1
|
Pastorino GL, Mercinelli C, Necchi A. The role of MRI in muscle-invasive bladder cancer: an update from the last two years. Curr Opin Urol 2025; 35:165-170. [PMID: 39529480 DOI: 10.1097/mou.0000000000001249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
PURPOSE OF REVIEW Muscle invasive bladder cancer (MIBC) is aggressive and requires radical cystectomy and neoadjuvant therapy, yet over 40% of patients face recurrence. The loss of the bladder also significantly reduces quality of life. Accurate staging, crucial for treatment decisions, is typically done through transurethral resection (TURBT), but inconsistencies in pathology affect diagnosis in 25% of cases. MRI is the most precise imaging method for evaluating local tumor invasiveness. This review discusses recent advances in MRI for staging MIBC and predicting responses to neoadjuvant therapy. RECENT FINDINGS Vesical imaging - reporting and data system (VI-RADS) accuracy may improve if combined with ADC maps and tumor contact length, while a bi-parametric MRI approach without contrast could reduce side effects without losing diagnostic precision, though evidence is mixed. VI-RADS shows promise in predicting neoadjuvant therapy responses, and the new nacVI-RADS score is in development. Non-Gaussian diffusion-weighted imaging techniques and machine learning could enhance accuracy but need more integration with mpMRI. VI-RADS may assist in evaluating responses in bladder-sparing regimens. Urodrill, an MRI-guided biopsy, aims to replace diagnostic TURBT but needs more accuracy data. SUMMARY MRI in MIBC is evolving, offering potential for accurate local staging and reduced side effects by avoiding TURBT. Predicting neoadjuvant treatment response could guide personalized treatment and bladder preservation. Larger trials are needed to validate these findings.
Collapse
Affiliation(s)
| | - Chiara Mercinelli
- Vita-Salute San Raffaele University, Milan
- Medical Oncology Unit 2, Santa Chiara Hospital, Azienda Ospedaliero-Universitaria Pisana, Pisa
| | - Andrea Necchi
- Vita-Salute San Raffaele University, Milan
- Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
2
|
Gong Y, Zhang X, Xia YF, Cheng Y, Bao J, Zhang N, Zhi R, Sun XY, Wu CJ, Wu FY, Zhang YD. A foundation model with weak experiential guidance in detecting muscle invasive bladder cancer on MRI. Cancer Lett 2025; 611:217438. [PMID: 39755362 DOI: 10.1016/j.canlet.2025.217438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Preoperative detection of muscle-invasive bladder cancer (MIBC) remains a great challenge in practice. We aimed to develop and validate a deep Vesical Imaging Network (ViNet) model for the detection of MIBC using high-resolution T2-weighted MR imaging (hrT2WI) in a multicenter cohort. ViNet was designed using a modified 3D ResNet, in which, the encoder layers were pretrained using a self-supervised foundation model on over 40,000 cross-modal imaging datasets for transfer learning, and the classification modules were weakly supervised by an experiential knowledge-domain mask indicated by a nnUNet segmentation model. Optimal ViNet model was trained in derivation data (cohort 1, n = 312) and validated in multicenter data (cohort 2, n = 79; cohort 3, n = 44; cohort 4, n = 56) across a multi-ablation-test for model selection. In internal validation, ViNet using hrT2WI outperformed all ablation-test models (odds ratio [OR], 7.41 versus 1.85-2.70; all P < 0.05). In external validation, the performance of ViNet using hrT2WI versus ablation-test models was heterogeneous (OR, 1.31-3.89 versus 0.89-9.75; P = 0.03-0.15). In addition, clinical benefit of ViNet was evaluated between six readers using the Vesical Imaging-Reporting and Data System (VI-RADS) versus ViNet-adjusted VI-RADS. As a result, ViNet-adjusted VI-RADS upgraded 62.9 % (17/27) of MIBC missed in VI-RADS score 2, while downgraded 84.1 % (69/84), 62.5 % (35/56) and 67.9 % (19/28) of non-muscle-invasive bladder cancer (NMIBC) overestimated in VI-RADS score 3-5. We concluded that ViNet presents a promising alternative for diagnosing MIBC using hrT2WI instead of conventional multiparametric MRI.
Collapse
Affiliation(s)
- Yu Gong
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, PR China.
| | - Yi-Fan Xia
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Yi Cheng
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Jie Bao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, PR China.
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, PR China.
| | - Rui Zhi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Xue-Ying Sun
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Chen-Jiang Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China.
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, PR China; The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Fathi M, Vakili K, Hajibeygi R, Bahrami A, Behzad S, Tafazolimoghadam A, Aghabozorgi H, Eshraghi R, Bhatt V, Gholamrezanezhad A. Cultivating diagnostic clarity: The importance of reporting artificial intelligence confidence levels in radiologic diagnoses. Clin Imaging 2025; 117:110356. [PMID: 39566394 DOI: 10.1016/j.clinimag.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Accurate image interpretation is essential in the field of radiology to the healthcare team in order to provide optimal patient care. This article discusses the use of artificial intelligence (AI) confidence levels to enhance the accuracy and dependability of its radiological diagnoses. The current advances in AI technologies have changed how radiologists and clinicians make the diagnoses of pathological conditions such as aneurysms, hemorrhages, pneumothorax, pneumoperitoneum, and particularly fractures. To enhance the utility of these AI models, radiologists need a more comprehensive understanding of the model's levels of confidence and certainty behind the results they produce. This allows radiologists to make more informed decisions that have the potential to drastically change a patient's clinical management. Several AI models, especially those utilizing deep learning models (DL) with convolutional neural networks (CNNs), have demonstrated significant potential in identifying subtle findings in medical imaging that are often missed by radiologists. It is necessary to create standardized levels of confidence metrics in order for AI systems to be relevant and reliable in the clinical setting. Incorporating AI into clinical practice does have certain obstacles like the need for clinical validation, concerns regarding the interpretability of AI system results, and addressing confusion and misunderstandings within the medical community. This study emphasizes the importance of AI systems to clearly convey their level of confidence in radiological diagnosis. This paper highlights the importance of conducting research to establish AI confidence level metrics that are limited to a specific anatomical region or lesion type. KEY POINT OF THE VIEW: Accurate fracture diagnosis relies on radiologic certainty, where Artificial intelligence (AI), especially convolutional neural networks (CNNs) and deep learning (DL), shows promise in enhancing X-ray interpretation amidst a shortage of radiologists. Overcoming integration challenges through improved AI interpretability and education is crucial for widespread acceptance and better patient outcomes.
Collapse
Affiliation(s)
- Mobina Fathi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran; Tehran University of Medical Science (TUMS), School of Medicine, Tehran, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Shima Behzad
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran
| | | | - Hadiseh Aghabozorgi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Eshraghi
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Vivek Bhatt
- University of California, Riverside, School of Medicine, Riverside, CA, United States of America
| | - Ali Gholamrezanezhad
- Keck School of Medicine of University of Southern California, Los Angeles, CA, United States of America; Department of Radiology, Cedars Sinai Hospital, Los Angeles, CA, United States of America.
| |
Collapse
|
4
|
Zhang XY, Zhang D, Wang ZY, Chen J, Ren JY, Ma T, Lin JJ, Dietrich CF, Cui XW. Automatic tumor segmentation and lymph node metastasis prediction in papillary thyroid carcinoma using ultrasound keyframes. Med Phys 2025; 52:257-273. [PMID: 39475358 DOI: 10.1002/mp.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Accurate preoperative prediction of cervical lymph node metastasis (LNM) for papillary thyroid carcinoma (PTC) patients is essential for disease staging and individualized treatment planning, which can improve prognosis and facilitate better management. PURPOSE To establish a fully automated deep learning-enabled model (FADLM) for automated tumor segmentation and cervical LNM prediction in PTC using ultrasound (US) video keyframes. METHODS The bicentral study retrospective enrolled 518 PTC patients, who were then randomly divided into the training (Hospital 1, n = 340), internal test (Hospital 1, n = 83), and external test cohorts (Hospital 2, n = 95). The FADLM integrated mask region-based convolutional neural network (Mask R-CNN) for automatic thyroid primary tumor segmentation and ResNet34 with Bayes strategy for cervical LNM diagnosis. A radiomics model (RM) using the same automated segmentation method, a traditional radiomics model (TRM) using manual segmentation, and a clinical-semantic model (CSM) were developed for comparison. The dice similarity coefficient (DSC) was used to evaluate segmentation performance. The prediction performance of the models was validated in terms of discrimination and clinical utility with the area under the receiver operator characteristic curve (AUC), heatmap analysis, and decision curve analysis (DCA). The comparison of the predictive performance among different models was conducted by DeLong test. The performances of two radiologists compared with FADLM and the diagnostic augmentation with FADLM's assistance were analyzed in terms of accuracy, sensitivity and specificity using McNemar's x2 test. The p-value less than 0.05 was defined as a statistically significant difference. The Benjamini-Hochberg procedure was applied for multiple comparisons to deal with Type I error. RESULTS The FADLM yielded promising segmentation results in training (DSC: 0.88 ± 0.23), internal test (DSC: 0.88 ± 0.23), and external test cohorts (DSC: 0.85 ± 0.24). The AUCs of FADLM for cervical LNM prediction were 0.78 (95% CI: 0.73, 0.83), 0.83 (95% CI: 0.74, 0.92), and 0.83 (95% CI: 0.75, 0.92), respectively. It all significantly outperformed the RM (AUCs: 0.78 vs. 0.72; 0.83 vs. 0.65; 0.83 vs. 0.68, all adjusted p-values < 0.05) and CSM (AUCs: 0.78 vs. 0.71; 0.83 vs. 0.62; 0.83 vs. 0.68, all adjusted p-values < 0.05) across the three cohorts. The RM offered similar performance to that of TRM (AUCs: 0.61 vs. 0.63, adjusted p-value = 0.60) while significantly reducing the segmentation time (3.3 ± 3.8 vs. 14.1 ± 4.2 s, p-value < 0.001). Under the assistance of FADLM, the accuracies of junior and senior radiologists were improved by 18% and 15% (all adjusted p-values < 0.05) and the sensitivities by 25% and 21% (all adjusted p-values < 0.05) in the external test cohort. CONCLUSION The FADLM with elaborately designed automated strategy using US video keyframes holds good potential to provide an efficient and consistent prediction of cervical LNM in PTC. The FADLM displays superior performance to RM, CSM, and radiologists with promising efficacy.
Collapse
Affiliation(s)
- Xian-Ya Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Yuan Wang
- Department of Medical Ultrasound, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | | | - Jia-Yu Ren
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Ma
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Jun Lin
- Department of Medical Ultrasound, The First People's Hospital of Qinzhou, Qinzhou, China
| | | | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Ma X, Zhang Q, He L, Liu X, Xiao Y, Hu J, Cai S, Cai H, Yu B. Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities. Front Oncol 2024; 14:1487676. [PMID: 39575423 PMCID: PMC11578829 DOI: 10.3389/fonc.2024.1487676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Bladder cancer (BC) is a serious and common malignant tumor of the urinary system. Accurate and convenient diagnosis and treatment of BC is a major challenge for the medical community. Due to the limited medical resources, the existing diagnosis and treatment protocols for BC without the assistance of artificial intelligence (AI) still have certain shortcomings. In recent years, with the development of AI technologies such as deep learning and machine learning, the maturity of AI has made it more and more applied to the medical field, including improving the speed and accuracy of BC diagnosis and providing more powerful treatment options and recommendations related to prognosis. Advances in medical imaging technology and molecular-level research have also contributed to the further development of such AI applications. However, due to differences in the sources of training information and algorithm design issues, there is still room for improvement in terms of accuracy and transparency for the broader use of AI in clinical practice. With the popularization of digitization of clinical information and the proposal of new algorithms, artificial intelligence is expected to learn more effectively and analyze similar cases more accurately and reliably, promoting the development of precision medicine, reducing resource consumption, and speeding up diagnosis and treatment. This review focuses on the application of artificial intelligence in the diagnosis and treatment of BC, points out some of the challenges it faces, and looks forward to its future development.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lvqi He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyang Liu
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xiao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Hu
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shengjie Cai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Bin Yu
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Zhao K, Zhang H, Lin J, Xu S, Liu J, Qian X, Gu Y, Ren G, Lu X, Chen B, Chen D, Yan J, Ma J, Wei W, Wang Y. Radiomic Prediction of CCND1 Expression Levels and Prognosis in Low-grade Glioma Based on Magnetic Resonance Imaging. Acad Radiol 2024; 31:4595-4610. [PMID: 38824087 DOI: 10.1016/j.acra.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 06/03/2024]
Abstract
OJECTIVES Low-grade glioma (LGG) is associated with increased mortality owing to recrudescence and the tendency for malignant transformation. Therefore, it is imperative to discover novel prognostic biomarkers as existing traditional prognostic biomarkers of glioma, including clinicopathological features and imaging examinations, are unable to meet the clinical demand for precision medicine. Accordingly, we aimed to evaluate the prognostic value of cyclin D1 (CCND1) expression levels and construct radiomic models to predict these levels in patients with LGG MATERIALS AND METHODS: A total of 412 LGG cases from The Cancer Genome Atlas (TCGA) were used for gene-based prognostic analysis. Using magnetic resonance imaging (MRI) images stored in The Cancer Imaging Archive with genomic data from TCGA, 149 cases were selected for radiomics feature extraction and model construction. After feature extraction, the radiomic signature was constructed using logistic regression (LR) and support vector machine (SVM) analyses. RESULTS CCND1 was identified as a prognosis-related gene with differential expression in tumor and normal samples and plays a role in regulating both the cell cycle and immune response. Landmark analysis revealed that high-expression levels of CCND1 were beneficial for survival (P < 0.05) in advanced LGG. Four optimal radiomics features were selected to construct radiomics models. The performance of LR and SVM achieved areas under the curve of 0.703 and 0.705, as well as 0.724 and 0.726 in the training and validation sets, respectively. CONCLUSION Elevated levels of CCND1 expression could impact the prognosis of patients with LGG. MRI-based radiomics, especially the AUC values, can serve as a novel tool for predicting CCND1 expression and understanding the correlation between elevated CCND1 expression and prognosis. AVAILABILITY OF DATA AND MATERIALS The datasets analyzed during the current study are available in the TCGA, TCIA, UCSC XENA and GTEx repository, https://portal.gdc.cancer.gov/, https://www.cancerimagingarchive.net/, https://xenabrowser.net/datapages/, https://www.gtexportal.org/home/.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (K.Z., S.X., J.L.); Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou, Jiangsu, China (K.Z., W.W.); Suzhou Niumag Analytical Instrument Corporation, Suzhou, Jiangsu, China (K.Z., D.C., J.Y.)
| | - Hui Zhang
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, Fujian, China (H.Z.)
| | - Jianyang Lin
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (J.L.)
| | - Shoucheng Xu
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (K.Z., S.X., J.L.)
| | - Jianzhi Liu
- Department of Neurology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (K.Z., S.X., J.L.)
| | - Xianjing Qian
- Medical College, Jiangsu University, Zhenjiang, Jiangsu, China (X.Q.)
| | - Yongbing Gu
- Medical Imaging Department, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (Y.G., G.R.)
| | - Guoqiang Ren
- Medical Imaging Department, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (Y.G., G.R.)
| | - Xinyu Lu
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (X.L., B.C.)
| | - Baomin Chen
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (X.L., B.C.)
| | - Deng Chen
- Suzhou Niumag Analytical Instrument Corporation, Suzhou, Jiangsu, China (K.Z., D.C., J.Y.)
| | - Jun Yan
- Suzhou Niumag Analytical Instrument Corporation, Suzhou, Jiangsu, China (K.Z., D.C., J.Y.)
| | - Jichun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (J.M.)
| | - Wenxiang Wei
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou, Jiangsu, China (K.Z., W.W.)
| | - Yuanwei Wang
- Department of Neurology, Shuyang Hospital, Shuyang Hospital Affiliated to Xuzhou Medical University, Shuyang, Jiangsu, China (Y.W.).
| |
Collapse
|
7
|
Cao K, Zou Y, Zhang C, Zhang W, Zhang J, Wang G, Zhang C, Lyu J, Sun Y, Zhang H, Huang B, Deng L, Yang S, Li J, Huang B. A multicenter bladder cancer MRI dataset and baseline evaluation of federated learning in clinical application. Sci Data 2024; 11:1147. [PMID: 39424842 PMCID: PMC11489429 DOI: 10.1038/s41597-024-03971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Bladder cancer (BCa), as the most common malignant tumor of the urinary system, has received significant attention in research on the clinical application of artificial intelligence algorithms. Nevertheless, it has been observed that certain investigations use data from various medical facilities to train models for BCa, which may pose a privacy risk. Given this concern, protecting patient privacy during machine learning algorithm training is a crucial aspect that requires substantial attention. One emerging machine learning paradigm that addresses this concern is federated learning (FL). FL enables multiple entities to collaboratively build machine learning models while preserving data privacy and security. In this study, we present a multicenter BCa magnetic resonance imaging (MRI) dataset. The dataset comprises 275 three-dimensional bladder T2-weighted MRI scans collected from four medical centers, and each scan includes diagnostic pathological labels for muscle invasion and pixel-level annotations of tumor contours. Four FL methods are used to assess the baseline of the dataset for both the task of diagnosing muscle-invasive bladder cancer and automatic bladder tumor lesion segmentation.
Collapse
Affiliation(s)
- Kangyang Cao
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Yujian Zou
- Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, China
| | - Chang Zhang
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Weijing Zhang
- Imaging Department, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Zhang
- Department of Radiology, Affiliated Zhuhai Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Guojie Wang
- Department of Radiology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Chu Zhang
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Jiegeng Lyu
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yue Sun
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Hongyuan Zhang
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Bin Huang
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Lei Deng
- Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, China
| | - Shuiqing Yang
- Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, China
| | - Jianpeng Li
- Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, China.
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
8
|
Huang Z, Zhang X, Ju Y, Zhang G, Chang W, Song H, Gao Y. Explainable breast cancer molecular expression prediction using multi-task deep-learning based on 3D whole breast ultrasound. Insights Imaging 2024; 15:227. [PMID: 39320560 PMCID: PMC11424596 DOI: 10.1186/s13244-024-01810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVES To noninvasively estimate three breast cancer biomarkers, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) and enhance performance and interpretability via multi-task deep learning. METHODS The study included 388 breast cancer patients who received the 3D whole breast ultrasound system (3DWBUS) examinations at Xijing Hospital between October 2020 and September 2021. Two predictive models, a single-task and a multi-task, were developed; the former predicts biomarker expression, while the latter combines tumor segmentation with biomarker prediction to enhance interpretability. Performance evaluation included individual and overall prediction metrics, and Delong's test was used for performance comparison. The models' attention regions were visualized using Grad-CAM + + technology. RESULTS All patients were randomly split into a training set (n = 240, 62%), a validation set (n = 60, 15%), and a test set (n = 88, 23%). In the individual evaluation of ER, PR, and HER2 expression prediction, the single-task and multi-task models achieved respective AUCs of 0.809 and 0.735 for ER, 0.688 and 0.767 for PR, and 0.626 and 0.697 for HER2, as observed in the test set. In the overall evaluation, the multi-task model demonstrated superior performance in the test set, achieving a higher macro AUC of 0.733, in contrast to 0.708 for the single-task model. The Grad-CAM + + method revealed that the multi-task model exhibited a stronger focus on diseased tissue areas, improving the interpretability of how the model worked. CONCLUSION Both models demonstrated impressive performance, with the multi-task model excelling in accuracy and offering improved interpretability on noninvasive 3DWBUS images using Grad-CAM + + technology. CRITICAL RELEVANCE STATEMENT The multi-task deep learning model exhibits effective prediction for breast cancer biomarkers, offering direct biomarker identification and improved clinical interpretability, potentially boosting the efficiency of targeted drug screening. KEY POINTS Tumoral biomarkers are paramount for determining breast cancer treatment. The multi-task model can improve prediction performance, and improve interpretability in clinical practice. The 3D whole breast ultrasound system-based deep learning models excelled in predicting breast cancer biomarkers.
Collapse
Affiliation(s)
- Zengan Huang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yan Ju
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Ge Zhang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Wanying Chang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China
| | - Hongping Song
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, China.
| | - Yi Gao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Hewarathna AI, Hamlin L, Charles J, Vigneshwaran P, George R, Thuseethan S, Wimalasooriya C, Shanmugam B. Change Detection for Forest Ecosystems Using Remote Sensing Images with Siamese Attention U-Net. TECHNOLOGIES 2024; 12:160. [DOI: 10.3390/technologies12090160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Forest ecosystems are critical components of Earth’s biodiversity and play vital roles in climate regulation and carbon sequestration. They face increasing threats from deforestation, wildfires, and other anthropogenic activities. Timely detection and monitoring of changes in forest landscapes pose significant challenges for government agencies. To address these challenges, we propose a novel pipeline by refining the U-Net design, including employing two different schemata of early fusion networks and a Siam network architecture capable of processing RGB images specifically designed to identify high-risk areas in forest ecosystems through change detection across different time frames in the same location. It annotates ground truth change maps in such time frames using an encoder–decoder approach with the help of an enhanced feature learning and attention mechanism. Our proposed pipeline, integrated with ResNeSt blocks and SE attention techniques, achieved impressive results in our newly created forest cover change dataset. The evaluation metrics reveal a Dice score of 39.03%, a kappa score of 35.13%, an F1-score of 42.84%, and an overall accuracy of 94.37%. Notably, our approach significantly outperformed multitasking model approaches in the ONERA dataset, boasting a precision of 53.32%, a Dice score of 59.97%, and an overall accuracy of 97.82%. Furthermore, it surpassed multitasking models in the HRSCD dataset, even without utilizing land cover maps, achieving a Dice score of 44.62%, a kappa score of 11.97%, and an overall accuracy of 98.44%. Although the proposed model had a lower F1-score than other methods, other performance metrics highlight its effectiveness in timely detection and forest landscape monitoring, advancing deep learning techniques in this field.
Collapse
Affiliation(s)
| | - Luke Hamlin
- Energy and Resource Institute, Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia
| | - Joseph Charles
- Faculty of Engineering, Friedrich-Alexander-University (FAU), 91054 Erlangen, Germany
| | | | - Romiyal George
- Department of Computer Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Selvarajah Thuseethan
- Energy and Resource Institute, Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia
| | | | - Bharanidharan Shanmugam
- Energy and Resource Institute, Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|
10
|
Kurata Y, Nishio M, Moribata Y, Otani S, Himoto Y, Takahashi S, Kusakabe J, Okura R, Shimizu M, Hidaka K, Nishio N, Furuta A, Kido A, Masui K, Onishi H, Segawa T, Kobayashi T, Nakamoto Y. Development of deep learning model for diagnosing muscle-invasive bladder cancer on MRI with vision transformer. Heliyon 2024; 10:e36144. [PMID: 39253215 PMCID: PMC11381713 DOI: 10.1016/j.heliyon.2024.e36144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Rationale and objectives To develop and validate a deep learning (DL) model to automatically diagnose muscle-invasive bladder cancer (MIBC) on MRI with Vision Transformer (ViT). Materials and methods This multicenter retrospective study included patients with BC who reported to two institutions between January 2016 and June 2020 (training dataset) and a third institution between May 2017 and May 2022 (test dataset). The diagnostic model for MIBC and the segmentation model for BC on MRI were developed using the training dataset with 5-fold cross-validation. ViT- and convolutional neural network (CNN)-based diagnostic models were developed and compared for diagnostic performance using the area under the curve (AUC). The performance of the diagnostic model with manual and auto-generated regions of interest (ROImanual and ROIauto, respectively) was validated on the test dataset and compared to that of radiologists (three senior and three junior radiologists) using Vesical Imaging Reporting and Data System scoring. Results The training and test datasets included 170 and 53 patients, respectively. Mean AUC of the top 10 ViT-based models with 5-fold cross-validation outperformed those of the CNN-based models (0.831 ± 0.003 vs. 0.713 ± 0.007-0.812 ± 0.006, p < .001). The diagnostic model with ROImanual achieved AUC of 0.872 (95 % CI: 0.777, 0.968), which was comparable to that of junior radiologists (AUC = 0.862, 0.873, and 0.930). Semi-automated diagnosis with the diagnostic model with ROIauto achieved AUC of 0.815 (95 % CI: 0.696, 0.935). Conclusion The DL model effectively diagnosed MIBC. The ViT-based model outperformed CNN-based models, highlighting its utility in medical image analysis.
Collapse
Affiliation(s)
- Yasuhisa Kurata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mizuho Nishio
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yusaku Moribata
- Department of Radiology, Shiga General Hospital, 4-30, Moriyama 5-chome, Moriyama-shi, Shiga, 524-8524, Japan
| | - Satoshi Otani
- Department of Radiology, Kyoto City Hospital, 2-1 Mibu Higashi Takada-cho Nakagyo-ku, Kyoto, 604-8845, Japan
| | - Yuki Himoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoru Takahashi
- Department of Radiology, Takatsuki General Hospital, 1-3-13, Kosobe-Cho, Takatsuki-Shi, Osaka, 569-1192, Japan
| | - Jiro Kusakabe
- Department of General Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Ryota Okura
- Department of Radiology, Kyoto City Hospital, 2-1 Mibu Higashi Takada-cho Nakagyo-ku, Kyoto, 604-8845, Japan
| | - Marina Shimizu
- Department of Radiology, Kyoto City Hospital, 2-1 Mibu Higashi Takada-cho Nakagyo-ku, Kyoto, 604-8845, Japan
| | - Keisuke Hidaka
- Department of Radiology, Osaka Red Cross Hospital, 5-30 Fudegasakicho, Tennoji-ku, Osaka, 543-0027, Japan
| | - Naoko Nishio
- Department of Radiology, Osaka Red Cross Hospital, 5-30 Fudegasakicho, Tennoji-ku, Osaka, 543-0027, Japan
| | - Akihiko Furuta
- Department of Radiology, Osaka Red Cross Hospital, 5-30 Fudegasakicho, Tennoji-ku, Osaka, 543-0027, Japan
| | - Aki Kido
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Kimihiko Masui
- Department of Urology, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Onishi
- Department of Urology, Osaka Red Cross Hospital, 5-30 Fudegasakicho, Tennoji-ku, Osaka, 543-0027, Japan
| | - Takehiko Segawa
- Department of Urology, Kyoto City Hospital, 2-1 Mibu Higashi Takada-cho Nakagyo-ku, Kyoto, 604-8845, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
11
|
He C, Xu H, Yuan E, Ye L, Chen Y, Yao J, Song B. The accuracy and quality of image-based artificial intelligence for muscle-invasive bladder cancer prediction. Insights Imaging 2024; 15:185. [PMID: 39090234 PMCID: PMC11294512 DOI: 10.1186/s13244-024-01780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE To evaluate the diagnostic performance of image-based artificial intelligence (AI) studies in predicting muscle-invasive bladder cancer (MIBC). (2) To assess the reporting quality and methodological quality of these studies by Checklist for Artificial Intelligence in Medical Imaging (CLAIM), Radiomics Quality Score (RQS), and Prediction model Risk of Bias Assessment Tool (PROBAST). MATERIALS AND METHODS We searched Medline, Embase, Web of Science, and The Cochrane Library databases up to October 30, 2023. The eligible studies were evaluated using CLAIM, RQS, and PROBAST. Pooled sensitivity, specificity, and the diagnostic performances of these models for MIBC were also calculated. RESULTS Twenty-one studies containing 4256 patients were included, of which 17 studies were employed for the quantitative statistical analysis. The CLAIM study adherence rate ranged from 52.5% to 75%, with a median of 64.1%. The RQS points of each study ranged from 2.78% to 50% points, with a median of 30.56% points. All models were rated as high overall ROB. The pooled area under the curve was 0.85 (95% confidence interval (CI) 0.81-0.88) for computed tomography, 0.92 (95% CI 0.89-0.94) for MRI, 0.89 (95% CI 0.86-0.92) for radiomics and 0.91 (95% CI 0.88-0.93) for deep learning, respectively. CONCLUSION Although AI-powered muscle-invasive bladder cancer-predictive models showed promising performance in the meta-analysis, the reporting quality and the methodological quality were generally low, with a high risk of bias. CRITICAL RELEVANCE STATEMENT Artificial intelligence might improve the management of patients with bladder cancer. Multiple models for muscle-invasive bladder cancer prediction were developed. Quality assessment is needed to promote clinical application. KEY POINTS Image-based artificial intelligence models could aid in the identification of muscle-invasive bladder cancer. Current studies had low reporting quality, low methodological quality, and a high risk of bias. Future studies could focus on larger sample sizes and more transparent reporting of pathological evaluation, model explanation, and failure and sensitivity analyses.
Collapse
Affiliation(s)
- Chunlei He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, 572000, China
| | - Hui Xu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Enyu Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, 572000, China.
| |
Collapse
|
12
|
Yu J, Cai L, Chen C, Zou Y, Xiao Y, Fu X, Wang L, Yang X, Liu P, Lu Q, Sun X, Shao Q. A novel predict method for muscular invasion of bladder cancer based on 3D mp-MRI feature fusion. Phys Med Biol 2024; 69:055011. [PMID: 38306973 DOI: 10.1088/1361-6560/ad25c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
Objective. To assist urologist and radiologist in the preoperative diagnosis of non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), we proposed a combination models strategy (CMS) utilizing multiparametric magnetic resonance imaging.Approach. The CMS includes three components: image registration, image segmentation, and multisequence feature fusion. To ensure spatial structure consistency of T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced imaging (DCE), a registration network based on patch sampling normalized mutual information was proposed to register DWI and DCE to T2WI. Moreover, to remove redundant information around the bladder, we employed a segmentation network to obtain the bladder and tumor regions from T2WI. Using the coordinate mapping from T2WI, we extracted these regions from DWI and DCE and integrated them into a three-branch dual-channel input. Finally, to fully fuse low-level and high-level features of T2WI, DWI, and DCE, we proposed a distributed multilayer fusion model for preoperative MIBC prediction with five-fold cross-validation.Main results. The study included 436 patients, of which 404 were for the internal cohort and 32 for external cohort. The MIBC was confirmed by pathological examination. In the internal cohort, the area under the curve, accuracy, sensitivity, and specificity achieved by our method were 0.928, 0.869, 0.753, and 0.929, respectively. For the urologist and radiologist, Vesical Imaging-Reporting and Data System score >3 was employed to determine MIBC. The urologist demonstrated an accuracy, sensitivity, and specificity of 0.842, 0.737, and 0.895, respectively, while the radiologist achieved 0.871, 0.803, and 0.906, respectively. In the external cohort, the accuracy of our method was 0.831, which was higher than that of the urologist (0.781) and the radiologist (0.813).Significance. Our proposed method achieved better diagnostic performance than urologist and was comparable to senior radiologist. These results indicate that CMS can effectively assist junior urologists and radiologists in diagnosing preoperative MIBC.
Collapse
Affiliation(s)
- Jie Yu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Lingkai Cai
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yuan Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Yueyue Xiao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xue Fu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Liang Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiao Yang
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Peikun Liu
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Lu
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Xueying Sun
- Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Qiang Shao
- Department of Urology, the Affiliated Suzhou Hospital of Nanjing Medical University, People's Republic of China
| |
Collapse
|
13
|
Feretzakis G, Juliebø-Jones P, Tsaturyan A, Sener TE, Verykios VS, Karapiperis D, Bellos T, Katsimperis S, Angelopoulos P, Varkarakis I, Skolarikos A, Somani B, Tzelves L. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. Cancers (Basel) 2024; 16:810. [PMID: 38398201 PMCID: PMC10886599 DOI: 10.3390/cancers16040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review critically examines the transformative impact of artificial intelligence (AI) and radiomics in the diagnosis, prognosis, and management of bladder, kidney, and prostate cancers. These cutting-edge technologies are revolutionizing the landscape of cancer care, enhancing both precision and personalization in medical treatments. Our review provides an in-depth analysis of the latest advancements in AI and radiomics, with a specific focus on their roles in urological oncology. We discuss how AI and radiomics have notably improved the accuracy of diagnosis and staging in bladder cancer, especially through advanced imaging techniques like multiparametric MRI (mpMRI) and CT scans. These tools are pivotal in assessing muscle invasiveness and pathological grades, critical elements in formulating treatment plans. In the realm of kidney cancer, AI and radiomics aid in distinguishing between renal cell carcinoma (RCC) subtypes and grades. The integration of radiogenomics offers a comprehensive view of disease biology, leading to tailored therapeutic approaches. Prostate cancer diagnosis and management have also seen substantial benefits from these technologies. AI-enhanced MRI has significantly improved tumor detection and localization, thereby aiding in more effective treatment planning. The review also addresses the challenges in integrating AI and radiomics into clinical practice, such as the need for standardization, ensuring data quality, and overcoming the "black box" nature of AI. We emphasize the importance of multicentric collaborations and extensive studies to enhance the applicability and generalizability of these technologies in diverse clinical settings. In conclusion, AI and radiomics represent a major paradigm shift in oncology, offering more precise, personalized, and patient-centric approaches to cancer care. While their potential to improve diagnostic accuracy, patient outcomes, and our understanding of cancer biology is profound, challenges in clinical integration and application persist. We advocate for continued research and development in AI and radiomics, underscoring the need to address existing limitations to fully leverage their capabilities in the field of oncology.
Collapse
Affiliation(s)
- Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (V.S.V.)
| | - Patrick Juliebø-Jones
- Department of Urology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical, Medicine University of Bergen, 5021 Bergen, Norway
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
| | - Arman Tsaturyan
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Department of Urology, Erebouni Medical Center, Yerevan 0087, Armenia
| | - Tarik Emre Sener
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Department of Urology, Marmara University School of Medicine, Istanbul 34854, Turkey
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (V.S.V.)
| | - Dimitrios Karapiperis
- School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Themistoklis Bellos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Stamatios Katsimperis
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Panagiotis Angelopoulos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Ioannis Varkarakis
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Andreas Skolarikos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Bhaskar Somani
- Department of Urology, University of Southampton, Southampton SO17 1BJ, UK;
| | - Lazaros Tzelves
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| |
Collapse
|
14
|
Laurie MA, Zhou SR, Islam MT, Shkolyar E, Xing L, Liao JC. Bladder Cancer and Artificial Intelligence: Emerging Applications. Urol Clin North Am 2024; 51:63-75. [PMID: 37945103 PMCID: PMC10697017 DOI: 10.1016/j.ucl.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Bladder cancer is a common and heterogeneous disease that poses a significant burden to the patient and health care system. Major unmet needs include effective early detection strategy, imprecision of risk stratification, and treatment-associated morbidities. The existing clinical paradigm is imprecise, which results in missed tumors, suboptimal therapy, and disease progression. Artificial intelligence holds immense potential to address many unmet needs in bladder cancer, including early detection, risk stratification, treatment planning, quality assessment, and outcome prediction. Despite recent advances, extensive work remains to affirm the efficacy of artificial intelligence as a decision-making tool for bladder cancer management.
Collapse
Affiliation(s)
- Mark A Laurie
- Department of Urology, Stanford University School of Medicine, 453 Quarry Road, Mail Code 5656, Palo Alto, CA 94304, USA; Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive Room G204, Stanford, CA 94305-5847, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Institute for Computational and Mathematical Engineering, Stanford University School of Engineering, Stanford, CA 94305, USA
| | - Steve R Zhou
- Department of Urology, Stanford University School of Medicine, 453 Quarry Road, Mail Code 5656, Palo Alto, CA 94304, USA
| | - Md Tauhidul Islam
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive Room G204, Stanford, CA 94305-5847, USA
| | - Eugene Shkolyar
- Department of Urology, Stanford University School of Medicine, 453 Quarry Road, Mail Code 5656, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive Room G204, Stanford, CA 94305-5847, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, 453 Quarry Road, Mail Code 5656, Palo Alto, CA 94304, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
15
|
Gelikman DG, Rais-Bahrami S, Pinto PA, Turkbey B. AI-powered radiomics: revolutionizing detection of urologic malignancies. Curr Opin Urol 2024; 34:1-7. [PMID: 37909882 PMCID: PMC10842165 DOI: 10.1097/mou.0000000000001144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW This review aims to highlight the integration of artificial intelligence-powered radiomics in urologic oncology, focusing on the diagnostic and prognostic advancements in the realm of managing prostate, kidney, and bladder cancers. RECENT FINDINGS As artificial intelligence continues to shape the medical imaging landscape, its integration into the field of urologic oncology has led to impressive results. For prostate cancer diagnostics, machine learning has shown promise in refining clinically-significant lesion detection, with some success in deciphering ambiguous lesions on multiparametric MRI. For kidney cancer, radiomics has emerged as a valuable tool for better distinguishing between benign and malignant renal masses and predicting tumor behavior from CT or MRI scans. Meanwhile, in the arena of bladder cancer, there is a burgeoning emphasis on prediction of muscle invasive cancer and forecasting disease trajectory. However, many studies showing promise in these areas face challenges due to limited sample sizes and the need for broader external validation. SUMMARY Radiomics integrated with artificial intelligence offers a pioneering approach to urologic oncology, ushering in an era of enhanced diagnostic precision and reduced invasiveness, guiding patient-tailored treatment plans. Researchers must embrace broader, multicentered endeavors to harness the full potential of this field.
Collapse
Affiliation(s)
- David G Gelikman
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Soroush Rais-Bahrami
- Department of Urology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Radiology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Akin O, Lema-Dopico A, Paudyal R, Konar AS, Chenevert TL, Malyarenko D, Hadjiiski L, Al-Ahmadie H, Goh AC, Bochner B, Rosenberg J, Schwartz LH, Shukla-Dave A. Multiparametric MRI in Era of Artificial Intelligence for Bladder Cancer Therapies. Cancers (Basel) 2023; 15:5468. [PMID: 38001728 PMCID: PMC10670574 DOI: 10.3390/cancers15225468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This review focuses on the principles, applications, and performance of mpMRI for bladder imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used in oncological applications, including tumor staging, prognosis, and assessment of treatment response. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical Imaging-Reporting and Data System (VI-RADS). Many studies confirm the standardization and high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, supporting VI-RADS implementation in routine clinical practice. The standard MRI sequences for VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from mpMRI images play an important role in bladder cancer. The current development of AI tools for analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example, manual tumor segmentation, which demands high time commitment and has inter-reader variability, can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field toward the personalized management of bladder cancer patients.
Collapse
Affiliation(s)
- Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | | | | | - Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lubomir Hadjiiski
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin C. Goh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard Bochner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Rosenberg
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence H. Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| |
Collapse
|
17
|
Ferro M, Falagario UG, Barone B, Maggi M, Crocetto F, Busetto GM, Giudice FD, Terracciano D, Lucarelli G, Lasorsa F, Catellani M, Brescia A, Mistretta FA, Luzzago S, Piccinelli ML, Vartolomei MD, Jereczek-Fossa BA, Musi G, Montanari E, Cobelli OD, Tataru OS. Artificial Intelligence in the Advanced Diagnosis of Bladder Cancer-Comprehensive Literature Review and Future Advancement. Diagnostics (Basel) 2023; 13:2308. [PMID: 37443700 DOI: 10.3390/diagnostics13132308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Artificial intelligence is highly regarded as the most promising future technology that will have a great impact on healthcare across all specialties. Its subsets, machine learning, deep learning, and artificial neural networks, are able to automatically learn from massive amounts of data and can improve the prediction algorithms to enhance their performance. This area is still under development, but the latest evidence shows great potential in the diagnosis, prognosis, and treatment of urological diseases, including bladder cancer, which are currently using old prediction tools and historical nomograms. This review focuses on highly significant and comprehensive literature evidence of artificial intelligence in the management of bladder cancer and investigates the near introduction in clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, 71121 Foggia, Italy
| | - Biagio Barone
- Urology Unit, Department of Surgical Sciences, AORN Sant'Anna e San Sebastiano, 81100 Caserta, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71121 Foggia, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Michele Catellani
- Department of Urology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Antonio Brescia
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Stefano Luzzago
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mattia Luca Piccinelli
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
| | | | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Division of Radiation Oncology, IEO-European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca' Granda-Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO-European Institute of Oncology, IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
18
|
Boca B, Caraiani C, Telecan T, Pintican R, Lebovici A, Andras I, Crisan N, Pavel A, Diosan L, Balint Z, Lupsor-Platon M, Buruian MM. MRI-Based Radiomics in Bladder Cancer: A Systematic Review and Radiomics Quality Score Assessment. Diagnostics (Basel) 2023; 13:2300. [PMID: 37443692 DOI: 10.3390/diagnostics13132300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
(1): Background: With the recent introduction of vesical imaging reporting and data system (VI-RADS), magnetic resonance imaging (MRI) has become the main imaging method used for the preoperative local staging of bladder cancer (BCa). However, the VI-RADS score is subject to interobserver variability and cannot provide information about tumor cellularity. These limitations may be overcome by using a quantitative approach, such as the new emerging domain of radiomics. (2) Aim: To systematically review published studies on the use of MRI-based radiomics in bladder cancer. (3) Materials and Methods: We performed literature research using the PubMed MEDLINE, Scopus, and Web of Science databases using PRISMA principles. A total of 1092 papers that addressed the use of radiomics for BC staging, grading, and treatment response were retrieved using the keywords "bladder cancer", "magnetic resonance imaging", "radiomics", and "textural analysis". (4) Results: 26 papers met the eligibility criteria and were included in the final review. The principal applications of radiomics were preoperative tumor staging (n = 13), preoperative prediction of tumor grade or molecular correlates (n = 9), and prediction of prognosis/response to neoadjuvant therapy (n = 4). Most of the developed radiomics models included second-order features mainly derived from filtered images. These models were validated in 16 studies. The average radiomics quality score was 11.7, ranging between 8.33% and 52.77%. (5) Conclusions: MRI-based radiomics holds promise as a quantitative imaging biomarker of BCa characterization and prognosis. However, there is still need for improving the standardization of image preprocessing, feature extraction, and external validation before applying radiomics models in the clinical setting.
Collapse
Affiliation(s)
- Bianca Boca
- Department of Radiology, "George Emil Palade", University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Teodora Telecan
- Department of Urology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Andrei Lebovici
- Department of Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Alexandru Pavel
- Department of Radiology, "George Emil Palade", University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Laura Diosan
- Department of Computer Science, Faculty of Mathematics and Computer Science, "Babes-Bolyai" University, 400157 Cluj-Napoca, Romania
| | - Zoltan Balint
- Department of Biomedical Physics, Faculty of Physics, "Babes-Bolyai" University, 400084 Cluj-Napoca, Romania
| | - Monica Lupsor-Platon
- Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Radiology, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. Octavian Fodor", 400162 Cluj-Napoca, Romania
| | - Mircea Marian Buruian
- Department of Radiology, "George Emil Palade", University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|