1
|
Zhang M, Wang J, Cao X, Xu X, Zhou J, Chen H. An integrated global and local thresholding method for segmenting blood vessels in angiography. Heliyon 2024; 10:e38579. [PMID: 39584119 PMCID: PMC11585685 DOI: 10.1016/j.heliyon.2024.e38579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/26/2024] Open
Abstract
Background In clinical practice, digital subtraction angiography (DSA) is widely used to diagnose cerebrovascular disease based on detailed information about blood vessel structure. Challenges remain on accurately find blood vessel abnormalities in a time-limited manner. In this perspective, computer-aided analysis of DSA can assist clinicians in interpreting the images. Purpose Provide a method for extracting cerebral blood vessels from DSA images. Materials and methods In this work, we presented a new method for segmenting digital subtraction angiography (DSA) by incorporating both global and local information about an image to adaptively classify each pixel to the foreground and background. The method utilizes the global mean and standard deviation of an angiography and local mean and standard deviation within a sliding window to build two criteria. The two criteria contains both global and local characteristics about an image and individual pixels. The two criteria work together to reduce noise in segmentation and preserve valid details about the foreground. We tested the method on angiography and compared it with several widely used algorithms. Results In total, there were 72 DSA images in our dataset. Compared to Otsu, Niblack, iNiblack, Sauvola, Wolf, and CNW, our method achieved the best overall performance. The accuracy, Dice coefficient (Dice), and intersection over union (IoU) are 0.9777, 0.8500, and 0.7440, respectively. Conclusion The results demonstrated that our method can obtain good outcomes, especially in achieving a balance between extracting the correct foreground and reducing incorrect classifications, and had the best performance among the methods being compared with.
Collapse
Affiliation(s)
- Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinhua Cao
- Department of Radiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Xiaoyin Xu
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jie Zhou
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510405, China
| | - Huai Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
2
|
Guryleva A, Machikhin A, Orlova E, Kulikova E, Volkov M, Gabrielian G, Smirnova L, Sekacheva M, Olisova O, Rudenko E, Lobanova O, Smolyannikova V, Demura T. Photoplethysmography-Based Angiography of Skin Tumors in Arbitrary Areas of Human Body. JOURNAL OF BIOPHOTONICS 2024:e202400242. [PMID: 39327652 DOI: 10.1002/jbio.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Noninvasive, rapid, and robust diagnostic techniques for clinical screening of tumors located in arbitrary areas of the human body are in demand. To address this challenge, we analyzed the feasibility of photoplethysmography-based angiography for assessing vascular structures within malignant and benign tumors. The proposed hardware and software were approved in a clinical study involving 30 patients with tumors located in the legs, torso, arms, and head. High-contrast and detailed vessel maps within both benign and malignant tumors were obtained. We demonstrated that capillary maps are consistent and can be interpreted using well-established dermoscopic criteria for vascular morphology. Vessel mapping provides valuable details, which may not be available in dermoscopic images and can aid in determining whether a tumor is benign or malignant. We believe that the proposed approach may become a valuable tool in the preliminary cancer diagnosis and is suitable for large-scale screening.
Collapse
Affiliation(s)
- Anastasia Guryleva
- Scientific and Technological Centre of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Alexander Machikhin
- Scientific and Technological Centre of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Orlova
- V.A. Rakhmanov Department of Dermatology and Venereology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Evgeniya Kulikova
- Scientific and Technological Centre of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Michail Volkov
- Scientific and Technological Centre of Unique Instrumentation of Russian Academy of Sciences, Moscow, Russia
| | - Gaiane Gabrielian
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Ludmila Smirnova
- V.A. Rakhmanov Department of Dermatology and Venereology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Marina Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga Olisova
- V.A. Rakhmanov Department of Dermatology and Venereology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Ekaterina Rudenko
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga Lobanova
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vera Smolyannikova
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Tatiana Demura
- Institute of Clinical Morphology and Digital Pathology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Frisken SF, Haouchine N, Chlorogiannis DD, Gopalakrishnan V, Cafaro A, Wells WT, Golby AJ, Du R. VESCL: an open source 2D vessel contouring library. Int J Comput Assist Radiol Surg 2024; 19:1627-1636. [PMID: 38879659 DOI: 10.1007/s11548-024-03212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE VESCL (pronounced 'vessel') is a novel vessel contouring library for computer-assisted 2D vessel contouring and segmentation. VESCL facilitates manual vessel segmentation in 2D medical images to generate gold-standard datasets for training, testing, and validating automatic vessel segmentation. METHODS VESCL is an open-source C++ library designed for easy integration into medical image processing systems. VESCL provides an intuitive interface for drawing variable-width parametric curves along vessels in 2D images. It includes highly optimized localized filtering to automatically fit drawn curves to the nearest vessel centerline and automatically determine the varying vessel width along each curve. To support a variety of segmentation paradigms, VESCL can export multiple segmentation representations including binary segmentations, occupancy maps, and distance fields. RESULTS VESCL provides sub-pixel resolution for vessel centerlines and vessel widths. It is optimized to segment small vessels with single- or sub-pixel widths that are visible to the human eye but hard to segment automatically via conventional filters. When tested on neurovascular digital subtraction angiography (DSA), VESCL's intuitive hand-drawn input with automatic curve fitting increased the speed of fully manual segmentation by 22× over conventional methods and by 3× over the best publicly available computer-assisted manual segmentation method. Accuracy was shown to be within the range of inter-operator variability of gold standard manually segmented data from a publicly available dataset of neurovascular DSA images as measured using Dice scores. Preliminary tests showed similar improvements for segmenting DSA of coronary arteries and RGB images of retinal arteries. CONCLUSION VESCL is an open-source C++ library for contouring vessels in 2D images which can be used to reduce the tedious, labor-intensive process of manually generating gold-standard segmentations for training, testing, and comparing automatic segmentation methods.
Collapse
Affiliation(s)
- S F Frisken
- Brigham and Women's Hospital, Boston, USA.
- Harvard Medical School, Boston, USA.
| | - N Haouchine
- Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - D D Chlorogiannis
- Brigham and Women's Hospital, Boston, USA
- Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - V Gopalakrishnan
- Harvard-MIT Health Sciences and Technology, Cambridge, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - A Cafaro
- Brigham and Women's Hospital, Boston, USA
- Université Paris-Saclay, Villejuif, France
| | - W T Wells
- Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
- Massachusetts Institute of Technology, Cambridge, USA
| | - A J Golby
- Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - R Du
- Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Su R, van der Sluijs PM, Chen Y, Cornelissen S, van den Broek R, van Zwam WH, van der Lugt A, Niessen WJ, Ruijters D, van Walsum T. CAVE: Cerebral artery-vein segmentation in digital subtraction angiography. Comput Med Imaging Graph 2024; 115:102392. [PMID: 38714020 DOI: 10.1016/j.compmedimag.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.
Collapse
Affiliation(s)
- Ruisheng Su
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - P Matthijs van der Sluijs
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Yuan Chen
- Department of Radiology & Nuclear Medicine, UMass Chan Medical School, Worcester, USA
| | - Sandra Cornelissen
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ruben van den Broek
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Wim H van Zwam
- Department of Radiology & Nuclear Medicine, Maastricht UMC, Cardiovascular Research Institute Maastricht, The Netherlands
| | - Aad van der Lugt
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Imaging Physics, Applied Sciences, Delft University of Technology, The Netherlands
| | | | - Theo van Walsum
- Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
5
|
Xu W, Yang H, Shi Y, Tan T, Liu W, Pan X, Deng Y, Gao F, Su R. ERNet: Edge Regularization Network for Cerebral Vessel Segmentation in Digital Subtraction Angiography Images. IEEE J Biomed Health Inform 2024; 28:1472-1483. [PMID: 38090824 DOI: 10.1109/jbhi.2023.3342195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stroke is a leading cause of disability and fatality in the world, with ischemic stroke being the most common type. Digital Subtraction Angiography images, the gold standard in the operation process, can accurately show the contours and blood flow of cerebral vessels. The segmentation of cerebral vessels in DSA images can effectively help physicians assess the lesions. However, due to the disturbances in imaging parameters and changes in imaging scale, accurate cerebral vessel segmentation in DSA images is still a challenging task. In this paper, we propose a novel Edge Regularization Network (ERNet) to segment cerebral vessels in DSA images. Specifically, ERNet employs the erosion and dilation processes on the original binary vessel annotation to generate pseudo-ground truths of False Negative and False Positive, which serve as constraints to refine the coarse predictions based on their mapping relationship with the original vessels. In addition, we exploit a Hybrid Fusion Module based on convolution and transformers to extract local features and build long-range dependencies. Moreover, to support and advance the open research in the field of ischemic stroke, we introduce FPDSA, the first pixel-level semantic segmentation dataset for cerebral vessels. Extensive experiments on FPDSA illustrate the leading performance of our ERNet.
Collapse
|
6
|
Wulamu A, Luo J, Chen S, Zheng H, Wang T, Yang R, Jiao L, Zhang T. CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107871. [PMID: 37925855 DOI: 10.1016/j.cmpb.2023.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/16/2023] [Accepted: 10/15/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. METHODS Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. RESULTS Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. CONCLUSIONS Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.
Collapse
Affiliation(s)
- Aziguli Wulamu
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Saian Chen
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China
| | - Han Zheng
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of AI and Information Processing (Hechi University), Hechi, Guangxi 546300, China.
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Renjie Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Beijing, China; Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Taohong Zhang
- Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China.
| |
Collapse
|
7
|
Glänzer L, Masalkhi HE, Roeth AA, Schmitz-Rode T, Slabu I. Vessel Delineation Using U-Net: A Sparse Labeled Deep Learning Approach for Semantic Segmentation of Histological Images. Cancers (Basel) 2023; 15:3773. [PMID: 37568589 PMCID: PMC10417575 DOI: 10.3390/cancers15153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Semantic segmentation is an important imaging analysis method enabling the identification of tissue structures. Histological image segmentation is particularly challenging, having large structural information while providing only limited training data. Additionally, labeling these structures to generate training data is time consuming. Here, we demonstrate the feasibility of a semantic segmentation using U-Net with a novel sparse labeling technique. The basic U-Net architecture was extended by attention gates, residual and recurrent links, and dropout regularization. To overcome the high class imbalance, which is intrinsic to histological data, under- and oversampling and data augmentation were used. In an ablation study, various architectures were evaluated, and the best performing model was identified. This model contains attention gates, residual links, and a dropout regularization of 0.125. The segmented images show accurate delineations of the vascular structures (with a precision of 0.9088 and an AUC-ROC score of 0.9717), and the segmentation algorithm is robust to images containing staining variations and damaged tissue. These results demonstrate the feasibility of sparse labeling in combination with the modified U-Net architecture.
Collapse
Affiliation(s)
- Lukas Glänzer
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (L.G.); (H.E.M.); (T.S.-R.)
| | - Husam E. Masalkhi
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (L.G.); (H.E.M.); (T.S.-R.)
| | - Anjali A. Roeth
- Department of Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany;
- Department of Surgery, Maastricht University, P. Debyelaan 25, 6229 Maastricht, The Netherlands
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (L.G.); (H.E.M.); (T.S.-R.)
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (L.G.); (H.E.M.); (T.S.-R.)
| |
Collapse
|
8
|
Chen C, Zhou K, Wang Z, Zhang Q, Xiao R. All answers are in the images: A review of deep learning for cerebrovascular segmentation. Comput Med Imaging Graph 2023; 107:102229. [PMID: 37043879 DOI: 10.1016/j.compmedimag.2023.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Cerebrovascular imaging is a common examination. Its accurate cerebrovascular segmentation become an important auxiliary method for the diagnosis and treatment of cerebrovascular diseases, which has received extensive attention from researchers. Deep learning is a heuristic method that encourages researchers to derive answers from the images by driving datasets. With the continuous development of datasets and deep learning theory, it has achieved important success for cerebrovascular segmentation. Detailed survey is an important reference for researchers. To comprehensively analyze the newest cerebrovascular segmentation, we have organized and discussed researches centered on deep learning. This survey comprehensively reviews deep learning for cerebrovascular segmentation since 2015, it mainly includes sliding window based models, U-Net based models, other CNNs based models, small-sample based models, semi-supervised or unsupervised models, fusion based models, Transformer based models, and graphics based models. We organize the structures, improvement, and important parameters of these models, as well as analyze development trends and quantitative assessment. Finally, we have discussed the challenges and opportunities of possible research directions, hoping that our survey can provide researchers with convenient reference.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangneng Zhou
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiliang Wang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Ruoxiu Xiao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan 100024, China.
| |
Collapse
|
9
|
Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. BIOSENSORS 2022; 12:1176. [PMID: 36551143 PMCID: PMC9775999 DOI: 10.3390/bios12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Among the most critical health issues, brain illnesses, such as neurodegenerative conditions and tumors, lower quality of life and have a significant economic impact. Implantable technology and nano-drug carriers have enormous promise for cerebral brain activity sensing and regulated therapeutic application in the treatment and detection of brain illnesses. Flexible materials are chosen for implantable devices because they help reduce biomechanical mismatch between the implanted device and brain tissue. Additionally, implanted biodegradable devices might lessen any autoimmune negative effects. The onerous subsequent operation for removing the implanted device is further lessened with biodegradability. This review expands on current developments in diagnostic technologies such as magnetic resonance imaging, computed tomography, mass spectroscopy, infrared spectroscopy, angiography, and electroencephalogram while providing an overview of prevalent brain diseases. As far as we are aware, there hasn't been a single review article that addresses all the prevalent brain illnesses. The reviewer also looks into the prospects for the future and offers suggestions for the direction of future developments in the treatment of brain diseases.
Collapse
Affiliation(s)
- Brindha Ramasubramanian
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| | - Vijila Chellappan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
10
|
Alizamir A, Gholami A, Bahrami N, Ostadhassan M. Refractive Index of Hemoglobin Analysis: A Comparison of Alternating Conditional Expectations and Computational Intelligence Models. ACS OMEGA 2022; 7:33769-33782. [PMID: 36188321 PMCID: PMC9520688 DOI: 10.1021/acsomega.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Hemoglobin is one of the most important blood elements, and its optical properties will determine all other optical properties of human blood. Since the refractive index (RI) of hemoglobin plays a vital role as a non-invasive indicator of some illnesses, accurate calculation of it would be of great importance. Moreover, measurement of the RI of hemoglobin in the laboratory is time-consuming and expensive; thus, developing a smart approach to estimate this parameter is necessary. In this research, four viable strategies were used to make a quantitative correlation between the RI of hemoglobin and its influencing parameters including the concentration, wavelength, and temperature. First, alternating conditional expectations (ACE), a statistical approach, was employed to generate a correlation to predict the RI of hemoglobin. Then, three different optimized intelligent techniques-optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR)-were used to model the RI. A bat-inspired (BA) algorithm was embedded in the formulation of intelligent models to obtain the optimal values of weights and biases of an artificial neural network, membership functions of the fuzzy inference system, and free parameters of support vector regression. The coefficient of determination, root-mean-square error, average absolute relative error, and symmetric mean absolute percentage error for each of the ACE, ONN, OFIS, and OSVR were found as the measure of each model's accuracy. Results showed that ACE and optimized models (ONN, OFIS, and OSVR) have promising results in the estimation of hemoglobin's RI. Collectively, ACE outperformed ONN, OFIS, and OSVR, while sensitivity analysis indicated that the concentration, wavelength, and, lastly, temperature would have the highest impact on the RI.
Collapse
Affiliation(s)
- Aida Alizamir
- Department
of Pathology, School of Medicine, Hamadan
University of Medical Science, Hamadan 6517838738, Iran
| | - Amin Gholami
- Reservoir
Division, Iranian Offshore Oil Company, Tehran 1966653943, Iran
| | - Nader Bahrami
- Financial
Transaction Department, Carsome Company, Petaling Jaya, Selangor 47800, Malaysia
| | - Mehdi Ostadhassan
- Department
of Geology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Institute
of Geosciences, Marine and Land Geomechanics and Geotectonics, Christian-Albrechts-Universität, Kiel 24118, Germany
- Key
Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient
Development, Ministry of Education, Northeast
Petroleum University, Daqing 163318, China
| |
Collapse
|
11
|
Jin H, Geng J, Yin Y, Hu M, Yang G, Xiang S, Zhai X, Ji Z, Fan X, Hu P, He C, Qin L, Zhang H. Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network. J Neurointerv Surg 2020; 12:1023-1027. [DOI: 10.1136/neurintsurg-2020-015824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
Abstract
BackgroundIntracranial aneurysms (IAs) are common in the population and may cause death.ObjectiveTo develop a new fully automated detection and segmentation deep neural network based framework to assist neurologists in evaluating and contouring intracranial aneurysms from 2D+time digital subtraction angiography (DSA) sequences during diagnosis.MethodsThe network structure is based on a general U-shaped design for medical image segmentation and detection. The network includes a fully convolutional technique to detect aneurysms in high-resolution DSA frames. In addition, a bidirectional convolutional long short-term memory module is introduced at each level of the network to capture the change in contrast medium flow across the 2D DSA frames. The resulting network incorporates both spatial and temporal information from DSA sequences and can be trained end-to-end. Furthermore, deep supervision was implemented to help the network converge. The proposed network structure was trained with 2269 DSA sequences from 347 patients with IAs. After that, the system was evaluated on a blind test set with 947 DSA sequences from 146 patients.ResultsOf the 354 aneurysms, 316 (89.3%) were successfully detected, corresponding to a patient level sensitivity of 97.7% at an average false positive number of 3.77 per sequence. The system runs for less than one second per sequence with an average dice coefficient score of 0.533.ConclusionsThis deep neural network assists in successfully detecting and segmenting aneurysms from 2D DSA sequences, and can be used in clinical practice.
Collapse
|