3
|
Devis L, Catry E, Honore PM, Mansour A, Lippi G, Mullier F, Closset M. Interventions to improve appropriateness of laboratory testing in the intensive care unit: a narrative review. Ann Intensive Care 2024; 14:9. [PMID: 38224401 PMCID: PMC10789714 DOI: 10.1186/s13613-024-01244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Healthcare expenses are increasing, as is the utilization of laboratory resources. Despite this, between 20% and 40% of requested tests are deemed inappropriate. Improper use of laboratory resources leads to unwanted consequences such as hospital-acquired anemia, infections, increased costs, staff workload and patient stress and discomfort. The most unfavorable consequences result from unnecessary follow-up tests and treatments (overuse) and missed or delayed diagnoses (underuse). In this context, several interventions have been carried out to improve the appropriateness of laboratory testing. To date, there have been few published assessments of interventions specific to the intensive care unit. We reviewed the literature for interventions implemented in the ICU to improve the appropriateness of laboratory testing. We searched literature from 2008 to 2023 in PubMed, Embase, Scopus, and Google Scholar databases between April and June 2023. Five intervention categories were identified: education and guidance (E&G), audit and feedback, gatekeeping, computerized physician order entry (including reshaping of ordering panels), and multifaceted interventions (MFI). We included a sixth category exploring the potential role of artificial intelligence and machine learning (AI/ML)-based assisting tools in such interventions. E&G-based interventions and MFI are the most frequently used approaches. MFI is the most effective type of intervention, and shows the strongest persistence of effect over time. AI/ML-based tools may offer valuable assistance to the improvement of appropriate laboratory testing in the near future. Patient safety outcomes are not impaired by interventions to reduce inappropriate testing. The literature focuses mainly on reducing overuse of laboratory tests, with only one intervention mentioning underuse. We highlight an overall poor quality of methodological design and reporting and argue for standardization of intervention methods. Collaboration between clinicians and laboratory staff is key to improve appropriate laboratory utilization. This article offers practical guidance for optimizing the effectiveness of an intervention protocol designed to limit inappropriate use of laboratory resources.
Collapse
Affiliation(s)
- Luigi Devis
- Department of Laboratory Medicine, Biochemistry, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - Emilie Catry
- Department of Laboratory Medicine, Biochemistry, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
- Institute for Experimental and Clinical Research (IREC), Pôle Mont Godinne (MONT), UCLouvain, Yvoir, Belgium
| | - Patrick M Honore
- Department of Intensive Care, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
| | - Alexandre Mansour
- Department of Anesthesia and Critical Care, Pontchaillou University Hospital of Rennes, Rennes, France
- IRSET-INSERM-1085, Univ Rennes, Rennes, France
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University Hospital of Verona, Verona, Italy
| | - François Mullier
- Department of Laboratory Medicine, Hematology, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium
- Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Namur, Belgium
- Institute for Experimental and Clinical Research (IREC), Pôle Mont Godinne (MONT), UCLouvain, Yvoir, Belgium
| | - Mélanie Closset
- Department of Laboratory Medicine, Biochemistry, CHU UCL Namur, Université catholique de Louvain, Yvoir, Belgium.
- Institute for Experimental and Clinical Research (IREC), Pôle Mont Godinne (MONT), UCLouvain, Yvoir, Belgium.
| |
Collapse
|
4
|
Su L, Liu S, Long Y, Chen C, Chen K, Chen M, Chen Y, Cheng Y, Cui Y, Ding Q, Ding R, Duan M, Gao T, Gu X, He H, He J, Hu B, Hu C, Huang R, Huang X, Jiang H, Jiang J, Lan Y, Li J, Li L, Li L, Li W, Li Y, Lin J, Luo X, Lyu F, Mao Z, Miao H, Shang X, Shang X, Shang Y, Shen Y, Shi Y, Sun Q, Sun W, Tang Z, Wang B, Wang H, Wang H, Wang L, Wang L, Wang S, Wang Z, Wang Z, Wei D, Wu J, Wu Q, Xing X, Yang J, Yang X, Yu J, Yu W, Yu Y, Yuan H, Zhai Q, Zhang H, Zhang L, Zhang M, Zhang Z, Zhao C, Zheng R, Zhong L, Zhou F, Zhu W. Chinese experts' consensus on the application of intensive care big data. Front Med (Lausanne) 2024; 10:1174429. [PMID: 38264049 PMCID: PMC10804886 DOI: 10.3389/fmed.2023.1174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024] Open
Abstract
The development of intensive care medicine is inseparable from the diversified monitoring data. Intensive care medicine has been closely integrated with data since its birth. Critical care research requires an integrative approach that embraces the complexity of critical illness and the computational technology and algorithms that can make it possible. Considering the need of standardization of application of big data in intensive care, Intensive Care Medicine Branch of China Health Information and Health Care Big Data Society, Standard Committee has convened expert group, secretary group and the external audit expert group to formulate Chinese Experts' Consensus on the Application of Intensive Care Big Data (2022). This consensus makes 29 recommendations on the following five parts: Concept of intensive care big data, Important scientific issues, Standards and principles of database, Methodology in solving big data problems, Clinical application and safety consideration of intensive care big data. The consensus group believes this consensus is the starting step of application big data in the field of intensive care. More explorations and big data based retrospective research should be carried out in order to enhance safety and reliability of big data based models of critical care field.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Liu
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaodong Chen
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yisong Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Ding
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Gu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongli He
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jiawei He
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Huang
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Huizhen Jiang
- Department of Information Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jiang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Yunping Lan
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jun Li
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Linfeng Li
- Medical Data Research Institute, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenxiong Li
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yongzai Li
- Information Network Center, QiLu Hospital, ShanDong University, Jinan, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xufei Luo
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lyu
- Department of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopu Shang
- Department of Information Management, Beijing Jiaotong University, Beijing, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Shen
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yinghuan Shi
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Qihang Sun
- British Chinese Society of Health Informatics, Beijing, China
| | - Weijun Sun
- Faculty of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Tang
- Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Emergency and Intensive Care Unit Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sicong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanwen Wang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Zhong Wang
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wei
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Jianfeng Wu
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuezhong Xing
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jin Yang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Xianghong Yang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuan Yu
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Yuan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Qian Zhai
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Hao Zhang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Meng Zhang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunguang Zhao
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lei Zhong
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiguo Zhu
- Department of General Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|