical management of patients with NTHi infection.
Collapse
Affiliation(s)
- Pei-Yi Su
- Department of Laboratory Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Wei-Hung Cheng
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Ho
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
3
|
Lindemann PC, Mylvaganam H, Oppegaard O, Anthonisen IL, Zecic N, Skaare D. Case Report: Whole-Genome Sequencing of Serially Collected Haemophilus influenzae From a Patient With Common Variable Immunodeficiency Reveals Within-Host Evolution of Resistance to Trimethoprim-Sulfamethoxazole and Azithromycin After Prolonged Treatment With These Antibiotics. Front Cell Infect Microbiol 2022; 12:896823. [PMID: 35719354 PMCID: PMC9199433 DOI: 10.3389/fcimb.2022.896823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
We report within-host evolution of antibiotic resistance to trimethoprim-sulfamethoxazole and azithromycin in a nontypeable Haemophilus influenzae strain from a patient with common variable immunodeficiency (CVID), who received repeated or prolonged treatment with these antibiotics for recurrent respiratory tract infections. Whole-genome sequencing of three longitudinally collected sputum isolates during the period April 2016 to January 2018 revealed persistence of a strain of sequence type 2386. Reduced susceptibility to trimethoprim-sulfamethoxazole in the first two isolates was associated with mutations in genes encoding dihydrofolate reductase (folA) and its promotor region, dihydropteroate synthase (folP), and thymidylate synthase (thyA), while subsequent substitution of a single amino acid in dihydropteroate synthase (G225A) rendered high-level resistance in the third isolate from 2018. Azithromycin co-resistance in this isolate was associated with amino acid substitutions in 50S ribosomal proteins L4 (W59R) and L22 (G91D), possibly aided by a substitution in AcrB (A604E) of the AcrAB efflux pump. All three isolates were resistant to aminopenicillins and cefotaxime due to TEM-1B beta-lactamase and identical alterations in penicillin-binding protein 3. Further resistance development to trimethoprim-sulfamethoxazole and azithromycin resulted in a multidrug-resistant phenotype. Evolution of multidrug resistance due to horizontal gene transfer and/or spontaneous mutations, along with selection of resistant subpopulations is a particular risk in CVID and other patients requiring repeated and prolonged antibiotic treatment or prophylaxis. Such challenging situations call for careful antibiotic stewardship together with supportive and supplementary treatment. We describe the clinical and microbiological course of events in this case report and address the challenges encountered.
Collapse
Affiliation(s)
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nermin Zecic
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Dagfinn Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
4
|
Wu Y, Qu Z, Xiong R, Yang Y, Liu S, Nie J, Liang C, Huang W, Wang Y, Fan C. A practical method for evaluating the in vivo efficacy of EVA-71 vaccine using a hSCARB2 knock-in mouse model. Emerg Microbes Infect 2021; 10:1180-1190. [PMID: 34044752 PMCID: PMC8205003 DOI: 10.1080/22221751.2021.1934558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Hand-foot-and-mouth disease is a contagious disease common among children under 5 years old worldwide. It is caused by strains of enterovirus, especially EV-A71, which can lead to severe disease. Vaccines are the only way to fight this disease. Accordingly, it is necessary to establish an efficient and accurate methodology to evaluate vaccine efficacy in vivo. Here, we established a practical method using a hSCARB2 knock-in mouse model, which was susceptible to EV-A71 infection at 5-6 weeks of age, to directly determine the efficacy of vaccines. Unlike traditional approaches, one-week-old hSCARB2 mice were immunized twice with a licensed vaccine, with an interval of a week. The titre of antibodies was measured after 1 week. Mice at 4 weeks of age were challenged with EV-A71 intraperitoneally and intracranially, respectively. The unimmunized hSCARB2 mice displayed systemic clinical symptoms and succumbed to the disease at a rate of approximately 50%. High viral loads were detected in the lungs, brain, and muscles, accompanied by clear pathological changes. The expression of IL-1β, IL-13, IL-17, and TNF-α was significantly upregulated. By contrast, the immunized group was practically normal and indistinguishable from the control mice. These results indicate that the hSCARB2 knock-in mouse is susceptible to infection in adulthood, and the in vivo efficacy of EV-A71 vaccine could be directly evaluated in this mouse model. The method developed here may be used in the development of new vaccines against HFMD or quality control of licensed vaccines.
Collapse
Affiliation(s)
- Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Zhe Qu
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Rui Xiong
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yanwei Yang
- National Center for Safety Evaluation of Drugs, Institute for Food and Drug Safety Evaluation, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Chunnan Liang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| |
Collapse
|
5
|
Watts SC, Judd LM, Carzino R, Ranganathan S, Holt KE. Genomic Diversity and Antimicrobial Resistance of Haemophilus Colonizing the Airways of Young Children with Cystic Fibrosis. mSystems 2021; 6:e0017821. [PMID: 34463568 DOI: 10.1128/msystems.00178-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory infection during childhood is a key risk factor in early cystic fibrosis (CF) lung disease progression. Haemophilus influenzae and Haemophilus parainfluenzae are routinely isolated from the lungs of children with CF; however, little is known about the frequency and characteristics of Haemophilus colonization in this context. Here, we describe the detection, antimicrobial resistance (AMR), and genome sequencing of H. influenzae and H. parainfluenzae isolated from airway samples of 147 participants aged ≤12 years enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program, Melbourne, Australia. The frequency of colonization per visit was 4.6% for H. influenzae and 32.1% for H. parainfluenzae, 80.3% of participants had H. influenzae and/or H. parainfluenzae detected on at least one visit, and using genomic data, we estimate 15.6% of participants had persistent colonization with the same strain for at least two consecutive visits. Isolates were genetically diverse and AMR was common, with 52% of H. influenzae and 82% of H. parainfluenzae displaying resistance to at least one drug. The genetic basis for AMR could be identified in most cases; putative novel determinants include a new plasmid encoding blaTEM-1 (ampicillin resistance), a new inhibitor-resistant blaTEM allele (augmentin resistance), and previously unreported mutations in chromosomally carried genes (pbp3, ampicillin resistance; folA/folP, cotrimoxazole resistance; rpoB, rifampicin resistance). Acquired AMR genes were more common in H. parainfluenzae than H. influenzae (51% versus 21%, P = 0.0107) and were mostly associated with the ICEHin mobile element carrying blaTEM-1, resulting in more ampicillin resistance in H. parainfluenzae (73% versus 30%, P = 0.0004). Genomic data identified six potential instances of Haemophilus transmission between participants, of which three involved participants who shared clinic visit days. IMPORTANCE Cystic fibrosis (CF) lung disease begins during infancy, and acute respiratory infections increase the risk of early disease development and progression. Microbes involved in advanced stages of CF are well characterized, but less is known about early respiratory colonizers. We report the population dynamics and genomic determinants of AMR in two early colonizer species, namely, Haemophilus influenzae and Haemophilus parainfluenzae, collected from a pediatric CF cohort. This investigation also reveals that H. parainfluenzae has a high frequency of AMR carried on mobile elements that may act as a potential reservoir for the emergence and spread of AMR to H. influenzae, which has greater clinical significance as a respiratory pathogen in children. This study provides insight into the evolution of AMR and the colonization of H. influenzae and H. parainfluenzae in a pediatric CF cohort, which will help inform future treatment.
Collapse
Affiliation(s)
- Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbournegrid.1008.9, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Victoria, Australia
| | - Rosemary Carzino
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarath Ranganathan
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbournegrid.1008.9, Melbourne, Victoria, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbournegrid.1008.9, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Victoria, Australia
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Sierra Y, González-Díaz A, Carrera-Salinas A, Berbel D, Vázquez-Sánchez DA, Tubau F, Cubero M, Garmendia J, Càmara J, Ayats J, Ardanuy C, Marti S. Genome-wide analysis of urogenital and respiratory multidrug-resistant Haemophilus parainfluenzae. J Antimicrob Chemother 2021; 76:1741-1751. [PMID: 33792695 DOI: 10.1093/jac/dkab109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the mechanisms of antimicrobial resistance and the prevalence of the polysaccharide capsule among urogenital and respiratory Haemophilus parainfluenzae isolates. METHODS Antimicrobial susceptibility was tested by microdilution. Fifty-five MDR strains were subjected to WGS and were phylogenetically compared with all the available H. parainfluenzae genomes from the NCBI database. The identification of the capsular bexA gene was performed by PCR in 266 non-MDR strains. RESULTS In 31 of the 42 ampicillin-resistant strains, blaTEM-1 located within Tn3 was identified. β-Lactamase-negative cefuroxime-resistant strains (n = 12) presented PBP3 substitutions. The catS gene (n = 14), the tet(M)-MEGA element (n = 18) and FolA substitutions (I95L and F154V/S) (n = 41) were associated with resistance to chloramphenicol, tetracycline plus macrolides, and co-trimoxazole, respectively. Thirty-seven isolates had a Tn10 harbouring tet(B)/(C)/(D)/(R) genes with (n = 15) or without (n = 22) catA2. Putative transposons (Tn7076-Tn7079), including aminoglycoside and co-trimoxazole resistance genes, were identified in 10 strains (18.2%). These transposons were integrated into three new integrative and conjugative elements (ICEs), which also included the resistance-associated transposons Tn3 and Tn10. The capsular operon was found only in the urogenital isolates (18/154, 11.7%), but no phylogenetic clustering was observed. The capsular operons identified were similar to those of Haemophilus influenzae serotype c and Haemophilus sputorum type 2. CONCLUSIONS The identification of ICEs with up to three resistance-associated transposons suggests that these transferable elements play an important role in the acquisition of multidrug resistance in H. parainfluenzae. Moreover, the presence of polysaccharide capsules in some of these urogenital isolates is a cause for concern.
Collapse
Affiliation(s)
- Yanik Sierra
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Anna Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Daniel Antonio Vázquez-Sánchez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Junkal Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Instituto de Agrobiotecnología, CSIC-Gobierno Navarra, Mutilva, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Josefina Ayats
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Marti
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|