1
|
Fleury M, Figueiredo P, Vourvopoulos A, Lécuyer A. Two is better? combining EEG and fMRI for BCI and neurofeedback: a systematic review. J Neural Eng 2023; 20:051003. [PMID: 37879343 DOI: 10.1088/1741-2552/ad06e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two commonly used non-invasive techniques for measuring brain activity in neuroscience and brain-computer interfaces (BCI).Objective. In this review, we focus on the use of EEG and fMRI in neurofeedback (NF) and discuss the challenges of combining the two modalities to improve understanding of brain activity and achieve more effective clinical outcomes. Advanced technologies have been developed to simultaneously record EEG and fMRI signals to provide a better understanding of the relationship between the two modalities. However, the complexity of brain processes and the heterogeneous nature of EEG and fMRI present challenges in extracting useful information from the combined data.Approach. We will survey existing EEG-fMRI combinations and recent studies that exploit EEG-fMRI in NF, highlighting the experimental and technical challenges.Main results. We made a classification of the different combination of EEG-fMRI for NF, we provide a review of multimodal analysis methods for EEG-fMRI features. We also survey the current state of research on EEG-fMRI in the different existing NF paradigms. Finally, we also identify some of the remaining challenges in this field.Significance. By exploring EEG-fMRI combinations in NF, we are advancing our knowledge of brain function and its applications in clinical settings. As such, this review serves as a valuable resource for researchers, clinicians, and engineers working in the field of neural engineering and rehabilitation, highlighting the promising future of EEG-fMRI-based NF.
Collapse
Affiliation(s)
- Mathis Fleury
- Univ Rennes, Inria, CNRS, Inserm, Empenn ERL U1228 Rennes, France
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Athanasios Vourvopoulos
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Anatole Lécuyer
- Univ Rennes, Inria, CNRS, Inserm, Empenn ERL U1228 Rennes, France
| |
Collapse
|
2
|
Caetano G, Esteves I, Vourvopoulos A, Fleury M, Figueiredo P. NeuXus open-source tool for real-time artifact reduction in simultaneous EEG-fMRI. Neuroimage 2023; 280:120353. [PMID: 37652114 DOI: 10.1016/j.neuroimage.2023.120353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) allows the complementary study of the brain's electrophysiology and hemodynamics with high temporal and spatial resolution. One application with great potential is neurofeedback training of targeted brain activity, based on the real-time analysis of the EEG and/or fMRI signals. This depends on the ability to reduce in real time the severe artifacts affecting the EEG signal acquired with fMRI, mainly the gradient and pulse artifacts. A few methods have been proposed for this purpose, but they are either slow, hardware-dependent, publicly unavailable, or proprietary software. Here, we present a fully open-source and publicly available tool for real-time EEG artifact reduction in simultaneous EEG-fMRI recordings that is fast and applicable to any hardware. Our tool is integrated in the Python toolbox NeuXus for real-time EEG processing and adapts to a real-time scenario well-established artifact average subtraction methods combined with a long short-term memory network for R peak detection. We benchmarked NeuXus on three different datasets, in terms of artifact power reduction and background signal preservation in resting state, alpha-band power reactivity to eyes closure, and event-related desynchronization during motor imagery. We showed that NeuXus performed at least as well as the only available real-time tool for conventional hardware setups (BrainVision's RecView) and a well-established offline tool (EEGLAB's FMRIB plugin). We also demonstrated NeuXus' real-time ability by reporting execution times under 250 ms. In conclusion, we present and validate the first fully open-source and hardware-independent solution for real-time artifact reduction in simultaneous EEG-fMRI studies.
Collapse
Affiliation(s)
- Gustavo Caetano
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Athanasios Vourvopoulos
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Mathis Fleury
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Ballistocardiogram artifact removal in simultaneous EEG-fMRI using generative adversarial network. J Neurosci Methods 2022; 371:109498. [DOI: 10.1016/j.jneumeth.2022.109498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
4
|
Mayeli A, Al Zoubi O, Henry K, Wong CK, White EJ, Luo Q, Zotev V, Refai H, Bodurka J. Automated pipeline for EEG artifact reduction (APPEAR) recorded during fMRI. J Neural Eng 2021; 18:10.1088/1741-2552/ac1037. [PMID: 34192674 PMCID: PMC10696919 DOI: 10.1088/1741-2552/ac1037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
Objective.Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings offer a high spatiotemporal resolution approach to study human brain and understand the underlying mechanisms mediating cognitive and behavioral processes. However, the high susceptibility of EEG to MRI-induced artifacts hinders a broad adaptation of this approach. More specifically, EEG data collected during fMRI acquisition are contaminated with MRI gradients and ballistocardiogram artifacts, in addition to artifacts of physiological origin. There have been several attempts for reducing these artifacts with manual and time-consuming pre-processing, which may result in biasing EEG data due to variations in selecting steps order, parameters, and classification of artifactual independent components. Thus, there is a strong urge to develop a fully automatic and comprehensive pipeline for reducing all major EEG artifacts. In this work, we introduced an open-access toolbox with a fully automatic pipeline for reducing artifacts from EEG data collected simultaneously with fMRI (refer to APPEAR).Approach.The pipeline integrates average template subtraction and independent component analysis to suppress both MRI-related and physiological artifacts. To validate our results, we tested APPEAR on EEG data recorded from healthy control subjects during resting-state (n= 48) and task-based (i.e. event-related-potentials (ERPs);n= 8) paradigms. The chosen gold standard is an expert manual review of the EEG database.Main results.We compared manually and automated corrected EEG data during resting-state using frequency analysis and continuous wavelet transformation and found no significant differences between the two corrections. A comparison between ERP data recorded during a so-called stop-signal task (e.g. amplitude measures and signal-to-noise ratio) also showed no differences between the manually and fully automatic fMRI-EEG-corrected data.Significance.APPEAR offers the first comprehensive open-source toolbox that can speed up advancement of EEG analysis and enhance replication by avoiding experimenters' preferences while allowing for processing large EEG-fMRI cohorts composed of hundreds of subjects with manageable researcher time and effort.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
- Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States of America
| | - Obada Al Zoubi
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
- Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States of America
- Department of Psychiatry, Harvard Medical School
| | - Kaylee Henry
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Chung Ki Wong
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
| | - Evan J White
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
| | - Qingfei Luo
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
| | - Vadim Zotev
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
| | - Hazem Refai
- Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States of America
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Tulsa 1000 Investigators
- Laureate Institute for Brain Research, Tulsa, OK, United States of America
- The Tulsa 1000 Investigators include the following contributors: Robin Aupperle, Ph.D., Jerzy Bodurka, Ph.D., Justin Feinstein, Ph.D., Sahib S Khalsa, M.D., Ph.D., Rayus Kuplicki, Ph.D., Martin P Paulus, M.D., Jonathan Savitz, Ph.D., Jennifer Stewart, Ph.D., Teresa A Victor, Ph.D
| |
Collapse
|
5
|
Sadjadi SM, Ebrahimzadeh E, Shams M, Seraji M, Soltanian-Zadeh H. Localization of Epileptic Foci Based on Simultaneous EEG-fMRI Data. Front Neurol 2021; 12:645594. [PMID: 33986718 PMCID: PMC8110922 DOI: 10.3389/fneur.2021.645594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) enables a non-invasive investigation of the human brain function and evaluation of the correlation of these two important modalities of brain activity. This paper explores recent reports on using advanced simultaneous EEG–fMRI methods proposed to map the regions and networks involved in focal epileptic seizure generation. One of the applications of EEG and fMRI combination as a valuable clinical approach is the pre-surgical evaluation of patients with epilepsy to map and localize the precise brain regions associated with epileptiform activity. In the process of conventional analysis using EEG–fMRI data, the interictal epileptiform discharges (IEDs) are visually extracted from the EEG data to be convolved as binary events with a predefined hemodynamic response function (HRF) to provide a model of epileptiform BOLD activity and use as a regressor for general linear model (GLM) analysis of the fMRI data. This review examines the methodologies involved in performing such studies, including techniques used for the recording of EEG inside the scanner, artifact removal, and statistical analysis of the fMRI signal. It then discusses the results reported for patients with primary generalized epilepsy and patients with different types of focal epileptic disorders. An important matter that these results have brought to light is that the brain regions affected by interictal epileptic discharges might not be limited to the ones where they have been generated. The developed methods can help reveal the regions involved in or affected by a seizure onset zone (SOZ). As confirmed by the reviewed literature, EEG–fMRI provides information that comes particularly useful when evaluating patients with refractory epilepsy for surgery.
Collapse
Affiliation(s)
- Seyyed Mostafa Sadjadi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elias Ebrahimzadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Shams
- Neural Engineering Laboratory, Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, United States
| | - Masoud Seraji
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States.,Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, NJ, United States
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
6
|
Bullock M, Jackson GD, Abbott DF. Artifact Reduction in Simultaneous EEG-fMRI: A Systematic Review of Methods and Contemporary Usage. Front Neurol 2021; 12:622719. [PMID: 33776886 PMCID: PMC7991907 DOI: 10.3389/fneur.2021.622719] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a technique that combines temporal (largely from EEG) and spatial (largely from fMRI) indicators of brain dynamics. It is useful for understanding neuronal activity during many different event types, including spontaneous epileptic discharges, the activity of sleep stages, and activity evoked by external stimuli and decision-making tasks. However, EEG recorded during fMRI is subject to imaging, pulse, environment and motion artifact, causing noise many times greater than the neuronal signals of interest. Therefore, artifact removal methods are essential to ensure that artifacts are accurately removed, and EEG of interest is retained. This paper presents a systematic review of methods for artifact reduction in simultaneous EEG-fMRI from literature published since 1998, and an additional systematic review of EEG-fMRI studies published since 2016. The aim of the first review is to distill the literature into clear guidelines for use of simultaneous EEG-fMRI artifact reduction methods, and the aim of the second review is to determine the prevalence of artifact reduction method use in contemporary studies. We find that there are many published artifact reduction techniques available, including hardware, model based, and data-driven methods, but there are few studies published that adequately compare these methods. In contrast, recent EEG-fMRI studies show overwhelming use of just one or two artifact reduction methods based on literature published 15–20 years ago, with newer methods rarely gaining use outside the group that developed them. Surprisingly, almost 15% of EEG-fMRI studies published since 2016 fail to adequately describe the methods of artifact reduction utilized. We recommend minimum standards for reporting artifact reduction techniques in simultaneous EEG-fMRI studies and suggest that more needs to be done to make new artifact reduction techniques more accessible for the researchers and clinicians using simultaneous EEG-fMRI.
Collapse
Affiliation(s)
- Madeleine Bullock
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Graeme D Jackson
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
| | - David F Abbott
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.,Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Lioi G, Butet S, Fleury M, Bannier E, Lécuyer A, Bonan I, Barillot C. A Multi-Target Motor Imagery Training Using Bimodal EEG-fMRI Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front Hum Neurosci 2020; 14:37. [PMID: 32132910 PMCID: PMC7040168 DOI: 10.3389/fnhum.2020.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Traditional rehabilitation techniques present limitations and the majority of patients show poor 1-year post-stroke recovery. Thus, Neurofeedback (NF) or Brain-Computer-Interface applications for stroke rehabilitation purposes are gaining increased attention. Indeed, NF has the potential to enhance volitional control of targeted cortical areas and thus impact on motor function recovery. However, current implementations are limited by temporal, spatial or practical constraints of the specific imaging modality used. In this pilot work and for the first time in literature, we applied bimodal EEG-fMRI NF for upper limb stroke recovery on four stroke-patients with different stroke characteristics and motor impairment severity. We also propose a novel, multi-target training approach that guides the training towards the activation of the ipsilesional primary motor cortex. In addition to fMRI and EEG outcomes, we assess the integrity of the corticospinal tract (CST) with tractography. Preliminary results suggest the feasibility of our approach and show its potential to induce an augmented activation of ipsilesional motor areas, depending on the severity of the stroke deficit. Only the two patients with a preserved CST and subcortical lesions succeeded in upregulating the ipsilesional primary motor cortex and exhibited a functional improvement of upper limb motricity. These findings highlight the importance of taking into account the variability of the stroke patients' population and enabled to identify inclusion criteria for the design of future clinical studies.
Collapse
Affiliation(s)
- Giulia Lioi
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
| | - Simon Butet
- Departement of Physical and Rehabilitation Medicine, Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Mathis Fleury
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
| | - Elise Bannier
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
- Departement of Radiology, CHU Rennes, Rennes, France
| | | | - Isabelle Bonan
- Univ Rennes, Inria, CNRS, Inserm, IRISA, Rennes, France
- Departement of Physical and Rehabilitation Medicine, Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | | |
Collapse
|
8
|
Investigating the variability of cardiac pulse artifacts across heartbeats in simultaneous EEG-fMRI recordings: A 7T study. Neuroimage 2019; 191:21-35. [PMID: 30742980 DOI: 10.1016/j.neuroimage.2019.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 11/24/2022] Open
Abstract
Electroencephalography (EEG) recordings performed in magnetic resonance imaging (MRI) scanners are affected by complex artifacts caused by heart function, often termed pulse artifacts (PAs). PAs can strongly compromise EEG data quality, and remain an open problem for EEG-fMRI. This study investigated the properties and mechanisms of PA variability across heartbeats, which has remained largely unaddressed to date, and evaluated its impact on PA correction approaches. Simultaneous EEG-fMRI was performed at 7T on healthy participants at rest or under visual stimulation, with concurrent recordings of breathing and cardiac activity. PA variability was found to contribute to EEG variance with more than 500 μV2 at 7T, which extrapolates to 92 μV2 at 3T. Clustering analyses revealed that PA variability not only is linked to variations in head position/orientation, as previously hypothesized, but also, and more importantly, to the respiratory cycle and to heart rate fluctuations. The latter mechanisms are associated to short-timescale variability (even across consecutive heartbeats), and their importance varied across EEG channels. In light of this PA variability, three PA correction techniques were compared: average artifact subtraction (AAS), optimal basis sets (OBS), and an approach based on K-means clustering. All methods allowed the recovery of visual evoked potentials from the EEG data; nonetheless, OBS and K-means tended to outperform AAS, likely due to the inability of the latter in modeling short-timescale variability. Altogether, these results offer novel insights into the dynamics and underlying mechanisms of the pulse artifact, with important consequences for its correction, relevant to most EEG-fMRI applications.
Collapse
|
9
|
Wang K, Li W, Dong L, Zou L, Wang C. Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI. Front Neurosci 2018; 12:59. [PMID: 29487499 PMCID: PMC5816921 DOI: 10.3389/fnins.2018.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Combination of electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) plays a potential role in neuroimaging due to its high spatial and temporal resolution. However, EEG is easily influenced by ballistocardiogram (BCG) artifacts and may cause false identification of the related EEG features, such as epileptic spikes. There are many related methods to remove them, however, they do not consider the time-varying features of BCG artifacts. In this paper, a novel method using clustering algorithm to catch the BCG artifacts' features and together with the constrained ICA (ccICA) is proposed to remove the BCG artifacts. We first applied this method to the simulated data, which was constructed by adding the BCG artifacts to the EEG signal obtained from the conventional environment. Then, our method was tested to demonstrate the effectiveness during EEG and fMRI experiments on 10 healthy subjects. In simulated data analysis, the value of error in signal amplitude (Er) computed by ccICA method was lower than those from other methods including AAS, OBS, and cICA (p < 0.005). In vivo data analysis, the Improvement of Normalized Power Spectrum (INPS) calculated by ccICA method in all electrodes was much higher than AAS, OBS, and cICA methods (p < 0.005). We also used other evaluation index (e.g., power analysis) to compare our method with other traditional methods. In conclusion, our novel method successfully and effectively removed BCG artifacts in both simulated and vivo EEG data tests, showing the potentials of removing artifacts in EEG-fMRI applications.
Collapse
Affiliation(s)
- Kai Wang
- School of Information Science and Engineering, Changzhou University, Changzhou, China.,Changzhou Key Laboratory of Biomedical Information Technology, Changzhou, China
| | - Wenjie Li
- School of Information Science and Engineering, Changzhou University, Changzhou, China.,Changzhou Key Laboratory of Biomedical Information Technology, Changzhou, China
| | - Li Dong
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zou
- School of Information Science and Engineering, Changzhou University, Changzhou, China.,Changzhou Key Laboratory of Biomedical Information Technology, Changzhou, China
| | - Changming Wang
- Beijing Anding Hospital, Beijing Key Laboratory of Mental Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Steyrl D, Krausz G, Koschutnig K, Edlinger G, Müller-Putz GR. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF). Brain Topogr 2018; 31:129-149. [PMID: 29124547 PMCID: PMC5772120 DOI: 10.1007/s10548-017-0606-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/31/2017] [Indexed: 11/29/2022]
Abstract
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.
Collapse
Affiliation(s)
- David Steyrl
- Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, 8010, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Karl Koschutnig
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Gernot R Müller-Putz
- Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, 8010, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
11
|
Javed E, Faye I, Malik AS, Abdullah JM. Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA. J Neurosci Methods 2017; 291:150-165. [PMID: 28842191 DOI: 10.1016/j.jneumeth.2017.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/23/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact. METHODS We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact. RESULTS The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals. COMPARISON WITH EXISTING METHODS Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy. CONCLUSIONS The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available.
Collapse
Affiliation(s)
- Ehtasham Javed
- Center for Intelligent Signal and Imaging Research (CISIR) & Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Ibrahima Faye
- Center for Intelligent Signal and Imaging Research (CISIR) & Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Aamir Saeed Malik
- Center for Intelligent Signal and Imaging Research (CISIR) & Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Jafri Malin Abdullah
- Center for Neuroscience Services and Research (P3Neuro) Health Campus, Universiti Sains Malaysia 16150 Kubang Kerian, Kelantan.
| |
Collapse
|
12
|
Perronnet L, Lécuyer A, Mano M, Bannier E, Lotte F, Clerc M, Barillot C. Unimodal Versus Bimodal EEG-fMRI Neurofeedback of a Motor Imagery Task. Front Hum Neurosci 2017; 11:193. [PMID: 28473762 PMCID: PMC5397479 DOI: 10.3389/fnhum.2017.00193] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022] Open
Abstract
Neurofeedback is a promising tool for brain rehabilitation and peak performance training. Neurofeedback approaches usually rely on a single brain imaging modality such as EEG or fMRI. Combining these modalities for neurofeedback training could allow to provide richer information to the subject and could thus enable him/her to achieve faster and more specific self-regulation. Yet unimodal and multimodal neurofeedback have never been compared before. In the present work, we introduce a simultaneous EEG-fMRI experimental protocol in which participants performed a motor-imagery task in unimodal and bimodal NF conditions. With this protocol we were able to compare for the first time the effects of unimodal EEG-neurofeedback and fMRI-neurofeedback versus bimodal EEG-fMRI-neurofeedback by looking both at EEG and fMRI activations. We also propose a new feedback metaphor for bimodal EEG-fMRI-neurofeedback that integrates both EEG and fMRI signal in a single bi-dimensional feedback (a ball moving in 2D). Such a feedback is intended to relieve the cognitive load of the subject by presenting the bimodal neurofeedback task as a single regulation task instead of two. Additionally, this integrated feedback metaphor gives flexibility on defining a bimodal neurofeedback target. Participants were able to regulate activity in their motor regions in all NF conditions. Moreover, motor activations as revealed by offline fMRI analysis were stronger during EEG-fMRI-neurofeedback than during EEG-neurofeedback. This result suggests that EEG-fMRI-neurofeedback could be more specific or more engaging than EEG-neurofeedback. Our results also suggest that during EEG-fMRI-neurofeedback, participants tended to regulate more the modality that was harder to control. Taken together our results shed first light on the specific mechanisms of bimodal EEG-fMRI-neurofeedback and on its added-value as compared to unimodal EEG-neurofeedback and fMRI-neurofeedback.
Collapse
Affiliation(s)
- Lorraine Perronnet
- INRIA, VisAGeS Project TeamRennes, France.,Centre National de la Recherche Scientifique, IRISA, UMR 6074Rennes, France.,Institut National de la Santé et de la Recherche Médicale, U1228Rennes, France.,Université Rennes 1Rennes, France.,INRIA, Hybrid Project TeamRennes, France
| | - Anatole Lécuyer
- Centre National de la Recherche Scientifique, IRISA, UMR 6074Rennes, France.,INRIA, Hybrid Project TeamRennes, France
| | - Marsel Mano
- INRIA, VisAGeS Project TeamRennes, France.,Centre National de la Recherche Scientifique, IRISA, UMR 6074Rennes, France.,Institut National de la Santé et de la Recherche Médicale, U1228Rennes, France.,Université Rennes 1Rennes, France.,INRIA, Hybrid Project TeamRennes, France
| | - Elise Bannier
- INRIA, VisAGeS Project TeamRennes, France.,Centre National de la Recherche Scientifique, IRISA, UMR 6074Rennes, France.,Institut National de la Santé et de la Recherche Médicale, U1228Rennes, France.,Université Rennes 1Rennes, France.,CHU RennesRennes, France
| | - Fabien Lotte
- Inria, Potioc Project TeamTalence, France.,LaBRIBordeaux, France
| | - Maureen Clerc
- Inria, Athena Project TeamSophia Antipolis, France.,Université Côte d'AzurNice, France
| | - Christian Barillot
- INRIA, VisAGeS Project TeamRennes, France.,Centre National de la Recherche Scientifique, IRISA, UMR 6074Rennes, France.,Institut National de la Santé et de la Recherche Médicale, U1228Rennes, France.,Université Rennes 1Rennes, France
| |
Collapse
|
13
|
Steyrl D, Krausz G, Koschutnig K, Edlinger G, Müller-Putz GR. Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI. J Neural Eng 2017; 14:026003. [PMID: 28155841 DOI: 10.1088/1741-2552/14/2/026003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. APPROACH To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. MAIN RESULTS The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. SIGNIFICANCE In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.
Collapse
Affiliation(s)
- David Steyrl
- Laboratory of Brain-Computer Interfaces, Institute of Neural Engineering, Graz University of Technology, Graz, Austria. BioTechMed-Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
14
|
Mayeli A, Zotev V, Refai H, Bodurka J. Real-time EEG artifact correction during fMRI using ICA. J Neurosci Methods 2016; 274:27-37. [DOI: 10.1016/j.jneumeth.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 11/17/2022]
|